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Tumor suppressor gene TP53 plays a crucial role in cancer diagnosis and prognosis. The gene encodes the 
tumor suppressor protein p53, which can be identified through immunohistochemical (IHC) staining in various 
cancers, including gastric carcinoma. However, IHC staining is more costly and therefore not as prevalent as 
routine hematoxylin-eosin (H&E) staining. In this study, we present a semi-supervised learning-based approach 
for immunological detection (SSID) of TP53 mutation directly on H&E-stained gastric tissue sections, intending to 
improve gastric cancer diagnosis. SSID is trained on a small set of annotated image pairs and a larger unannotated 
dataset of H&E-stained images. It can detect the regions showing strong p53 expression, indicating TP53 mutation, 
and we validate the accuracy of our approach through both qualitative assessment (pathologists’ average score 
of 2.22/3) and quantitative evaluation (e.g., averaged mean Intersection-over-Union of 0.73). Moreover, we 
introduce Bayesian uncertainty to assess the credibility of the detected masks, aiming to prevent misdiagnosis 
and inappropriate treatment. Our results demonstrate that SSID can circumvent the expensive and laborious IHC 
staining procedures and enable the diagnosis and prognosis of gastric cancer through immunological detection 
of TP53 mutation.
1. Introduction

With more than one million new cases occurring annually worldwide 
and dismal overall survival rates, gastric cancer has become one of the 
most lethal diseases necessitating urgent clinical needs [1]. Histologi-

cal analysis of stained tissue sections is a critical step in the pathologic 
evaluation of diseases like gastric cancer. Among the routinely employed 
staining techniques, hematoxylin-eosin (H&E) staining stands out for its 
widespread use in clinical pathology and visual inspection of histochem-

ically stained tissue slides [2]. However, it is still challenging to provide 
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a precise pathological diagnosis by using only single-mode staining of 
H&E since H&E-stained histological slides primarily display fundamen-

tal morphological information without reflecting micro-molecular de-

tails [3]. Hence, to reveal subcellular features such as cytoplasmic and 
nuclear details in gastric cancer, researchers have explored various im-

munohistochemical biomarkers, including nuclear protein Ki67, human 
epidermal growth factor receptor 2 (HER2) and the tumor suppressor 
protein p53, all of which enhance cancer analysis [1,4].

Typically, the TP53 gene encodes the p53 protein and has been 
proven to have high relevance to human cancers, showing great value 
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in cancer diagnosis and prognosis [5]. Moreover, the p53 protein re-

flects the underlying TP53 mutation status and is closely associated with 
tumor formation. Numerous therapeutic applications based on TP53 
mutation status have been proposed, such as the distinction between 
two histotypes and pathological predictions within specific histotypes 
or across multiple histotypes [6]. As one of the gold standards for cancer 
analysis and diagnostic decisions, immunohistochemical (IHC) staining 
is an important tool with the capacity to identify specific biomarkers 
in clinical practice [7]. Combining p53 IHC staining with routine H&E 
staining significantly improves the diagnostic accuracy of gastric can-

cer. However, IHC staining requires experienced histotechnologists to 
perform laborious tissue preparation and chemical processing, which is 
more costly and time-consuming compared to the standard H&E stain-

ing.

Rapid advances in pathologic evaluation of diseases based on deep 
learning (DL) have emerged in recent years. The deep neural network, 
for example, the convolutional neural network (CNN) shows a high 
model capacity to theoretically function arbitrary mappings from one 
pathological domain to another one [8,9]. Leveraging the assumption of 
a certain relationship between the latent details of specific biomarkers 
and the morphological information, deep learning has enabled virtual 
HER2 IHC staining [7], the prediction of Ki67 positive cells in H&E-

stained images [10], and the recognition of epithelial cells for breast 
cancers [11], bypassing the complicated IHC staining process. Never-

theless, manual annotation is hard to perform, and insufficient training 
data leads neural networks to learn trivial solutions due to over-fitting. 
To address these issues, semi-supervised learning (SSL) is adopted due 
to the ingenious usage of unannotated data to achieve better perfor-

mance [12]. Furthermore, since neural networks are black-box models, 
a satisfactory explanation of the network behavior becomes crucial [13], 
especially when deep learning is applied to clinical application sce-

narios to avoid misdiagnosis. To render deep learning interpretable, 
Bayesian inference has recently emerged as a robust method, which 
offers a mathematically grounded framework to estimate model un-

certainty expressing the neural network’s confidence in its prediction 
[13,14]. Bayesian neural networks quantify uncertainties using Monte 
Carlo dropout or Concrete dropout, replacing the deterministic net-

work weights with probability distributions. The resultant uncertainty 
maps characterize imperfections that are unknown in real-world ap-

plications, such as noise, model error, incomplete training data, and 
out-of-distribution test data. In the absence of reference data, Bayesian 
uncertainty provides an effective representation of the error distribution 
in the inference results. Accordingly, the application of Bayesian models 
becomes promising, with an ongoing shift in many fields toward utiliz-

ing Bayesian uncertainty [15–17].

In this work, we present a novel diagnostic technique called semi-

supervised learning-based immunological detection (SSID) for the mu-

tations of the TP53 gene. This method overcomes the limitations of 
expensive and laborious IHC staining procedures by using deep learning 
to directly detect p53-positive cells from H&E-stained gastric sections, 
aiding in gastric cancer diagnosis. It tactfully leverages extra unanno-

tated data to enhance the training of the detection network, albeit with 
a small quantity of annotated data. To prevent misdiagnosis of TP53 
mutation, Bayesian inference was adopted to empower the network and 
alert pathologists of suspicious regions by estimating the uncertainty. 
In our experiments, we performed hold-out validations on H&E images, 
and the accuracy of SSID was validated by both qualitative assess-

ment (pathologists’ average score of 2.22/3) and quantitative evaluation 
(e.g., averaged mean IoU of 0.73). Bayesian uncertainty was then ver-

ified to be valid for describing the confidence of SSID in its detection, 
through the uncertainty analysis of a wrong detection and a correct de-

tection. Beyond its application in p53 protein, SSID has the potential 
to be extended to other biomarkers and benefit the generalization of 
unsupervised approaches and uncertainty estimation in immunological 
2

applications.
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Fig. 1. The integral pipeline of the immunological detection for TP53 mutation 
based on the semi-supervised method. The schematic outlines the key steps of 
our proposed technique, including 𝐚. sample preparation, 𝐛. network training, 
and 𝐜. whole slide image (WSI) detection of TP53 mutation.

2. Principle and methods

2.1. Overview of the detection for TP53 mutation via semi-supervised 
learning

In the present study, we proposed SSID, a semi-supervised learning-

based mutant TP53 detection technique based on H&E-stained input 
images and masks generated from IHC p53-stained images. The ba-

sic pipeline of SSID is illustrated in Fig. 1. First, we performed H&E 
staining and p53 IHC re-staining on gastric tissues and then mounted 
them on standard glass slides, followed by slide digitalization and im-

age registration, as shown in Fig. 1a. Next, to improve the low data 
supply we encounter, we trained the network of SSID according to the 
semi-supervised approach, as briefly depicted in Fig. 1b, which uses 
H&E-stained images and the corresponding masks as inputs and ground 
truths, respectively. Finally, the well-trained network allows us to di-

rectly detect TP53 mutations in gastric cancer on H&E-stained images, 
as shown in Fig. 1c.

2.2. Data processing and construction

Gastric tissue sections were digitally archived as whole slide images 
(WSIs) by a digital slide scanner. Since H&E and p53 staining were per-

formed on the same section, the H&E-stained WSI and re-stained p53 
WSI were naturally in initial alignment as shown in Fig. 2a, implying 
no obvious morphological discrepancy like serial sectioning. However, 
the minor offset between H&E and p53 WSI is still present as shown 
in Fig. 2a at the positions indicated by the black arrows, and thus fur-

ther registration was performed on these coarsely aligned image pairs. 
The first step was to crop an image patch with a resolution of 512×512 
pixels (0.12 mm×0.12 mm) from the H&E-stained WSI as the reference 
and search the roughly corresponding area (600×600 pixels) of the p53-

stained WSI for a matched patch.

Subsequently, as shown in Fig. 2b, a score matrix of structural sim-

ilarity index measure (SSIM) [18] was produced by correlating each 
H&E-stained patch with the p53-stained image searched in pixel-by-
pixel steps within the corresponding area of the p53 WSI, and the entry 
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Fig. 2. The pipeline of the image registration and mask generation. 𝐚. Image 
pairs of H&E and p53 staining get initially registered after re-staining the same 
gastric tissue. 𝐛. Further alignment is then achieved by determining the location 
of the maximum value of the SSIM score matrix. 𝐜. Rotation correction is per-

formed for more precise registration by using the SURF and MSAC algorithms. 
𝐝. Mask generation is implemented by progressively applying DAB extraction, 
threshold segmentation, erosion, and dilation on p53-stained images.

with the maximum SSIM score can represent the most matched patch in 
the p53-stained WSI. The SSIM index between two images is calculated 
as:

𝑆𝑆𝐼𝑀(𝐼1, 𝐼2) =
(
2𝜇1𝜇2 + 𝑐1

)(
2𝜎1,2 + 𝑐2

)(
𝜇21 + 𝜇

2
2 + 𝑐1

)(
𝜎21 + 𝜎

2
2 + 𝑐2

) , (1)

where 𝜇1 and 𝜇2 are the means of the two images 𝐼1, 𝐼2. 𝜎1 and 𝜎2 are 
the standard deviations, 𝜎1,2 is the mutual covariance, and 𝑐1 and 𝑐2 are 
the regularization parameters. Thereafter, to correct the possible rota-

tion angle between H&E and p53 images, we applied the transformation 
matrix calculated by using the speeded-up robust features (SURF) algo-

rithm [19] and the M-estimator sample consensus (MSAC) algorithm 
[20] to p53-stained images, as shown in Fig. 2c. To efficiently gener-

ate a ground-truth mask indicating TP53 mutation and reduce manual 
annotation costs, we performed color deconvolution on p53-stained im-

ages to extract the diaminobenzidine (DAB) channel [21]. This process 
allowed us to obtain masks covering the regions of mutant TP53 by pro-

gressively applying threshold segmentation, erosion, and dilation on the 
DAB channel images of p53 (Fig. 2d).

2.3. Semi-supervised network training and uncertainty estimation

In this section, we introduce the network architecture used in SSID. 
Unlike the CNN with convolution kernels that only focus on the lo-

cal receptive field, Transformer leverages a self-attention mechanism 
for efficient modeling of both long and short-range spatial interactions 
[22]. For the feature extraction of underlying immunological modal-

ity in the H&E image, a larger receptive field means access to a larger 
field of view and more complete morphological information of the H&E-

stained tissue structure. Therefore, as shown in Fig. 3a, the network of 
SSID utilizes a Transformer-based encoder to capture global or long-

range dependencies. Supposing that the network consists of 𝐿 layers, { } { }

3

𝜃 = 𝚯𝑙
𝐿

𝑙=1 signifies the deterministic weights and 𝜔 = 𝐖𝑙

𝐿

𝑙=1 repre-
Optics and Lasers in Engineering 184 (2025) 108657

sent the set of random weight matrices after applying Concrete dropout 
[14] on 𝜃 to form a Bayesian neural network. It is worth noting that the 
selected Concrete dropout method enhances the efficiency of Bayesian 
deep learning by allowing automatic adjustment of the dropout proba-

bilities along with the optimization of model parameters. Compared to 
other uncertainty estimation methods, such as Monte Carlo dropout and 
Deep ensembles, this method offers higher computational efficiency. A 
random weight matrix 𝐖𝑙 (the shape is 𝐶𝑙 × 𝐶𝑙−1), decorated by Con-

crete dropout module, can be expressed as:

𝐖𝑙 =𝚯𝑙 ⋅ diag
(
[𝑧(1)
𝑙
, 𝑧

(2)
𝑙
, ..., 𝑧

(𝐶𝑙−1)
𝑙

]
)
, (2)

where 𝑧𝑙 is sampled from Bernoulli distribution, i.e., 𝑧𝑙 ∼ 𝐵(1, 𝑝𝑙). 
The encoder first performs patch partition on the H&E input image to 
form non-overlapping patches and then carries out feature extraction 
through four stages of Swin Transformer blocks [23] (Fig. 3b). The Swin 
Transformer blocks are cascaded residual structures characterized by a 
window-based multi-head self-attention module (W-MSA), a shifted W-

MSA (SW-MSA), layer normalization (LN) and multi-layer perceptrons 
(MLP). A linear embedding layer is applied before the first stage and 
patch merging layers are arranged before subsequent stages. Besides the 
encoded features at the end of Swin Transformer, the shallow features 
extracted in the first stage skip to the decoding branch. The decoder 
(Fig. 3a) adopts the structure of deeplabv3+ [24] which has been widely 
applied and proven effective. It is responsible for feeding the encoded 
latent features into its Atrous Spatial Pyramid Pooling (ASPP) module 
that uses dilated convolutions with different dilation rates to capture 
multi-scale contextual information. The concatenation of the post-ASPP 
features and the shallow features from the encoding branch is finally 
mapped to a binary mask that corresponds to the region with TP53 mu-

tations. Notably, as shown in Fig. 3b, extra Concrete dropout (CD) layers 
are assembled at the appropriate positions in the network for the esti-

mation of Bayesian uncertainty.

As shown in Fig. 3c, the overall optimization objective for the net-

work training is composed of three terms:

 =𝑠 + 𝜆1𝑢 + 𝜆2𝑐𝑑 , (3)

where 𝑠 and 𝑢 represent the supervision loss on annotated data and 
the unsupervised loss on unannotated data, respectively. 𝑐𝑑 is the reg-

ularization term for Bayesian uncertainty. 𝜆1 and 𝜆2 are the weight 
factors of 𝑢 and 𝑐𝑑 , respectively. To implement semi-supervised learn-

ing, we adopted the concept of cross-pseudo supervision [25]. Our semi-

supervised framework employs two parallel networks that share the 
same architecture, as previously described. During the training phase, 
the optimization algorithm independently updates the weights 𝜃1 and 
𝜃2 of the two models. We assume that  =

{(
𝐱𝑖,𝐦𝑖

)}𝑁
𝑖=1 is the anno-

tated set of H&E input images and corresponding TP53 mutation masks, 
where 𝐱𝑖 and 𝐦𝑖 are the 𝑖-th input and label, respectively. 𝑁 is the size 
of the set.  =

{
𝐮𝑖
}𝑀
𝑖=1 is a much larger unannotated set of H&E-stained 

images, where 𝐮𝑖 denotes the 𝑖-th H&E image without annotation. Based 
on the symbolic definition above, we express the cross entropy 𝑐𝑒 be-

tween two probability distributions 𝐭 and 𝐬 as:

𝑐𝑒 (𝐭, 𝐬) = −
𝐶−1∑
𝑐=0
𝑡(𝑐) log (𝑠(𝑐)) , (4)

where 𝐶 stands for the number of categories, which is 2 for SSID. 𝑡(𝑐)
and 𝑠(𝑐) are the values of 𝐭 and 𝐬 at 𝑐-th category, respectively.

At each training iteration, each batch includes 𝐵 annotated H&E im-

ages from  and 𝐵 unannotated ones from  . Supposing that the two 
networks establish two mappings, 𝑓1 and 𝑓2, the supervision loss func-

tion 𝑠 can be expressed as:

1
𝐵∑ ( ( ( ))) ( ( ( )))
𝑠 =
𝐵
𝑖=1

𝑐𝑒 𝐦𝑖, 𝜎 𝑓1 𝐱𝑖 +𝑐𝑒 𝐦𝑖, 𝜎 𝑓2 𝐱𝑖 , (5)
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Fig. 3. The illustration of network training via semi-supervised learning. The SSID’s network includes an encoder and a decoder, endowed with Concrete dropout 
(CD) layers. 𝐚. The encoder mainly consists of four stages of Swin Transformer blocks, and the shallow features extracted in the first stage skip to the decoding branch, 
a deeplabv3+ network with an ASPP module to capture multi-scale contextual information. 𝐛. The structure of Swin Transformer block with Concrete dropout layer. 
𝐜. The semi-supervised learning scheme. 𝐝. The schematic diagram of uncertainty prediction via Bayesian inference.
where 𝜎(⋅) denotes the softmax activation function, i.e., 𝜎(𝐬) = 𝑒𝑠(𝑐𝑡)∕∑𝐶−1
𝑐𝑠

𝑒𝑠(𝑐𝑠).

For each of the unannotated H&E images in the sampled batch, we 
pass it through two networks simultaneously. Its predicted class distri-

bution map 𝐩𝑘𝑖 = 𝑓𝑘(𝐮𝑖) is then treated as pseudo-label by using the for-

mula 𝐦̂𝑘𝑖 = argmax
𝑐
𝑝𝑘𝑖(𝑐). By imposing cross-supervision with pseudo 

labels, one network generates pseudo labels to supervise the other using 
the standard cross-entropy loss, and vice versa. This process effectively 
performs network perturbation, which implicitly expands the data dis-

tribution of the training set [25]. The cross-supervision loss function on 
the unannotated data can be written as:

𝑢 =
1
𝐵

𝐵∑
𝑖=1

𝑐𝑒

(
𝐦̂2𝑖, 𝜎

(
𝑓1

(
𝐮𝑖
)))

+𝑐𝑒

(
𝐦̂1𝑖, 𝜎

(
𝑓2

(
𝐮𝑖
)))
. (6)

We further confer on SSID the ability to infer the model uncer-

tainty of detected results. Specifically speaking, we adopted Concrete 
dropout modules to approximate the posterior distributions 𝑞𝜃(𝜔) of 
parameters in the network [14]. The loss function for the Concrete 
dropout-equipped network can be defined as regularization for network 
parameters and dropout rate:

𝑐𝑑 =𝕂𝕃
(
𝑞𝜃 (𝜔)‖𝑝 (𝜔)) = 𝐿∑

𝑙=1
𝕂𝕃

(
𝑞𝚯𝑙

(
𝐖𝑙

)‖𝑝(𝐖𝑙

))

∝
𝐿∑
𝑙=1

(
𝑙2
(
1 − 𝑝𝑙

)
2

‖𝚯𝑙‖2 − 𝛾 (
𝑝𝑙
))
,

(7)

where the Kullback-Leibler (𝕂𝕃) divergence is used to measure the dis-

crepancy between the posterior distribution 𝑞𝜃(𝜔) and the prior distri-

bution of the weights 𝑝(𝜔) that is assumed as Gaussian distribution here. 
𝑝𝑙 is a tunable dropout probability of each layer and 𝛾 is a constant to 
4

balance the two regularization terms in Eq. (7): the first term functions 
as the regularization of the weight matrices, and (𝑝𝑙) in the second 
term is −𝑝𝑙𝑙𝑜𝑔𝑝𝑙 − (1 − 𝑝𝑙)𝑙𝑜𝑔(1 − 𝑝𝑙) the entropy of a Bernoulli ran-

dom variable with probability 𝑝𝑙 . To render Bayesian neural network 
conveniently trainable, Concrete dropout module introduces Concrete 
distribution relaxation to reparameterize discrete Bernoulli distribution, 
thus the sampled variable can be formulated as:

𝑧𝑙 = sigmoid
(
1
𝑡

(
log

𝑝𝑙

1 − 𝑝𝑙
+ log 𝑢

1 − 𝑢

))
, (8)

where 𝑢 satisfies uniform distribution, i.e., 𝑢 ∼ Unif(0, 1), and 𝑡 denotes 
a temperature variable that restricts the values to the interval from 0 to 
1. Once obtaining a well-trained Concrete dropout-based network, we 
can employ the Monte Carlo (MC) integration over 𝐾 samples to carry 
out random dropout sampling of weight matrices, and the predictive 
variance [13,26] is used for Bayesian inference (Fig. 3d) to measure the 
model uncertainty of TP53 mutation detection:

Var
(
𝐩∗ ∣ 𝐱∗,

)
≈ 1
𝐾

𝐾∑
𝑘=1
𝜎
(
𝑓𝑤

(
𝐱∗
))⊤

𝜎
(
𝑓𝑤

(
𝐱∗
))

− 1
𝐾2

𝐾∑
𝑘=1
𝜎
(
𝑓𝑤

(
𝐱∗
))⊤ 𝐾∑

𝑘=1
𝜎
(
𝑓𝑤

(
𝐱∗
))
,

(9)

where 𝐱∗ represents an unseen H&E-stained image and 𝐩∗ is the pre-

dicted probabilities of TP53 mutation.

2.4. Materials and experiment implementation details

The training materials for this study were selected from the most 
invasive sections of 65 tissue samples of high-grade gastric adenocar-

cinoma. The samples were obtained from the Laboratory of Endocrine 
Gland Diseases and were prepared by the Ningbo Yangming Medical 

Inspection Laboratory. The gastric tissue sections of patients were ob-
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Fig. 4. 𝐚. The experimental instrument of digital pathology scanner and the 
schematic illustration of internal imaging system. 𝐛. The CycleGAN scheme for 
domain transformation of H&E modalities. 𝐜. The CycleGAN converts the distri-

bution of the test data to the same as the training data.

tained under Ethics Committee Approval (Zhejiang Provincial People’s 
Hospital Ethics Review 2022 Approval No.074). All the tissue samples 
were guaranteed to be de-identified of patient-related information under 
supervision. In addition, the failure of standard IHC staining or severe 
tissue damage is a norm even in experienced pathology laboratories [7], 
and the related waste also occurred in our specimen preparation with 
about one-third of the tissue sections discarded eventually. It is worth 
noting that we adopted two main patterns of p53 staining, overexpres-

sion and cytoplasmic as ground truth, and the two patterns suffice for 
the strong prediction of mutation-type p53 in the vast majority of cases 
[6]. In the general staining procedure, multi-stained sections of a cer-

tain region are obtained by staining serial sections. However, sequential 
sections may skim over the critical areas targeted for examination, re-

sulting in the loss of areas needed for critical diagnosis, and hence we 
performed p53 immunostaining on the same tissue sections via the re-

staining method [27]. The specific steps for re-staining are described be-

low. First, we performed formalin-fixing paraffin-embedding (FFPE) and 
H&E staining procedures [2] on tissue sections. Next, the as-prepared 
H&E slides were manually rinsed (30-40 dips in reagent) in slide bas-

kets and soaked in Acetone for the effective removal of the coverslip. 
Then the slides were put in the xylene bath with 3 times rinses and 
subsequently in 95% alcohol with 3 minutes hold intervals for approxi-

mately 30 minutes to remove the eosin stain, during which the covering 
of paraffin film should be guaranteed to reduce alcohol evaporation and 
expedite eosin removal. After the washing of slides in the deionized wa-

ter, the reaction buffer was employed to remove hematoxylin from slides 
with 3-5 rinses. After waiting for the slides to dry in the hood for 5 min-

utes, we finally conducted antibody IHC assay detection protocols with 
antibodies against p53. Noticeably, all procedures should be operated 
in a fume hood by using manual wash stations, negating the need for 
heat that may damage the tissue.

We scanned the tissue sections under the KFBIO digital pathology 
scanner KF-PRO-005-EX, and its appearance (including software and 
hardware) and internal optical imaging system structure are present in 
Fig. 4a. The acquired WSIs were cropped into small patches (512×512 
5

pixels, 0.12 mm×0.12 mm) to accommodate the memory of the graphic 
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processing unit (GPU). Then we manually screened the acquired dataset 
to exclude training materials with obvious defects (e.g., staining failure, 
and defocused images). The dataset of gastric tissues was further divided 
into a training set and a test set. Since mutation-type p53 patterns are 
rarer than wild-type, the dataset turns smaller after further selection of 
data containing mutant TP53. The final training set contains 213 an-

notated pairs and 3895 unannotated H&E images, whereas the test set 
consists of 768 H&E images independent from the training data. Note 
that the unannotated H&E images are from a gastric tissue section with-

out corresponding registered p53-stained label, and as shown in Fig. 4b, 
they are transformed to approximate the H&E modality of training data 
(Fig. 4c) by using a cycle-consistent generative adversarial network (Cy-

cleGAN) with saliency constraint [28]. This preprocess ensures that the 
distribution of test data is consistent with that of the training data and 
avoids the variation among staining approaches [29]. This study was 
conducted on a workstation equipped with an Intel i9-7980XE 18-core 
2.60 GHz CPU (128 GB RAM) and an NVIDIA GeForce RTX 3090 GPU, 
by using Python 3.7 and PyTorch 1.8.0. The adopted optimization algo-

rithm is stochastic gradient descent (SGD) [30], with a learning rate of 
0.0008, the momentum set to 0.9, and the rest left at default values. The 
training of the SSID network required approximately 10 hours for 100 
epochs. For individual-sample inference, the outputs of SSID include a 
predicted mask of TP53 mutations and a corresponding data uncertainty 
map. The average processing time was 1.16 seconds for small patches 
(512×512 pixels), and 56.83 seconds for large patches (2024×2048 pix-

els).

3. Experimental results

3.1. Whole-slide-level and patch-level presentations for TP53 mutation 
detection

We demonstrated SSID’s inference by feeding it with H&E-stained 
images that never appeared in the training stage. Fig. 5a summarizes a 
WSI-level example of an H&E-stained gastric gland tissue that was diag-

nosed as high-grade carcinoma. As shown in Fig. 5b, a whole field de-

tection for H&E-stained tissue within a dashed box was inferred, which 
covers the regions with a high probability of TP53 mutation (white area) 
and corresponds to the strong diffuse nuclear p53 over-expression. Fur-

thermore, we selected three regions of interest (ROIs) that contain tumor 
cells (areas stained dark brown by DAB chromogen) and one region that 
does not contain tumor cells, and enlarged them in Fig. 5c for a more 
detailed presentation. The first row of Fig. 5c shows the H&E-stained 
images of the four ROIs, which are inputs of SSID’s network, and the 
second row shows their p53-stained counterpart. The third row shows 
the SSID-detected masks overlaid with their H&E-stained counterparts 
in the first row, and the fourth row shows the ground-truth (GT) masks 
overlaid with their IHC p53-stained counterparts in the second row. Ap-

parently, the detections of mutant TP53 shown in the last two rows 
are consistent with each other, faithfully in accord with the abnormal 
p53 expression patterns shown in the second row. It is intuitively clear 
that SSID is capable of detecting lesioned regions with mutant TP53. 
Furthermore, SSID can also provide accurate inferences for non-lesion 
areas, thereby avoiding misdiagnosis.

3.2. Uncertainty estimation of the detected TP53 mutation

To evaluate the efficacy of Bayesian uncertainty in revealing SSID’s 
error in the absence of ground truth, we selected two examples for 
Bayesian inference of SSID (Figs. 6a and 6c). Figs. 6a and 6b illustrate a 
case of false detection, while Figs. 6c and 6d illustrate a case of true de-

tection. Notably, this false detection case is one of the rare, significant 
detection errors among the 768 results. In both examples, a patch-level 
H&E-stained image serves as input to SSID’s network. The network de-

tects the region with TP53 mutations, matching the ground-truth region 

identified by the p53 staining pattern. Figs. 6a and 6c display the actual 
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Fig. 5. The illustration of TP53 mutation detection at WSI level and patch level. 
𝐚. An example of H&E-stained WSI. 𝐛. The corresponding p53 staining pattern 
within the dashed box in (𝐚) and the TP53 mutation mask detected by SSID. 𝐜. 
The results from the first to fourth columns correspond to ROI1-ROI4 outlined 
in the dashed box of (𝐚). For each ROI, images from the first row to the fourth 
row represent the H&E-stained input image, the IHC p53-stained counterpart, 
the detected mask of mutant TP53, and the GT mask generated based on the 
p53-stained image, respectively.

TP53 mutation and the recognized mutation, along with their corre-

sponding masks. The error map and the predicted uncertainty of both 
examples are shown in Figs. 6b and 6d. Note that the error map is de-

fined as the pixel-level discrepancy between the recognized mask and 
the actual mask. For detailed comparisons between the error map and 
the predicted uncertainty, we selected two ROIs and presented their en-

larged views in Figs. 6b and 6d. In this context, uncertainty indicates 
that the network’s output may not be entirely reliable and may require 
manual re-evaluation. Higher uncertainty values suggest that the net-

work is unsure whether a region is healthy or diseased. In Fig. 6b, which 
pertains to the false detection example, ROIs A and B show that the unde-

tected cells are assigned high uncertainty values, approximately ranging 
from 0.5 to 0.8, matching well with the distribution of large error. We 
preliminarily suspect that this detection failure is caused by certain spe-

cific characteristics inherent to current pathological slides. Due to the 
rapid proliferation of cancer cells, they tend to densely aggregate, form-

ing stacked or mosaic patterns. As a result, sparsely distributed cancer 
cells (Fig. 6a) may not be detected due to their absence or limited pres-
6

ence in the training set during network training, leading to misidentifi-
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cation. In contrast, Fig. 6d, which pertains to the true detection example, 
shows that ROIs C and D exhibit low uncertainty values, mostly ranging 
from 0.1 to 0.4. The uncertainty maps in these regions are sparsely dis-

tributed and primarily located at the cell profiles, accurately reflecting 
the error map.

3.3. The comparison between semi-supervision and full supervision

Since the network of SSID was trained through the semi-supervised 
learning strategy, it is necessary to show the superiority of the semi-

supervised method over the fully supervised method. We compared their 
performances using the mean Intersection-over-Union (mIoU) metric 
averaged on the test data. Unlike the supervised baseline, the semi-

supervised learning method additionally exploits 3895 unannotated 
H&E images to implicitly expand the training data. mIoU is a standard 
evaluation metric used in image segmentation tasks, which measures 
the degree of coincidence between the segmentation and the ground 
truth, defined as the ratio of the intersection to the union of the de-

tected and ground-truth regions for each class. After training networks 
for the same iterations through semi-supervised learning and supervised 
learning, we tested the performances of the two methods on the test 
data. Fig. 7a shows a line graph in which the semi-supervised method 
consistently outperforms the supervised baseline almost at each epoch 
whether using Swin Transformer [23] or ResNet-101 [31] as the back-

bone network. The maximum mIoU values of the four methods across 
all epochs are illustrated in Fig. 7b, indicating that Swin Transformer 
under semi-supervision performs best among the four combinations.

3.4. Performance analysis

We tested SSID’s performance from both qualitative and quantita-

tive perspectives. Considering our intention to provide a valid reference 
for clinical diagnosis, two board-certified pathologists were invited to 
blindly evaluate the TP53 mutation masks detected by SSID’s network. 
In line with the matching degree between the detected mask and the 
ground truth, an assessment criterion was given on a scale of 0 to 3, 
with 0 representing complete failure, 1 representing only partial agree-

ment, 2 representing an acceptable agreement, and 3 representing high 
agreement with negligible differences. Two pathologists scored the 768 
detection results and counted the number of results for each score. 
Fig. 7c summarizes human scoring of TP53 mutation masks, with an 
average score of 2.10 (𝜎 = 0.88) set by the first pathologist and 2.34 
(𝜎 = 0.78) set by the second pathologist. Moreover, the IoU values of 
the 768 results were categorized into four levels based on upper quar-

tile, median, and lower quartile, corresponding to the four ranks of the 
pathologists’ scores. The distribution of test results in each level was 
116, 263, 257, 132. We conducted chi-square test between the IoU 
ranking and the pathologists’ rating scores, yielding chi-square values 
of 128.52 and 136.75, both exceeding 16.92 (the degree of freedom of 
9). This indicates a p-value of less than 0.05, suggesting that there is no 
statistically significant difference and the results of SSID are consistent 
with the pathologists’ assessments.

Next, the quantitative evaluation of the mutant TP53 masks was 
carried out by using a series of widely-used metrics in medical anal-

ysis. Besides the already-employed Intersection-over-Union (IoU) in the 
previous section, we also invoked other metrics such as F1-score, Acc 
(Accuracy), Spec (Specificity), and Sens (Sensitivity), which are all 
quantitative metrics used to evaluate the performance of a binary clas-

sification model. The detected masks were compared to the p53-based 
ground truths by assessing these metrics (mean F1 = 0.7020, mean Acc 
= 0.8884, mean Spec = 0.9277, mean Sens = 0.7195, mean IoU = 
0.7327), which were averaged over all images of the test set. Fig. 7d 
presents the boxplot of these metrics and Fig. 7e shows the ROC curve 
(the average AUC is 0.83) with FPR (False Positive Rate) as the horizon-
tal coordinate and TPR (True Positive Rate) as the vertical coordinate. 



Optics and Lasers in Engineering 184 (2025) 108657S. Zhou, Y. Jin, J. Li et al.

Fig. 6. Uncertainty analysis with over-expression pattern of p53 staining for two different examples, illustrating both correct and false detection of TP53 mutations. 
𝐚, 𝐛. Display the H&E-stained image with overlaid recognized TP53 mutation regions alongside their corresponding ground truth generated based on the p53-stained 
images (first column in (𝐚)), and their associated masks (second column in (𝐚)). Additionally, (𝐛) presents the error map (first row) and predicted uncertainty (second 
row) for the false detection case. 𝐜, 𝐝. Show the corresponding results for the correct detection of TP53 mutations.
The ROC curve is a graphical representation of the performance of a bi-

nary classifier system and the AUC curve is a single scalar value that 
summarizes the performance of the ROC curve. Moreover, the true pos-

itive, false positive, and false negative of the detected mask were over-

lapped with the ground-truth mask in color-coded form as illustrated in 
Figs. 8a and 8b to provide a more detailed visualization of TP53 SSID’s 
performance.

4. Conclusions and discussion

In conclusion, we have developed SSID, a learning-based biomed-

ical identification technique aimed at the immunological detection of 
TP53 mutations by incorporating semi-supervision and Bayesian infer-

ence for the diagnosis of gastric cancer. The proposed SSID framework 
takes advantage of the unannotated dataset of H&E images to detect 
TP53 mutations and achieves enhanced performance despite the un-

availability of massive and valid IHC data for ordinary cases. The noise 
introduced by network perturbation in semi-supervision can implicitly 
expand the training set, alleviating the common issue where new sam-

ples deviate significantly from the distribution modeled by the limited 
data, leading to incorrect predictions. By using the MC Concrete dropout 
approach, SSID can infer pixel-wise uncertainty maps to quantify the 
reliability of the network on its detection and explain the prediction er-

ror caused by the small data volume. Specifically, Bayesian uncertainty 
helps identify incorrect detection of TP53 mutations by assigning high 
uncertainty, as well as make correct detection convincing by assigning 
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low uncertainty.
Notably, our proposed method for immunological diagnosis offers 
greater convenience compared to previous modality transformation 
techniques, such as virtual staining [7,32,33] and stain transformation 
[34]. This advantage is primarily due to the fact that visual assess-

ments of immunological patterns in both standard and digital staining 
are user-dependent and prone to diagnostic errors caused by staining 
imperfections. Besides, the binary masks for TP53 mutation detection 
contain less redundant information than staining modalities, making it 
easier to train an accurate network.

Despite the advantages and benefits brought by our proposed tech-

nique, we cannot ignore remaining challenges of enhancing the diversity 
and quality of data. Considering artificial maloperations and interlabo-

ratory variations during slide production, staining, and sample scanning 
procedures, the unsatisfactory conditions of H&E and p53 images is in-

evitable, which necessitates an automated data cleansing solution to 
eliminate inferior training data and avoid misleading clinical inputs. 
Additionally, it should be noted that our dataset only covers two ma-

jor mutation-type p53 patterns excluding another mutation-type case of 
complete absence caused by splice site mutations or truncating muta-

tions [6]. Although this special case shows a normal wild-type staining 
pattern, it is actually a mutation type in the clinical diagnosis, resulting 
in the failure of the automatic generation process of ground-truth masks 
for this mutation-type pattern. Thus, the distribution of our dataset is 
not sufficiently diverse and may deviate from the real distribution to a 
certain extent, probably affecting the generalizability of the detection 

network.
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Fig. 7. The comparison between semi-supervision (SSID) and full supervision, 
the visual evaluation based on the predetermined criterion, and the metrics-

based assessment of TP53 mutation regions detected by SSID. 𝐚. The semi-

supervised network (Semi) was compared with the supervised baseline (Sup) 
by using ResNet-101 (Res101) and SwinTransformer (Swin) as the backbone, 
respectively, over 100 training epochs. 𝐛. Performance comparison with differ-

ent learning schemes and network architectures. 𝐜. Pathologist scoring for 768 
detection results. 𝐝. Six metrics for medical evaluation, including IoU, Acc, etc., 
were employed to objectively determine the difference between the detected 
mask and the ground truth, which is displayed as a boxplot. 𝐞. The average Re-

ceiver Operating Characteristic (ROC) curve with high Area Under Curve (AUC) 
value reflects the detection capability.

Fig. 8. Detailed visualization of the discrepancy between the detected mask and 
the ground truth. 𝐚. The H&E-stained image is input to SSID’s network, and the 
detected mask of TP53 mutation is overlapped with the ground truth to clearly 
visualize their difference. 𝐛. Six examples are additionally demonstrated with 
quantitative assessment results attached.

In the future, we will need to promote the diversification of staining 
patterns and acquire a large and diverse set of training data to reli-

ably ensure the high stability and generalization ability of the detection 
8

technique. To meet the growing demand for the accurate and rapid diag-
Optics and Lasers in Engineering 184 (2025) 108657

nosis of various cancers at a lower cost, it is necessary to develop a more 
generalized immunological detection technology for other pathological 
modalities or biomarkers. Since other less costly imaging methods can 
also provide morphological information, such as label-free phase imag-

ing [35–37] or diffraction tomography [38–42], we may consider them 
as alternatives to the H&E staining technique. On top of semi-supervised 
learning, zero-shot learning [43] can be further introduced to expand 
the applicability of SSID across the entire range of tumors.

CRediT authorship contribution statement

Shun Zhou: Writing – original draft, Visualization, Validation, 
Methodology, Investigation, Data curation, Conceptualization, Formal 
analysis. Yanbo Jin: Writing – original draft, Visualization, Methodol-

ogy, Investigation, Data curation, Conceptualization, Formal analysis.

Jiaji Li: Writing – original draft. Jie Zhou: Writing – original draft. Lin-

peng Lu: Writing – original draft. Kun Gui: Validation, Methodology, 
Data curation, Writing – original draft. Yanling Jin: Methodology, For-

mal analysis, Data curation, Writing – original draft. Yingying Sun:

Data curation, Formal analysis, Writing – original draft, Methodol-

ogy. Wanyuan Chen: Data curation, Writing – original draft, Formal 
analysis, Methodology, Validation. Qian Chen: Funding acquisition, 
Supervision, Writing – original draft. Chao Zuo: Funding acquisition, 
Supervision, Writing – original draft.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgements

This work was supported by the National Key Research and Devel-

opment Program of China (2022YFA1205002, 2024YFE0101300), Na-

tional Natural Science Foundation of China (62361136588, 62105151, 
62175109, U21B2033, 62227818), Leading Technology of Jiangsu Ba-

sic Research Plan (BK20192003), Youth Foundation of Jiangsu Province 
(BK20210338), Biomedical Competition Foundation of Jiangsu Province 
(BE2022847), Key National Industrial Technology Cooperation Foun-

dation of Jiangsu Province (BZ2022039), Fundamental Research Funds 
for the Central Universities (30920032101, 30923010206), Fundamen-

tal Research Funds for the Central Universities (2023102001), and Open 
Research Fund of Jiangsu Key Laboratory of Spectral Imaging & Intelli-

gent Sense (JSGP202105, JSGP202201).

Data availability

Data will be made available on request.

References

[1] Sexton RE, Al Hallak MN, Diab M, Azmi AS. Gastric cancer: a comprehensive review 
of current and future treatment strategies. Cancer Metastasis Rev 2020;39:1179–203.

[2] Fischer AH, Jacobson KA, Rose J, Zeller R. Hematoxylin and eosin staining of tissue 
and cell sections. Cold Spring Harb Protoc 2008;2008. pdb-prot4986.

[3] Fox H. Is h&e morphology coming to an end? J Clin Pathol 2000;53:38–40.

[4] Al-Moundhri M, et al. The prognostic significance of p53, p27kip1, p21waf1, her-

2/neu, and ki67 proteins expression in gastric cancer: a clinicopathological and 
immunohistochemical study of 121 arab patients. J Surg Oncol 2005;91:243–52.

[5] Petitjean A, Achatz M, Borresen-Dale A, Hainaut P, Olivier M. Tp53 mutations in 
human cancers: functional selection and impact on cancer prognosis and outcomes. 
Oncogene 2007;26:2157–65.

[6] Köbel M, Ronnett BM, Singh N, Soslow RA, Gilks CB, McCluggage WG. Interpre-

tation of p53 immunohistochemistry in endometrial carcinomas: toward increased 
reproducibility. Int J Gynecol Pathol 2019;38:S123.

[7] Bai B, et al. Label-free virtual her2 immunohistochemical staining of breast tissue 
using deep learning. BME Front 2022;2022.
[8] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436–44.

http://refhub.elsevier.com/S0143-8166(24)00635-3/bib699151C8CEBA49FDA34AA2EA396AB64Bs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib699151C8CEBA49FDA34AA2EA396AB64Bs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib4FE652EE6C0A5EB3E8AE88EC32CA9916s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib4FE652EE6C0A5EB3E8AE88EC32CA9916s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib4B21AEFB87E91954D0B611F2B8ED0634s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibE4A79FA950E31233057538DDF8AB37EEs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibE4A79FA950E31233057538DDF8AB37EEs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibE4A79FA950E31233057538DDF8AB37EEs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib99A1EE0DDFA32A5DF2EC034E362B5B5Cs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib99A1EE0DDFA32A5DF2EC034E362B5B5Cs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib99A1EE0DDFA32A5DF2EC034E362B5B5Cs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib4169BC342C913F28A8657E5029306C62s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib4169BC342C913F28A8657E5029306C62s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib4169BC342C913F28A8657E5029306C62s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib0B05AED9EBADA39D9BD153094BA3DBC2s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib0B05AED9EBADA39D9BD153094BA3DBC2s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibDC27EB94C773F24746A96FC0013D6A0Ds1


Optics and Lasers in Engineering 184 (2025) 108657S. Zhou, Y. Jin, J. Li et al.

[9] Bakator M, Radosav D. Deep learning and medical diagnosis: a review of literature. 
Multimodal Technol Interact 2018;2:47.

[10] Liu Y, et al. Predict ki-67 positive cells in h&e-stained images using deep learning 
independently from ihc-stained images. Front Mol Biosci 2020;7:183.

[11] Valkonen M, et al. Cytokeratin-supervised deep learning for automatic recognition 
of epithelial cells in breast cancers stained for er, pr, and ki-67. IEEE Trans Med 
Imaging 2019;39:534–42.

[12] Yang X, Song Z, King I, Xu Z. A survey on deep semi-supervised learning. IEEE Trans 
Knowl Data Eng 2022.

[13] Gal Y, Ghahramani Z. Dropout as a Bayesian approximation: representing model 
uncertainty in deep learning. In: Proc Int Conf Mach Learn. PMLR; 2016. p. 1050–9.

[14] Gal Y, Hron J, Kendall A. Concrete dropout. Adv Neural Inf Process Syst 2017;30.

[15] Xue Y, Cheng S, Li Y, Tian L. Reliable deep-learning-based phase imaging with un-

certainty quantification. Optica 2019;6:618–29.

[16] Upadhyay U, Sudarshan VP, Awate SP. Uncertainty-aware gan with adaptive loss 
for robust mri image enhancement. In: Proc IEEE/CVF Int Conf Comput Vis (ICCV); 
2021. p. 3255–64.

[17] Mukhoti J, Gal Y. Evaluating Bayesian deep learning methods for semantic segmen-

tation. Preprint. arXiv :1811 .12709, 2018.

[18] Sara U, Akter M, Uddin MS. Image quality assessment through fsim, ssim, mse and 
psnr—a comparative study. J Comput Commun 2019;7:8–18.

[19] Bay H, Ess A, Tuytelaars T, Van Gool L. Speeded-up robust features (surf). Comput 
Vis Image Underst 2008;110:346–59.

[20] Torr PH, Zisserman A. Mlesac: a new robust estimator with application to estimating 
image geometry. Comput Vis Image Underst 2000;78:138–56.

[21] Shu J, Dolman G, Duan J, Qiu G, Ilyas M. Statistical colour models: an automated 
digital image analysis method for quantification of histological biomarkers. Biomed 
Eng Online 2016;15:1–16.

[22] Naseer MM, Ranasinghe K, Khan SH, Hayat M, Shahbaz Khan F, Yang M-H. Intriguing 
properties of vision transformers. Adv Neural Inf Process Syst 2021;34:23296–308.

[23] Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, et al. Swin transformer: hierarchical 
vision transformer using shifted windows. In: Proc IEEE/CVF Int Conf Comput Vis 
(ICCV); 2021. p. 10012–22.

[24] Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-decoder with atrous 
separable convolution for semantic image segmentation. In: Proc Eur Conf Comput 
Vis (ECCV); 2018. p. 801–18.

[25] Chen X, Yuan Y, Zeng G, Wang J. Semi-supervised semantic segmentation with cross 
pseudo supervision. In: Proc IEEE/CVF Conf Comput Vis Pattern Recognit (CVPR); 
2021. p. 2613–22.

[26] Kendall A, Gal Y. What uncertainties do we need in Bayesian deep learning for com-

puter vision? Adv Neural Inf Process Syst 2017;30.

[27] Hinton JP, et al. A method to reuse archived h&e stained histology slides for a mul-

tiplex protein biomarker analysis. Methods Protoc 2019;2:86.

[28] Li X, et al. Unsupervised content-preserving transformation for optical microscopy. 
Light: Sci Appl 2021;10:44.

[29] de Bel T, Bokhorst J-M, van der Laak J, Litjens G. Residual cyclegan for ro-

bust domain transformation of histopathological tissue slides. Med Image Anal 
2021;70:102004.

[30] Ruder S. An overview of gradient descent optimization algorithms. Preprint. arXiv :
1609 .04747, 2016.

[31] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proc 
IEEE/CVF Conf Comput Vis Pattern Recognit (CVPR); 2016. p. 770–8.

[32] Rivenson Y, Liu T, Wei Z, Zhang Y, de Haan K, Ozcan A. Phasestain: the digital stain-

ing of label-free quantitative phase microscopy images using deep learning. Light: 
Sci Appl 2019;8:1–11.

[33] Zhang Y, de Haan K, Rivenson Y, Li J, Delis A, Ozcan A. Digital synthesis of histo-

logical stains using micro-structured and multiplexed virtual staining of label-free 
tissue. Light: Sci Appl 2020;9:78.

[34] de Haan K, Zhang Y, Zuckerman JE, Liu T, Sisk AE, Diaz MF, et al. Deep learning-

based transformation of h&e stained tissues into special stains. Nat Commun 
2021;12:1–13.

[35] Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine. Nat 
Photonics 2018;12:578–89.

[36] Li Z, Sun J, Fan Y, Jin Y, Shen Q, Trusiak M, et al. Deep learning assisted variational 
Hilbert quantitative phase imaging. Opto-Electron Sci 2023;2:220023.

[37] Lu L, Li J, Shu Y, Sun J, Zhou J, Lam EY, et al. Hybrid brightfield and darkfield 
transport of intensity approach for high-throughput quantitative phase microscopy. 
Adv Photon 2022;4:056002.

[38] Zhou S, Li J, Sun J, Zhou N, Ullah H, Bai Z, et al. Transport-of-intensity Fourier 
ptychographic diffraction tomography: defying the matched illumination condition. 
Optica 2022;9:1362–73.

[39] Liu R, Sun Y, Zhu J, Tian L, Kamilov US. Recovery of continuous 3d refractive index 
maps from discrete intensity-only measurements using neural fields. Nat Mach Intell 
2022;4:781–91.

[40] Park J, Shin S-J, Shin J, Lee AJ, Lee M, Lee MJ, et al. Quantification of structural 
heterogeneity in h&e stained clear cell renal cell carcinoma using refractive index 
tomography. Biomed Opt Express 2023;14:1071–81.

[41] Li J, Zhou N, Sun J, Zhou S, Bai Z, Lu L, et al. Transport of intensity diffraction 
tomography with non-interferometric synthetic aperture for three-dimensional label-

free microscopy. Light: Sci Appl 2022;11:154.

[42] Zhou S, Li J, Sun J, Zhou N, Chen Q, Zuo C. Accelerated Fourier ptychographic 
diffraction tomography with sparse annular led illuminations. J Biophotonics 
2022;15:e202100272.

[43] Bucher M, Vu T-H, Cord M, Pérez P. Zero-shot semantic segmentation. Adv Neural 
Inf Process Syst 2019;32.
9

http://refhub.elsevier.com/S0143-8166(24)00635-3/bib267999BA9F4E1ABBDA733B76150226C1s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib267999BA9F4E1ABBDA733B76150226C1s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib8574B0E09C125A5568D308C866098574s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib8574B0E09C125A5568D308C866098574s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib8038A8D3CF7C894DE064137F1EFC950Fs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib8038A8D3CF7C894DE064137F1EFC950Fs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib8038A8D3CF7C894DE064137F1EFC950Fs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib34CE5D44B26B51645AA78F0DAD6AA28Ds1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib34CE5D44B26B51645AA78F0DAD6AA28Ds1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib5814586009E962681D1A84E1970CEBAAs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib5814586009E962681D1A84E1970CEBAAs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib4CEBDC72513DB54E9C88C078A3F5806Es1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib873FAE76FBA755657D1AA4BE71002816s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib873FAE76FBA755657D1AA4BE71002816s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibAD88C6FD7825E9CE3EFDB8BC2CAAE906s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibAD88C6FD7825E9CE3EFDB8BC2CAAE906s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibAD88C6FD7825E9CE3EFDB8BC2CAAE906s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibD1F50B42C2C04FCB3F626766EF2028FCs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibD1F50B42C2C04FCB3F626766EF2028FCs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib1011EF9B140C00E56C55A55FBA9BC46Bs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib1011EF9B140C00E56C55A55FBA9BC46Bs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibBFFB29779EACA04326908D92A698B9F1s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibBFFB29779EACA04326908D92A698B9F1s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib57597BE43306B37714BF3F254AB938C4s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib57597BE43306B37714BF3F254AB938C4s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib9EDAD2928518F7F553A880E566D8B8CDs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib9EDAD2928518F7F553A880E566D8B8CDs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib9EDAD2928518F7F553A880E566D8B8CDs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibF0D6EA1D7AD244C0F1035D098F3CACB2s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibF0D6EA1D7AD244C0F1035D098F3CACB2s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib9912E74EDA327BC8E96405FA061B5DB0s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib9912E74EDA327BC8E96405FA061B5DB0s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib9912E74EDA327BC8E96405FA061B5DB0s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibAFCC1935AED006938FAD09EE7FFF646Bs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibAFCC1935AED006938FAD09EE7FFF646Bs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibAFCC1935AED006938FAD09EE7FFF646Bs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib740B728FACE9A45CF594E410867E5F2Fs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib740B728FACE9A45CF594E410867E5F2Fs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib740B728FACE9A45CF594E410867E5F2Fs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib56F35799437276BEA7BDB700BA496211s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib56F35799437276BEA7BDB700BA496211s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibAA7B03A248F657B6DCA46F24F42EAB24s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibAA7B03A248F657B6DCA46F24F42EAB24s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibF8C3DD63F16707877066303458A26E15s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibF8C3DD63F16707877066303458A26E15s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib0970D70475A76C97B9012A9BFFB0CD58s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib0970D70475A76C97B9012A9BFFB0CD58s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib0970D70475A76C97B9012A9BFFB0CD58s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib8FF8A93C4777B6AD443DEC473D64316Ds1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib8FF8A93C4777B6AD443DEC473D64316Ds1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib1159C580214BA145EFEFCE903CCC1A58s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib1159C580214BA145EFEFCE903CCC1A58s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibF76CD1C448B3A883F8D4DB583F1212E4s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibF76CD1C448B3A883F8D4DB583F1212E4s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibF76CD1C448B3A883F8D4DB583F1212E4s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib03288ABAB71D576D574DF1B3D57C9DCAs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib03288ABAB71D576D574DF1B3D57C9DCAs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib03288ABAB71D576D574DF1B3D57C9DCAs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib37CE1F50135E9AD5A4C0D341C14B2BC8s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib37CE1F50135E9AD5A4C0D341C14B2BC8s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib37CE1F50135E9AD5A4C0D341C14B2BC8s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib0C0A95F115EB1D5F95FEDF3860DCF680s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib0C0A95F115EB1D5F95FEDF3860DCF680s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib9BBD40DD403ED9297308B9D2443402CAs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib9BBD40DD403ED9297308B9D2443402CAs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib30E0E94B482DD0D4507BDA19A6BAB63Fs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib30E0E94B482DD0D4507BDA19A6BAB63Fs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib30E0E94B482DD0D4507BDA19A6BAB63Fs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib4F3CF3DF58192F6A22D9D4BDC9C5F670s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib4F3CF3DF58192F6A22D9D4BDC9C5F670s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib4F3CF3DF58192F6A22D9D4BDC9C5F670s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib675255C4869ACF50B5133897104B71BDs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib675255C4869ACF50B5133897104B71BDs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib675255C4869ACF50B5133897104B71BDs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibBDD5B55F1877F083FED0B560B5A0519Cs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibBDD5B55F1877F083FED0B560B5A0519Cs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibBDD5B55F1877F083FED0B560B5A0519Cs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib982FD1C26E84E1B52B275A5C62E1B8BDs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib982FD1C26E84E1B52B275A5C62E1B8BDs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib982FD1C26E84E1B52B275A5C62E1B8BDs1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib4AFBA1D321279EFEEFDAF6B97B773AB0s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib4AFBA1D321279EFEEFDAF6B97B773AB0s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bib4AFBA1D321279EFEEFDAF6B97B773AB0s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibDC9D3A94F953D714D7820C50931148D5s1
http://refhub.elsevier.com/S0143-8166(24)00635-3/bibDC9D3A94F953D714D7820C50931148D5s1

	Uncertainty-assisted virtual immunohistochemical detection on morphological staining via semi-supervised learning
	1 Introduction
	2 Principle and methods
	2.1 Overview of the detection for TP53 mutation via semi-supervised learning
	2.2 Data processing and construction
	2.3 Semi-supervised network training and uncertainty estimation
	2.4 Materials and experiment implementation details

	3 Experimental results
	3.1 Whole-slide-level and patch-level presentations for TP53 mutation detection
	3.2 Uncertainty estimation of the detected TP53 mutation
	3.3 The comparison between semi-supervision and full supervision
	3.4 Performance analysis

	4 Conclusions and discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


