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In this paper, we propose a deep-learning-based infrared-visible images fusion method based on encoder-decoder 

architecture. The image fusion task is reformulated as a problem of maintaining the structure and intensity 

ratio of the infrared-visible image. The corresponding loss function is designed to expand the weight difference 

between the thermal target and the background. In addition, a single image super-resolution reconstruction 

based on a regression network is introduced to address the issue that traditional network mapping functions are 

not suitable for natural scenes. The forward generation and reverse regression models are considered to reduce 

the irrelevant function mapping space and approach the ideal scene data through double mapping constraints. 

Compared with other state-of-the-art approaches, our experimental results achieve superior performance in terms 

of both visual effects and objective assessments. In addition, it can stably provide high-resolution reconstruction 

results consistent with human visual observation while bridging the resolution gap between the infrared-visible 

images. 
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. Introduction 

Image fusion techniques [1–3] aim to generate an informative im-

ge with specific algorithms from multiple source images. Thanks to the

bility to recombine disparate information, infrared and visible image

usion technology plays a pivotal role in the detecting imaging systems.

ence, the fused result has a more distinct and complete depiction of the

cene, which is beneficial to human perception and machine processing.

he fusion image can synthesize a novel image with complementary in-

ormation of the source images. Maximizing the integration of interest

nformation is an essential bottleneck to reveal novel insights and fun-

amental scientific issues in biomedicine [4] , forest fire fighting [5] ,

nd safe driving. For example, it is common to generate high dynamic

ange (HDR) images by applying the multiple exposure fusion (MEF) [6–

] approach. HDR imaging method can provide more prosperous image

etails, making reconstructed images more distinct and pleasing to hu-

an visual observation. Based on this approach, the infrared and visible

usion algorithm [9–11] can integrate the advantages of each informa-

ion. Generally speaking, infrared images lack texture information and

annot effectively characterize the scene. Notwithstanding, it has been

idely applied own to its inherent thermal radiation characteristics and

he ability to realize cloud penetration imaging in long-wave infrared
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ands. In contrast, the visible image contains texture details with high

patial resolution, which is conducive to enhancing the ability of tar-

et recognition and conforms to the human visual system. However,

he visible image also has a fatal disadvantage: it is impossible to ob-

ain a high-quality image under low illumination conditions. Therefore,

isible-infrared imaging is interdependent and jointly promoted. 

Although the image fusion technology has made significant improve-

ents, the pixel size of the long-wave infrared detector has approached

he physical limit (17 μm) due to limitations in software algorithms and

ardware technology. Meanwhile, with the imaging resolution increas-

ng, the manufacturing cost of the device will also dramatically ex-

and. Therefore, the current dual-band image fusion technology is in-

ufficient to stably realize all-weather high-resolution imaging. At this

ime, the traditional super-resolution (SR) models and algorithms are

o longer suitable, and their computational complexity adds the pres-

ure of massive calculation to the application. Recently, deep learning

DL) [12,13] has emerged as a powerful technique in the field of im-

ge fusion owing to its outstanding feature extraction, representation

apability, strong robustness, and efficient reconstruction performance.

rom the artificial intelligence robot developed by Deepmind company

o the powerful robot dog in Boston, promising news came one after an-

ther. Artificial intelligence [14–17] produces a familiar word around
April 2022 
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Fig. 1. Structural diagram and imaging reconstruction notion of the cross-modal fusion imaging system. 
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s. This is a remarkable manifestation of the gradual replacement of

anual operation by intelligent machines. This trend is being driven by

he increasing demand for the emergence of multi-dimensional sensors

oupled with artificial intelligence computing technology. Over the past

ecades, deep learning technology has become a research hotspot in the

ra of massive data. Both academia and industry show strong interest

o this technology, especially in computer vision [18,19] . As a ”Data-

riven ” technology that has emerged in recent years, it has achieved

urpassing achievement in many applications such as image classifica-

ion [20] , object detection [21,22] , and recognition [23,24] . And as

hown in Fig. 1 , overcoming the pixelation imaging problem caused by

nadequate spatial sampling is also the novelty of Multi-image super-

esolution fusion (Multi-SR-Fusion) technology. 

The remaining structures of this paper are as follows. In Section 2 , we

riefly review related works on deep learning frameworks. Section 3 de-

icts the basic principle of our proposed method. Section 4 presents the

etails of the proposed Multi-SR-Fusion network for infrared and visible

mage fusion. Abundant experimental results and analysis are illustrated

n Section 5 . Finally, Section 6 provides a discussion and summarizes the

aper. 

. Related works 

At present, benefiting from the powerful feature extraction ability

f DL convolution operation and learning mapping function parame-

ers from massive data, the DL method has rapidly evolved the most

otential direction in the field of image fusion. The traditional single-

rame image SR [25,26] problem refers to the process of recovering

rom low-resolution (LR) images to high-resolution images, constantly

ushing the limits to obtain higher real-world perception. In the field

f computer vision, the introduction of convolutional neural networks

CNNs) [27] has extensively promoted the development of single image

R technology. The researchers continuously optimize the SR network

odel by introducing residual models, deep convolutional structures,

nd dense connectivity structures to enhance the reconstruction perfor-

ance. However, due to the ill-posedness of the single image SR issue,

ost existing methods will generate artifacts and even lose the detailed

exture under the condition of the sizeable scaling factor. Therefore, it is

till a challenge to accurately reconstruct the high-frequency image de-

ails. Of the prominent DL-based methods, there are two mainstreams:

onvolutional neural network (CNN) [28–31] and generative adversar-
2 
al network (GAN) [32–34] . A majority of representative works have

een proposed on this challenging problem. 

In ICCV 2017, a classical fusion method, termed as DeepFuse [35] ,

as put forward to tackle the exposure image fusion task. On this ba-

is, Li et al. replaced the convolution network in the previous part with

ense-block for improvement [36] . The fusion network is composed of

he encoder, fusion layer, and decoder structure. Considering the sim-

larity between the fused features and the original image, Zhang et al.

reated the proposed method better focused on the effective extraction

f image features [37] by the continuous feedback of feature informa-

ion from each layer. With the rapid development of the GAN network,

cholars have also applied it to the field of infrared and visible images.

a et al. proposed a detail-preserving learning-based fusion model for

nfrared and visible images [38] . The dual loss functions of detail loss

nd target edge enhancement loss are designed to improve the qual-

ty of detail information and sharpen the edges of IR targets, respec-

ively, in the adversarial network generation framework. Nonetheless,

his method does not fully consider the characteristics of infrared and

isible images, and the fused images are challenging to highlight the tar-

et information. According to the aspects of infrared-visible imaging, Li

t al. proposed a GAN network with a multi-scale attention mechanism

39] . The multi-scale attention mechanism generator focuses on the tar-

et information of the infrared image and the background detail infor-

ation of the visible image so that the fusion network can concentrate

n the specific area of the source image to reconstruct the fusion image.

enerally speaking, the method based on DL can produce satisfactory

esults without manually designed decomposition processing and fusion

ules. However, they can not highlight important targets while retaining

ackground information, resulting in low contrast of fusion results. Due

o the limitations of the manufacturing process, power consumption, or

he cost of the sensor, the pixel imaging of infrared images has not been

ufficiently solved. Zou et al. successfully realized the SR reconstruc-

ion of infrared images by employing the encoder-decoder network and

lso verified the application potential in image SR and feature extrac-

ion [40] . Therefore, if the SR structure can be added to the network,

he fusion result will be predictable improved. 

Gatys et al. proposed the neural style transfer method [41] and first

pplied the DL method to the style transfer task. The network maintains

he consistency of the basic information of the two images through con-

ent loss constraints and updates the style of the input image by back-

ropagation iterations. By continuous forward propagation calculation

oss and backpropagation optimization loss and updating the pixel value
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Table 1 

The number of layers in the network structure. 

Layer Parameter Numbers 

Convolution layer 1 × 1, Strides = 1, padding = SAME 4 

Convolution layer 3 × 3, Strides = 1, padding = SAME 21 

Convolution layer 3 × 3, Strides = 2, padding = SAME 4 

Convolution layer 5 × 5, Strides = 1, padding = SAME 4 

ReLU layer - 12 

LReLU layer alpha = 0.2 16 

Concat layer - 6 

Deconvolution layer 3 × 3 4 

Element-max later - 1 

Global average pooling layer - 4 

Fully connected layer - 8 

Sigmod layer - 4 

Pixelshuffle layer 2 × 2 2 

Max-pooling layer 2 × 2 4 
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f the reconstructed image, the optimal reconstructed image is eventu-

lly obtained. The essence of image style migration is the fusion of two

ifferent style images. In a sense, infrared and visible images can also

e regarded as two separate ”style ” images. Therefore, this proposed

ethod utilizes the notion of neural style transfer to alleviate the prob-

em of infrared and visible image fusion. 

As mentioned above, in recent years, infrared and visible image

usion technology based on the neural network has essential research

rospects. In the task of infrared and visible image fusion, the following

roblems are still faced: 

1) End-to-end imaging datasets. DL reconstruction algorithms are based

on multiple datasets, while fewer datasets are available for infrared

and visible image fusion tasks. How to utilize the existing data to

realize the network training model is one of the challenges. And the

most critical point is that the current fusion networks do not consider

the resolution of infrared images, and the quality of input infrared

images is too poor, resulting in unsatisfactory reconstruction results.

2) The resolution gap between the infrared-visible images. In the task

of infrared-visible fusion, generally speaking, the resolution of the

infrared detector will generally be much worse than the visible de-

tector. Therefore, whether the infrared imaging quality can be im-

proved through the mapping function to enhance the quality of fu-

sion image is also one of the critical contents of this paper. 

3) Network structure. Image fusion is a low-level task in computer vi-

sion, and the network structure should be as lightweight as possible.

And how to give full play to the network ability and trade-off the

weight between two images is also one of the fundamental problems.

4) Loss function. In the network training process, the network training

parameter needs to be modified by the loss function, which puts

forward more strict requirements for the loss function design. 

. Proposed methods 

For the human visual system, the ”conspicuity area ” that contain-

ng essential targets is more attractive. Based on the above analysis, the

roblem of infrared–visible image fusion is how to maintain the high-

requency detail information and the thermal radiation information so

s to realize a multi-dimensional data fusion process. The primary task

f the proposed method is to improve the resolution of the infrared im-

ge and then carry out the weighted fusion of the heterologous image

hile obtaining a high-quality image resolution. Therefore, efficiently

xtracting the feature information of each image and assigning fusion

eight is the focus of our research. Based on the concept of U-net seman-

ic segmentation and style transfer [42] , the thermal radiation informa-

ion of the infrared image can be effectively segmented, and then the

hermal image and visible texture information are transferred by style

ransfer structure. In our workflow, the coding-decoding fusion struc-

ure is employed for end-to-end learning, as shown in Fig. 2 , so that the

etwork can not only center on the ”conspicuity area ” information but

lso learn the image SR mapping function. The image merge problem

s transformed into the issue of maintaining the structure and intensity

atio of infrared and visible images. The corresponding loss function is

esigned to expand the weight distinction between the thermal target

nd the background. Aiming at the shortage that the traditional net-

ork mapping function is ill-posed in the actual scene, the additional

onstraint of inverse regression is embedded to reduce the space of the

ossible mapping function. Lastly, the pseudo color SR reconstruction

ased on the scene is realized by expanding the number of channels. By

oing so, the reconstructed image is more in line with the human visual

ffect. 

Note that our method takes the infrared image and visible image as

he input image and obtains the colorized fusion image through end-to-

nd supervised network. Multi-scale feature extraction is performed in

nfrared and visible images by applying the diverse dimensions kernels.

ubsequently, the infrared and visible fusion image is generated through
3 
he fusion layer. The fusion structure contains multi-scale feature ex-

raction and residual channel attention blocks (RCAB), which enables

aluable feature mapping and suppresses unimportant feature mapping.

he coding-decoding SR structure realizes the functions of feature ex-

raction and reconstruction, respectively. Meanwhile, the introduction

f the skip connection structure can transfer the image feature informa-

ion from the encoding part to the decoding part of the network, solving

he problem of gradient disappearance. 

.1. Problem formulation 

To express the mapping relationship of the network more clear, the

etwork model can be defined as: 

 𝑜𝑢𝑡 ( 𝑥, 𝑦 ) = 𝐹 𝜔,𝜃
[
𝐼 𝐿𝑅 1 ( 𝑥, 𝑦 ) , 𝐼 𝐿𝑅 2 ( 𝑥, 𝑦 ) 

]
(1)

here, 𝐹 𝑤,𝜃[ . ] represents the nonlinear mapping function of the network,

 and 𝜃 respectively describe the weight and deviation trainable param-

ters in the network, 𝐼 𝐿𝑅 1 ( 𝑥, 𝑦 ) describes the input long-wave infrared

mage, 𝐼 𝐿𝑅 2 ( 𝑥, 𝑦 ) describes the input visible image, and 𝐼 out ( 𝑥, 𝑦 ) is the

R image output by the network. Detailed network parameters are il-

ustrated in Table 1 . 

The network structures contain the convolution, deconvolution,

lement-addition or multiplication, channel-fusion, max-pooling, and

lement-max layers. The input image of the 𝑋 𝑖 layer is represented by 𝑖 ,

nd the convolution layer and deconvolution layer are represented as: 

 

(
𝑋 𝑖 

)
= max 

(
0 , 𝑊 𝑘 ∗ 𝑋 𝑖 + 𝐵 𝑘 

)
(2)

here, 𝑊 𝑘 and 𝐵 𝑘 represent filter and deviation respectively. For con-

enience, ∗ represents convolution or deconvolution. 

For the element-addition layer, the output is the addition of two in-

uts of the same size, followed by Leaky Rectified Linear Unit(LReLU)

ctivation: 

 

(
𝑋 𝑖 , 𝑋 𝑗 

)
= 

{ 

𝑋 𝑖 + 𝑋 𝑗 , 𝑋 𝑖 + 𝑋 𝑗 ≥ 0 
𝛼 ∗ 

(
𝑋 𝑖 + 𝑋 𝑗 

)
, 𝑋 𝑖 + 𝑋 𝑗 < 0 

(3)

here, 𝑋 𝑖 and 𝑋 𝑗 represent layer 𝑖 + 1 and layer 𝑗 + 1 respectively, and

= 0 . 01 . 
For the element multiplication layer, the output is the multiplication

f two elements of the same size, followed by LReLU activation: 

 

(
𝑋 𝑖 , 𝑋 𝑗 

)
= 

{ 

𝑋 𝑖 ⋅𝑋 𝑗 , 𝑋 𝑖 ⋅𝑋 𝑗 ≥ 0 
𝛼 ∗ 

(
𝑋 𝑖 ⋅𝑋 𝑗 

)
, 𝑋 𝑖 ⋅𝑋 𝑗 < 0 

(4) 

For the channel fusion layer, the output is the sum of two input chan-

els of the same size: 

 

(
𝑋 𝑖 , 𝑋 𝑗 

)
= 𝑋 𝑖 ⊕𝑋 𝑗 (5)

For the max-pooling layer, the output image size is half of the input

mage, which is expressed by the following formula: 

 

(
𝑋 𝑖 

)
= 𝑑𝑜𝑤𝑛 

(
𝑋 𝑖 

)
(6)
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Fig. 2. Super-resolution fusion network structure of heterogeneous images based on encoding-decoding structure. 
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here 𝑑𝑜𝑤𝑛 represents pooling function, and this paper adopts max-

ooling. 

For the element-max layer, the size of the output image is the same

s the input image, which is expressed by the following formula: 

 

(
𝑋 𝑖 , 𝑋 𝑗 

)
= max 

(
𝑋 𝑖 , 𝑋 𝑗 

)
(7)

For the sub-pixel convolution layer, the output image size is twice of

he input image, which is expressed by the following formula: 

 

(
𝑋 𝑖 

)
= 𝑝𝑖𝑥𝑒𝑙𝑠ℎ𝑢𝑓 𝑓 𝑙𝑒 

(
𝑋 𝑖 

)
(8)

.2. Loss function 

Weight distribution is the core problem of image fusion, which di-

ectly determines the quality of fused image. To perform network train-

ng, we need to accurately evaluate the information similarity between

he fused image and the input image pair to minimize information loss,

hus effectively preserving the thermal radiation information from the

nfrared image and the textural detail information from the visible im-

ge. Therefore, in this paper, the image fusion problem is transformed

nto the issue of maintaining the structure and intensity ratio of infrared-

isible images. The intensity distribution and gradient information can

haracterize the thermal radiation and structural information, respec-

ively. In order to preserve the representative features of the source im-

ge to the greatest extent, a hybrid loss function is designed to retain

aluable feature information. Thus, the loss function of our proposed

odel is set to: 

𝑜𝑠𝑠 = 

𝑁 ∑
𝑖 =1 
𝐿𝑜𝑠𝑠 1 

(
𝐹 
(
𝑥 𝑖 
)
, 𝑦 𝑖 

)
+ 𝜆𝐿𝑜𝑠𝑠 2 

(
𝐷 

(
𝑦 𝑖 
)
, 𝑥 𝑖 

)
(9)

here 𝑥 𝑖 and 𝑦 𝑖 respectively represent the input LR and output HR im-

ges. 𝐿𝑜𝑠𝑠 1 
(
𝐹 
(
𝑥 𝑖 
)
, 𝑦 𝑖 

)
and 𝐿𝑜𝑠𝑠 2 

(
𝐷 

(
𝑦 𝑖 
)
, 𝑥 𝑖 

)
describe the loss functions

f forward regression and inverse regression tasks, respectively. During

he training process, the reconstructed images 𝐹 ( 𝑥 𝑖 ) continuously con-

erge to the corresponding HR images. Similarly, the similarity between

he predicted image 𝐷( 𝑦 𝑖 ) and the forward input LR image is continu-

usly approached in the regression process. Here we set 𝜆 to 0.1 for the

eight distribution of the hybrid loss function. 

If 𝐹 ( 𝑥 𝑖 ) is the accurate HR image, the image 𝐷( 𝑦 𝑖 ) in the inverse

egression model should be dramatically similar to the LR image. With

his constraint, we can reduce the possible mapping function so as to

chieve robust image reconstruction. 

𝑜𝑠𝑠 1 = 𝛼
‖‖‖𝑦 𝑖 − 𝐹 

(
𝑥 𝑖 
)‖‖‖2 2 + 𝛽

‖‖‖∇ 𝑦 𝑖 − ∇ 𝐹 
(
𝑥 𝑖 
)‖‖‖2 2 (10)

here, ‖ ∙ ‖2 defines the 𝐿 2 norm, ∇ represents the gradient operator. 𝛼

nd 𝛽 are two factors that balance these two terms, 𝛼 = 𝛽 = 0 . 5 in this
4 
xperiment. 

𝑜𝑠𝑠 2 = 

‖‖‖𝐷 

(
𝑦 𝑖 
)
− 𝑥 𝑖 

‖‖‖2 2 (11)

This formulation is an improved fusion method by taking SR into

ccount. The forward generation process and reverse regression process

f the input-output image are simultaneously constrained, and the dual-

oss functions compensate each other to produce the whole loss function

alance. The mixed loss between the input-out images is computed to

pdate network parameters. By minimizing the loss, the network per-

orms accurate reconstruction of the input data in the training phase,

mphasizes the valuable information, and suppresses the irrelevant in-

ormation. 

. Network architecture 

.1. Multi-scale feature extraction (encoding) module 

An essential part of SR reconstruction is how to extract the features

f the input image. Suppose the different dimensions information can

e obtained. In that case, it will conduce for signal restoration. On the

ther hand, the image feature information is generally extracted by a

onvolution kernel. Therefore, the idea of extracting the image with

arge convolution to obtain a more extensive receptive field has been

prouting. A larger receptive field will facilitate the reception of fea-

ure information. However, if the convolution kernel is too large, the

mount of calculation will increase sharply, which is not conducive to

he boost of model depth. Therefore, we can decompose the large-scale

onvolution into several small-scale convolutions so as to reduce the

mount of calculation. Although multi-scale convolutional blocks can

xtract adequate features, it is also crucial to selectively focus on the

ssential elements and ignore the less important ones. This means that

ot all features are beneficial for reconstruction. Intermediate features

ontain valuable information, such as primary structure and details, or

ven irrelevant information, such as noise. Therefore, We adopt a mul-

iscale layer with different kernel sizes, such as 3 × 3 and 5 × 5, to ac-

uire low-frequency and high-frequency features with various receptive

elds. By doing so, comprehensive image information at different scales

s fetched and reused with each other. The feature fusion convolution

ayer virtually reduces the computational complexity and improves the

onvergence speed of the network. Consequently, introducing a multi-

cale extraction module is profitable to obtain higher-level robust se-

antic features, retain more underlying details, and enrich the image

eature information. 
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Fig. 3. Schematic diagram of the critical network modules. (a) Multi-scale feature extraction structure. (b) Residual channel attention blocks. (c) Dual-regression 

mapping structure. 

4

 

c  

m  

t  

S  

a  

u  

w  

p  

c  

b  

w  

e  

o

 

a  

n  

f  

a  

l  

t  

a  

d  

f  

p  

p  

s  

s  

i

5

5

 

p  

t  

w  

R  

e  

a

 

v  

e  

i  

a  

1  

s  

d  

(

 

f  

s  

t  

L  

t  

o  

t  

t

 

(  

d  

c  

i  

i  

t  

l  

t  

c  

t

 

n  

t  

p  

H  

i  

m  

i

5

 

r  

n  

e  

i  

d  

a  
.2. Super-resolution (decoding) module 

The SR network adopts an encoder-decoder architecture. In the de-

oding layer, the pixel-shuffle method is operated to enlarge the feature

ap size corresponding to the convolution layer in the coding layer, and

he different dimensional information is transmitted by skip connection.

kip connection can not only transfer image feature information but also

lleviate the problem of gradient disappearance. We introduce the resid-

al channel attention module to adjust the channel feature information,

hich is conducive to reconstructing HR images. The global average

ooling layer encodes all spatial features into a whole feature on one

hannel. After receiving the global features, the nonlinear relationship

etween each channel is learned through the full connection layer. The

hole operation can be regarded as learning the weight coefficients of

ach channel to make the model more discriminative about the features

f each channel. 

Currently, the mainstream network architecture model is moving in

 deeper direction. A deeper network model means that it has better

onlinear expression ability. Thereby, it can learn more complex trans-

ormations and fit more complex feature inputs. However, a common

ccompaniment problem is that the information extracted by the middle

ayers is not employed thoughtfully. Therefore, the skip connection in

he residual structure is worthwhile to enhance the gradient propagation

nd alleviate the problem of gradient disappearance caused by network

eepening. In addition, the existing methods only focus on the mapping

rom the LR image to the HR image. However, the under-determined

ossible mapping space is volatile and challenging during the training

rocess. In order to ameliorate this problem, we propose a dual regres-

ion project in the SR structure, as shown in Fig. 3 (c). Through the re-

triction of double constraints, the robustness of the network model and

ts applicability to natural scenes can be promoted. 

. Experiment and results 

.1. Network and dataset settings 

In the network, the batch size is 4, and the epoch is set to 200. Em-

irically, we use Adam optimizer to optimize the network structure, and

he initial learning rate is set to 10 −4 . The network is conducted on hard-

are platform with an Intel Core TM i7-9700K CPU @ 3.60GHz ×8, and

TX2080Ti. The software platform is running under Ubuntu 16.04 op-

rating system. The total training time of our network is 11.20 hours,

nd the average test time for each image is 1.31 seconds. 

The long-wave infrared (self-developed, 800 ×600, 25 μm) and

isible images are collected by the cross-modal image acquisition
5 
quipment and transmitted to the network for training after reg-

stration. The corresponding images are cut into 128 ×128 pieces

nd sent to the network for training. The infrared dataset contains

300 images, of which 800 images are employed as the training

et, and 200 images are utilized as the validation sets. The fusion

ataset includes the lake, jungle, and urban imaging environments

 https://figshare.com/s/0d35b35c18c70cd3bba1 ). 

It is worth noting that the HR infrared images are acquired at long

ocal lengths, and conversely, the LR infrared images are obtained at

hort focal lengths (large field-of-view imaging). The pixel mapping of

he HR image is yielded by partially recording the central region of the

R image, as shown in Fig. 1 . Instead of creating the training dataset

hrough simulations (bicubic down-sampling or an approximate model

f the point spread function), in the presented technique, the desired

arget 3 × super-resolved images are accordingly obtained by tripling

he focal length (25mm-75mm). 

We utilized the visual saliency map (VSM) and weighted least square

WLS) to realize heterogeneous image fusion. The original image can be

ecomposed into the bottom and several detail layers by multi-scale de-

omposition (MSD). The bottom layer mainly contains low-frequency

nformation, which determines the overall appearance and the fused

mage contrast. In this paper, VSM is used to merge the bottom layer

o effectively extract the salient structure so as to avoid the blurring of

ow-frequency information. Detail layers are merged according to the

raditional ”maximization ” rule. The absolute value of the detail layer

oefficient is considerable, which corresponds to more significant fea-

ures. 

The monochrome display has constantly perplexed low-light-level

ight vision and infrared imaging systems. Therefore, it is also an essen-

ial task to employ the visible color component information to achieve

seudo-color of fused images. We map the RGB color components to the

SV color space in the color migration task. The grayscale fused image

s created as the V component of the predicted image, and the chro-

aticity H and saturation S are kept constant to achieve the final color

mage output. 

.2. Experimental results analysis 

A majority of visible texture information plays a significant role in

estoring and reconstructing HR color fusion images. However, in the

ight vision imaging environment, the visible detector can not provide

nough detailed information, so improving the SR reconstruction abil-

ty of the infrared image is also an essential research direction. In or-

er to verify this concept, we partially modify the network structure

nd remove the visible image from the input structure. Fig. 4 depicts

https://figshare.com/s/0d35b35c18c70cd3bba1
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Fig. 4. The comparison of super-resolution imaging results with different scenes (Scale = 3). 
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he comparison of SR reconstruction results in three different scenes.

t can be seen that our method has been sufficiently enhanced in the

econstructed image, whether in edge details or the recovery of spatial

requency components. Compared with bicubic interpolation, auxiliary

eural network (AUX) [43] , infrared image super-resolution imaging

lgorithm based on the auxiliary convolutional neural network (AUX-

NN) [44] , cascade super-resolution(CAS) [45] , and skip connected

uper-resolution (U-net) approach [40] , our method improves the peak

ignal-to-noise ratio by 4.08dB, 2.36dB, 2.79dB, 2.03dB and 1.71dB,

espectively. In addition, from the visual imaging performance, our re-

ults are consistent with the HR truth image and avoid the artifact phe-

omenon in the SR reconstruction result. Therefore, from a comprehen-

ive point of view, the SR image obtained by the proposed method is

ore prominent. At the same time, it also verifies the feasibility of ap-

lying a dual-regression network to improve the SR reconstruction per-

ormance. 

After verifying the feasibility of the network, we employed the

etwork for heterogenous image fusion processing and made compar-

sons with the anisotropic diffusion and Karhunen Loeve transform
6 
ADF) [46] , fourth order partial differential equations (FPDE) [47] ,

ulti scale guided (MGFF) [48] , multi singular value decomposition

MSVD) [49] and two scale image fusion using saliency detection (TIF)

50] methods, respectively, and the corresponding reconstruction re-

ults are shown in Fig. 5 . Although it is difficult to accurately evaluate

he visual quality of these methods, we can perceive apparent differ-

nces between them. As shown in Fig. 5 , all the fusion methods have

ccomplished the task of merging the information of infrared and visi-

le images to some extent. Overall, our method embraces more textual

etails while highlighting the important targets. 

The reconstruction results are suitable for human eye perception due

o the advantages of the high signal-to-noise ratio of the output im-

ge and complementary fusion information. From the objective data in

ig. 6 , the evaluation indexes of the fused image in spatial frequency,

dge intensity, and average gradient were improved over the existing

maging algorithm by 3.35, 8.97, and 0.94, respectively. The compar-

tive data in Table 2 also verify the feasibility of introducing super-

esolution networks to improve the reconstruction performance. The im-

ge fusion task is reformulated as a problem of maintaining the structure



B. Wang, Y. Zou, L. Zhang et al. Optics and Lasers in Engineering 156 (2022) 107078 

Fig. 5. The comparison of imaging fusion results with different scenes. 

Fig. 6. Index evaluation curve under continuous frames of the same scene. 
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Table 2 

The comparison of imaging fusion evaluation index with different scenes. The bold text indicates the best 

result. 

Number Methods AG Edge intensity Entropy Mutinf Qcv Rmse SF 

Image 1 ADF 6.2074 59.8872 6.8278 1.8177 0.1008e + 03 0.0625 15.6246 

Image 1 FPDE 5.7650 55.6909 6.7977 1.8299 0.1142e + 03 0.0622 14.0359 

Image 1 MGFF 6.9055 68.4516 7.0109 1.6050 0.2067e + 03 0.0644 17.3653 

Image 1 MSVD 5.3488 50.8112 6.7623 1.8511 0.1082e + 03 0.0622 14.5423 

Image 1 TIF 6.0770 60.4062 6.9641 1.6900 0.0927e + 03 0.0634 15.6507 

Image 1 Ours 7.3762 71.4749 6.6295 1.3591 0.6739e + 03 0.0698 18.3819 

Image 2 ADF 4.4591 45.9656 6.8876 2.1563 0.4278e + 03 0.0705 12.7356 

Image 2 FPDE 4.4130 45.5108 6.8797 2.1499 0.4231e + 03 0.0704 12.1605 

Image 2 MGFF 5.3440 60.8598 7.2126 1.9414 0.4549e + 03 0.0725 17.3130 

Image 2 MSVD 4.5975 46.9185 6.8986 2.1679 0.4229e + 03 0.0705 13.9639 

Image 2 TIF 5.2618 55.5220 7.1010 2.0178 0.2774e + 03 0.0717 14.5801 

Image 2 Ours 5.9050 66.7448 7.0556 2.2175 0.9902e + 03 0.1070 18.6244 

Image 3 ADF 4.0698 44.4168 6.2849 0.9410 1.1340e + 03 0.0650 9.8957 

Image 3 FPDE 3.8069 41.4784 6.2352 0.9521 1.1079e + 03 0.0647 9.0497 

Image 3 MGFF 5.6396 60.8485 6.6629 0.9208 1.0847e + 03 0.0661 14.7737 

Image 3 MSVD 4.1813 44.2260 6.2795 0.9723 1.1131e + 03 0.0648 13.9639 

Image 3 TIF 5.4249 58.7020 6.6533 0.8981 1.0184e + 03 0.0665 14.1778 

Image 3 Ours 7.4351 78.8509 7.0185 1.2953 2.3615e + 03 0.1062 22.4927 

Fig. 7. The imaging results of the proposed algorithm in severe weather (foggy days). (a1, b1) Visible image. (a2, b2) Infrared image. (a3, b3) Fusion image. 
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nd intensity ratio of the infrared-visible image, solving the problem of

oor quality fusion performance and thermal information blurring due

o the low resolution of the infrared image in conventional fusion imag-

ng. 

For the fusion imaging problem under severe weather (foggy days),

e have also explored it accordingly. As shown in Fig. 7 , under a foggy

ky, the scene captured by the visible detector is muddy and contains

n amount of interference information. On the contrary, long-wave in-

rared detectors capture unique signals by virtue of the characteristics

f penetrating smoke imaging and thermal radiation sensing. The multi-

cale feature extraction network effectively realizes the high-frequency

nformation fusion of different detectors in the proposed method. An

xcellent color fusion image can be achieved with the help of color

nformation from the visible detector, as depicted in Fig. 7 (a3, b3).

owever, the infrared image also has the imaging problem of poor

ontrast due to less thermal radiation information on foggy days. By

egressing the output of the super-resolution network, the correspond-

ng high-frequency detail information is basically restored, as shown in

ig. 7 (a2, b2). 

In addition, the recovery of image color information is also an un-

ertainty problem. Deep learning-based color image reconstruction is

ainly established on specific scenes and cannot recover color infor-

ation that does not appear in the training set. Therefore, this im-
8 
oses strict requirements on the training set, which should contain

s much color information as possible for various scenes. Fig. 8 por-

rays the multi-modal imaging results of heterologous images based

n the regression network. Various modes of reconstruction such as

seudo-color, SR reconstruction, and edge extraction are realized. See

upplementary visualization materials 1, 2, and 3 for specific imaging

ideos. The experimental results indicate that the network is able to

erform fused images containing thermal information of infrared im-

ges and high-frequency information of visible images, which compre-

ensively enhances the resolution of detailed textures of infrared im-

ges. At the same time, the obtained colored image is consistent with

he visual perception effect of the human eyes. With the guidance of

hermal radiation signals, the contour markings of moving objects can

e unambiguous marked to further facilitate the information percep-

ion ability. For instance, the image resolution and thermal informa-

ion of toy guns held by pedestrians are significantly improved in in-

rared images. From the reconstruction results in Fig. 8 (c), we can

learly observe that the fused target images are effectively highlighted

n the low light environment, which will be conducive to the subse-

uent target recognition and tracking. In general, our method can of-

er robust adaptability in different imaging environments, and it will

lso provide a promising way to improve the quality of infrared-visible

usion. 
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Fig. 8. Cross modal reconstruction results in different scenes. 
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. Conclusion 

To address the bottleneck of low-quality fusion imaging caused by

ifferent imaging mechanisms and mismatched spatial resolution of het-

rogeneous detectors, an infrared-visible cross-modal color fusion net-

ork based on DL is proposed. Affording the conception of semantic

egmentation and style transfer, the encoding-decoding fusion network

s adopted for end-to-end learning to improve the feature expression

bility and suppress the interference of useless information. The corre-

ponding dual-loss function is designed to expand the weight difference

etween thermal target and background. Experimental results prove the

uperiority in terms of visual quality and quantitative criteria compared

o five representative methods. The evaluation indexes of spatial fre-

uency, edge intensity, and average gradient were improved by 3.35,

.97, and 0.94, respectively, which significantly improved the imaging

uality of the fused images and verified the application potential of the

etwork. On this basis, the imaging output of HR infrared reconstruc-

ion, heterologous image pseudo color fusion, edge feature extraction

nd other modes are realized, which opens new avenues for subsequent

R reconnaissance and identification tasks. 
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