
Journal Pre-proof

Model-based deep learning for fiber bundle infrared image restoration

Bo-wen Wang, Le Li, Hai-bo Yang, Jia-xin Chen, Yu-hai Li, Qian Chen, Chao Zuo

PII: S2214-9147(22)00276-8

DOI: https://doi.org/10.1016/j.dt.2022.12.011

Reference: DT 1141

To appear in: Defence Technology

Received Date: 10 June 2022

Revised Date: 19 October 2022

Accepted Date: 7 December 2022

Please cite this article as: Wang B-w, Li L, Yang H-b, Chen J-x, Li Y-h, Chen Q, Zuo C, Model-based
deep learning for fiber bundle infrared image restoration, Defence Technology (2023), doi: https://
doi.org/10.1016/j.dt.2022.12.011.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2022 China Ordnance Society. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd.

https://doi.org/10.1016/j.dt.2022.12.011
https://doi.org/10.1016/j.dt.2022.12.011
https://doi.org/10.1016/j.dt.2022.12.011


Model-based deep learning for fiber bundle infrared image 

restoration 

 

Bo-wen Wang a, b, †, Le Li a, b, †, Hai-bo Yang c, Jia-xin Chen c, Yu-hai Li c, Qian Chen a, b, Chao Zuo a, b, * 

a Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing University of Science and Technology, 

Nanjing, Jiangsu Province 210094, China 

b Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, Jiangsu 

Province 210094, China 

c Science and Technology on Electro-Optical Information Security Control Lab, Tianjin 300308, China 

† The authors contributed equally to this work 

* Corresponding author: Chao Zuo (zuochao@njust.edu.cn) 

 

Jo
urn

al 
Pre-

pro
of



Model-based deep learning for fiber bundle infrared image 

restoration 

 

Abstract 

As the representative of flexibility in optical imaging media, in recent years, fiber bundles have emerged as a promising architecture in the 

development of compact visual systems. Dedicated to tackling the problems of universal honeycomb artifacts and low signal-to-noise ratio 

(SNR) imaging in fiber bundles, the iterative super-resolution reconstruction network based on a physical model is proposed. Under the 

constraint of solving the two subproblems of data fidelity and prior regularization term alternately, the network can efficiently 

"regenerate" the lost spatial resolution with deep learning. By building and calibrating a dual-path imaging system, the real-world dataset 

where paired low-resolution (LR) - high-resolution (HR) images on the same scene can be generated simultaneously. Numerical results on 

both the United States Air Force (USAF) resolution target and complex target objects demonstrate that the algorithm can restore high-

contrast images without pixilated noise. On the basis of super-resolution reconstruction, compound eye image composition based on fiber 

bundle is also embedded in this paper for the actual imaging requirements. The proposed work is the first to apply a physical model-based 

deep learning network to fiber bundle imaging in the infrared band, effectively promoting the engineering application of thermal radiation 

detection. 

Keywords: Fiber bundle; Deep learning; Infrared imaging; Image restoration 

 

1. Introduction 

The fiber bundle imaging technique has demonstrated its success in military periscope, life detection, and 

endoscopic imaging [1], owing to the inherent flexibility of fiber optics. In the military field, the fiber bundle 

periscope combines the flexible passive fiber optic image transmission system with the internal sighting scope, 

enabling the shooter to conveniently utilize corners, tree trunks, trenches, high platforms, and other terrain 

features for periscopic hidden observation and rapid aiming and firing on targets. By constructing a compact set of 

lenses, multiple LR sub-images are formed in the compound eye system [2,3], and composited sub-eye images are 

achieved by post-processing. In addition, combining the advantages of infrared imaging [4] and fiber-optic sensing 

can provide more valuable technical approaches to the field of detection and open up a variety of applications. 

Meanwhile, in turn, limited by its geometric nature (irregular layouts of fiber cores), images taken by such systems 

have penetrated honeycomb-like fixed pattern noises [5,6]. Infrared images are accompanied by a significant non-

uniformity effort, which damages the imaging performance rather than helping it [7,8]. In addition, the effective 

imaging resolution of a fiber bundle system is capped by the inherent physical fiber core diameter and fiber density 

rather than the optical system or the detector pixel size. Image restoration possibility is also considered the 

potential of the compound-eye system, which is yet to be explored fully. Therefore, there is an urgent requirement 

for an effective algorithm to improve the spatial imaging resolution while separating the honeycomb patterns, 
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which is the motivation of this paper. 

Most current imaging applications of fiber bundles are applied in micro-endoscopic, which are typically 

accompanied by poor light transmission (incoming light intensity information) due to the minor incident numerical 

aperture of the fiber bundle. Therefore, the low SNR in far-field imaging is also a huge challenge, which 

progressively hinders the accurate analysis of objects. In order to optimize the imaging perception of the optical 

fiber bundle technique, it is necessary to explore implementable methods to eliminate the impact of honeycomb 

patterns and compensate for the mixed texture information. Corresponding optimization methods have been 

presented successively. Earlier computational methods were generally implemented a prior by the regularity of 

fiber pattern arrangement. Rupp [9] borrowed the interpolation method in the spatial domain to establish the exact 

position relationship of each fiber center pixel point and subsequently interpolates the cladding pixels based on 

the values of the neighboring pixel points. Shinde [10] proposed that the honeycomb structure image is regularly 

arranged in the frequency domain, and the envisioned data can be recovered using the band-stop filtering 

technique, yet it is hugely challenging to determine the threshold of the band-stop filter, which normally results in 

part of the valuable information being filtered as well. However, previous computational methods only eliminated 

undesired pixelated patterns without substantial improvement in spatial resolution. 

Super-resolution is an ill-posed problem [11–14] that deals with restoring an HR image from a single or a series 

of raw images based on either specific a prior knowledge or just an assumed generic notion about the tighter 

correspondence imaging model. The deep learning technique [15–17] breaks the dependence of traditional 

methods on prior knowledge and efficiently utilizes the raw information "hidden" in the original honeycomb 

patterns. Minimizing the optimization problem by mapping massive data samples [18,19] (deep learning methods 

gradually reduce the loss function through multiple epochs and update the weight parameters through feedback), 

is conducive to precisely learning the high-resolution image. In particular, U-Net [20] has achieved tremendous 

success in searching the mapping functions (observation models and noise statistics) for various underdetermined 

medical imaging problems, verifying the feasibility of constraining the inverse problem through the network. Ravi 

[21] estimated the pseudo ground truth image by a video alignment algorithm and then tried to recover the fiber 

bundle image by three different convolutional neural networks. Simultaneously, Shao [22] implemented a 

generative adversarial restoration neural network (GARNN) or a 3D convolution network to remove the foveal effect 

and restore the "hidden" features. The feasibility of super-resolution reconstruction of infrared images through the 

network was also verified in previous work [23–25]. Perhaps not surprisingly, conventional deep-learning 

algorithms lack interpretability to some extent and heavily rely on abundant examples to train the network without 

incorporating any physical degradation model constraints [26–28]. Each model training can only focus on a single 

situation-specific image reconstruction project and lacks the flexibility to cope with different tasks or different scale 

factors. To address the above issues, we propose an image-resolved algorithm based on the physical-model deep 

learning network, which is promising in regenerating high-resolution and non-honeycomb pattern images. In this 
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research work, the primary options focused on the infrared radiation band, yet actual visible light images could also 

be employed. Based on this research work, it seems reasonable to pursue a similar set of fiber-optic bundle system 

configurations in future military research. 

The remaining structures of this paper are as follows. Section 2 depicts the basic principle of our proposed 

method and presents the details of the proposed network for infrared fiber bundle super-resolution. Abundant 

experimental results and analysis are demonstrated in Section 3. Finally, Section 4 enforces a discussion and 

summarizes the paper. 

 

2. Methods 

2.1. Theoretical analysis 

The optical fiber image bundle is composed of multiple fibers, and each core conveys an individual image 

element. The current fiber bundle has a trade-off between the field of view and the core sampling rate. In order to 

combine the field of view and luminous flux of a single fiber, the diameter of currently manufactured fibers is 

empirically chosen to be slightly larger. The inherent fiber bundle physical limitation interrupts the information and 

weakens the imaging resolution, leading to a honeycomb pixelation (fixed pattern noise) of the sample. 

In order to quantitatively investigate the correspondence between image quality and parameters of the optical 

fiber bundle imaging system, the concept of the average modulation transfer function (MTF) [29–31], commonly 

employed in the discrete sampling system, is introduced as the evaluation metric. The average MTF of the system 

can be indicated by the product of the Fourier transforms of each discrete sampling distribution function, which is 

expressed as follows:  

𝑀𝑇𝐹sys = 𝑀𝑇𝐹object ⋅ 𝑀𝑇𝐹fib ⋅ 𝑀𝑇𝐹relay ⋅ 𝑀𝑇𝐹detector                                            (1) 

where 𝑀𝑇𝐹sys, 𝑀𝑇𝐹object, 𝑀𝑇𝐹fib, 𝑀𝑇𝐹relay, and 𝑀𝑇𝐹detector represent the MTFs of the overall system, the 

fore-objective lens, the optical fiber imaging bundle, the relay lens, and the detector, respectively. The dual 

sampling of both fiber bundle and detector exists in the proposed system, and the imaging process of the fiber 

bundle includes low-pass filtering followed by the integral sampling of the fiber core and the discrete decimation 

of each fiber in the dense arrangement. 𝑀𝑇𝐹fib is composed of the fiber integral function 𝑀𝑇𝐹fib−int and the 

fiber sampling function 𝑀𝑇𝐹fib−sam. Therefore, 𝑀𝑇𝐹sys can be expressed as 

𝑀𝑇𝐹sys = 𝑀𝑇𝐹object ⋅ 𝑀𝑇𝐹fib−int ⋅ 𝑀𝑇𝐹fib−sam ⋅ 𝑀𝑇𝐹relay ⋅ 𝑀𝑇𝐹CCD 

= 𝑀𝑇𝐹object ⋅ 𝑀𝑇𝐹rel ⋅ [
2𝐽1(𝜋𝑑𝑓)

𝜋𝑑𝑓
]
2

⋅ | 𝑠𝑖𝑛𝑐( 𝛥𝑓)| ⋅ | 𝑠𝑖𝑛𝑐( 𝑝𝑓)|                                 (2) 

Among them, 𝐽1 refers to the first-order Bessel function, 𝑑 is the diameter of the fiber core, 𝑓 is the spatial 

frequency, 𝛥 represents the fiber core center distance, and 𝑝 represents the detector pixel size. 

Our system adopts the chalcogenide glass infrared fiber bundle with a core diameter of 40 μm and a core 

center distance of 50 μm. Furthermore, infrared sensors with a pixel size of 15 μm and a center wavelength of 4.2 
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μm are chosen for data collection. As shown in Fig. 1, under the premise of this invariant optical system, the system 

MTF mainly relies on the fiber bundle MTF. In this case, the cutoff frequency and spatial resolution of the system 

are not limited by the pixel size of the sensor or the diffraction effect. Instead, they are dramatically trapped by the 

fiber core center distance and core diameter (𝑀𝑇𝐹fib). Due to the dual discrete sampling mechanism of the optical 

fiber bundle imaging system, honeycomb-like fixed patterns are imposed on its output images. In the optical 

imaging system, the multiplication of MTF in the frequency domain is equivalent to the convolution of the point 

spread function (PSF) in the spatial domain. The PSF (blur kernel) of the system is also a crucial indicator of imaging 

resolution capability. In light of the above analysis, the system degradation model is mainly affected by the fiber 

bundle, and the simulated blur kernel of the fiber bundle imaging system with the hexagonal structure is shown in 

Fig. 1. The proposed method is also dedicated to solving the dilemma of incompatibility between sensor and fiber 

bundle sampling in fiber optic imaging systems. 

 

Fig. 1. Schematic diagram of the dual-path imaging system. The blue dashed line illustrates the PSF of the simulated 

system, and the red dashed line represents the MTF of the simulated system. 

The "one-to-one" dual-path imaging system is established to obtain HR images and degraded LR images 

simultaneously, as shown in Fig. 1. To obtain the true observation image (label) and fiber image (input image) 

simultaneously, we introduced a beam splitter to split the light from the object into two paths. By physically 

adjusting the distance between the lens and the object, the image alignment error of the two imaging paths is at 

the sub-pixel level. Further, the post-alignment algorithm accomplishes the tiny alignment of the dual-channel 

images. 

2.2. Proposed algorithm and network architecture 

In this section, we investigate how to adapt the deep-learning method for honeycomb artifacts removal and 

far-field image restoration. As such, we resort to theoretical analysis and formulate the image restoration problem 
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in a framework. Generally, image super-resolution is an inverse problem [32] where the objective is to recover the 

latent HR image 𝒙 from its blurred, decimated, and noisy observation 𝒚 = 𝑺𝑯𝒙 + 𝒏, where 𝑺 denotes the 

standard down-sampler, 𝑯 represents the convolution operation with blur kernel, and 𝒏 is the additive noise. 

The model-based deep learning method with degradation constraint is interpretable compared with conventional 

deep learning methods. According to the maximum a posteriori (MAP) framework, the HR image can be performed 

by solving the following optimization problem: 

𝑥 =𝑎𝑟𝑔𝑚𝑖𝑛𝑥
1

2
‖𝒚 − 𝑺𝑯𝒙‖2 + 𝜆𝛷(𝒙)                                                          (3) 

where 
1

2
‖𝒚 − 𝑺𝑯𝒙‖2 is the data fidelity term related to the model likelihood, 𝛷(𝒙) is the prior regularization 

term associated with the image prior information, and the role of the 𝜆 is to weigh the importance of the prior 

regularization term relative to the data fidelity term. For the purpose of acquiring the further unfolding inference, 

the half-quadratic splitting (HQS) algorithm introduces an auxiliary variable 𝑧 and transforms Eq. (3) into an 

approximate equivalent problem 

𝐿𝜇(𝒙, 𝒛) =
1

2
‖𝒚 − 𝑺𝑯𝒛‖2 + 𝜆𝛷(𝒙) +

𝜇

2
‖𝒛 − 𝒙‖2                                                 (4) 

where 𝜇 is a regularization parameter associated with the quadratic penalty term, and such a problem can be 

solved via the following iterative scheme: 

𝒛𝑘 =𝑎𝑟𝑔𝑚𝑖𝑛𝑧 ‖𝒚 − 𝑺𝑯𝒛‖2 + 𝜇𝑘‖𝒛 − 𝒙𝑘−1‖
2                                                   (5) 

𝒙𝑘 =𝑎𝑟𝑔𝑚𝑖𝑛𝑥
𝜇𝑘

2
‖𝒛𝒌 − 𝒙‖2 + 𝜆𝛷(𝒙)                                                          (6) 

Mathematically, the data fidelity term and prior regularization term are decoupled into two individual 

subproblems, which can facilitate each other to realize blur elimination and detail recovery. Therefore, the model-

based iterative network (MBIN) can be designed, whose framework consists of a data fidelity module and a prior 

regularization module iteratively. Fig. 2 illustrates the overall architecture of MBIN with k iterations. 

 

Fig. 2. The overall architecture of MBIN with iterations k = 8. MBIN consists of two main iterative modules, the data 
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fidelity module to guarantee the solution complies with the degradation process and the prior regularization 

module to enforce desired properties of the output. 

The data fidelity module imposes a degradation model constraint on the solution, which can be leveraged and 

incorporated into the network construct to guarantee more precise and reliable reconstruction. Specifically, the 

data fidelity module is related to a quadratic regularized least-squares problem which has various solutions for 

different degradation kernels. A direct solution is given by 

𝒛𝑘 = (𝑯T𝑺T𝑺𝑯 + 𝜇𝑘𝑰)
−1(𝑯T𝑺T𝒚 + 𝜇𝑘𝑥𝑘−1)                                                    (7) 

We assume that the convolution is performed under circular boundary conditions. Hence, the fast Fourier 

transform can be adapted to efficiently implement Eq. (7). 

For the prior regularization module, Eq. (6) can be reformulated as 

𝒙𝑘 =𝑎𝑟𝑔𝑚𝑖𝑛𝑥
1

2(√𝜆/𝜇𝑘)
2
‖𝒛𝑘 − 𝒙‖2 +𝛷(𝒙)                                                      (8) 

Treating 𝒛𝑘  as the "blurred" image, Eq. (8) minimizes the residue between 𝒛𝑘  and the "clear" image 𝒙 

using the prior 𝛷(𝒙) [33]. The corresponding minimization function is also named the so-called loss function. The 

latent mapping between "blurred" and "clear" maps can be learned by training the prior module, which acts as a 

detail enhancer for high-frequency recovery.  

Inspired by the prior knowledge in information optics, we may impute the expansion of high-frequency 

components to the image prior rooted in the elaborately designed architectures. Physics-informed learning 

seamlessly incorporates both data and mathematical models to address the under-determined problem, even in 

noisy and high-dimensional contexts. In fact, the physical prior was integrated into the forward generation process 

in earlier investigations. The optimized values of the physical prior are derived by gradient descent applying a back-

propagation algorithm of derivatives, which is akin to the deep learning optimization process. 

The process of cross introducing the optimization iterations of the physical model together with the fitting 

function of deep learning will significantly strengthen the interpretability of the network. Notably, in Fig. 2, we 

introduce the physical iterative process and further incorporate the system's PSF into the network model. Quite the 

contrary, if only end-to-end learning is done without any physical model intervention, the image quality will 

undoubtedly suffer degradation. In previous super-resolved reconstruction projects, numerous efforts neglected 

the introduction of physical models as the most critical aspect. 

U-Net, widely formed in multi-scale image-to-image transforms, is adopted to construct this module. As 

illustrated in Fig. 2, the fundamental structure of the prior regular module involves a contractive branch and an 

expansive branch with four folds. Moreover, the module takes advantage of Resnet [34] to enhance network 

capacity and performance by introducing residuals. A set of two residual blocks are integrated on each scale of the 

branch [35], as shown in Fig. 2. Specifically, the number of channels from the first scale layer to the end layer is set 

to 64, 128, 256, and 512, respectively, in that order. For the down-sampling and up-sampling operation in the 

contractive and expansive branch, we adopt 2 × 2 stridden convolution (SConv) and 2 × 2 transposed convolution 
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(TConv), respectively, which are not followed by the activation function. In addition, skip connection can not only 

transfer image feature information but also alleviate the problem of gradient disappearance, enabling convenient 

transmission of valuable information in the network. In respect of the loss function, we adopt the L2 loss to evaluate 

the peak signal-to-noise ratio (PSNR) performance. In the network, the batch size is set to 48. Adam solver [36] is 

adopted to optimize the parameters with the learning rate initialized as 10-4. The hardware platform of the network 

for model training is Intel CoreTM i7-9700K CPU 3.60 GHz equipped with the RTX2080Ti graphics card, and the 

software platform is PyTorch 1.6.0 under the Ubuntu 16.04 operating system. 

 

3. Experimental results and analysis 

3.1. Dataset preparation 

For the validation of our proposed method, the dataset is prepared by simulations, which dispenses with the 

available extra imaging system to provide well-registered pairs of fiber bundle images and their corresponding 

ground truth data. To obtain the LR counterpart from each mapped HR image, we impose the PSF for each 

hexagonal arranged core to the mapped HR image. The convolution operation of PSF, followed by the down-

sampling operation, implements a weighted sum of HR pixels to yield an LR image pixel.  

In recent years, deep learning is emerging as a powerful tool to address problems by learning from data, largely 

driven by the availability of massive datasets. Unfortunately, such simple degradation models could not faithfully 

describe the complex degradation processes in the real world. This motivates us to build a real-world SR dataset to 

narrow the synthetic-to-real gap. Our training data set consists of 1000 paired LR-HR images and their 

corresponding ground truth data. To monitor the accuracy of the neural networks on data never seen before, we 

created a validation set by setting apart 50 images from the original training data. A representative dataset in our 

proposed network is depicted in Fig. 3. Note that our proposed network is still based on supervised learning. We 

consider the training process of the network as the task of learning the image prior, including fiber fixed noise, 

luminance bias, frequency characteristics, etc. The network attempts to recover an estimate of the envisioned 

sample from the degraded image by prior mapping knowledge (e.g., the system transfer function). Therefore, a 

sufficient variety of images should be included in our datasets to construct the network mapping function as much 

as possible. The reconstruction process of the network is also not a magic trick, which requires a sufficient amount 

of prior information to support the fitting process of the parameters. Only when the dataset is guaranteed to a 

certain extent the nonlinear mapping will perform well in a massive sample.  

Jo
urn

al 
Pre-

pro
of



 

Fig. 3. A representative dataset in our proposed network. 

For the data collected from the dual-path imaging system, HR images captured from Sensor 1 have the same 

pixel dimensions of 1024 × 1024, while LR images recorded by Sensor 2 are cropped to 256 × 256 pixels from 640 × 

480 pixels. The end-to-end networks demand that LR images are interpolated to the same size as HR images, and 

image pairs are aligned by sequentially applying coarse and fine registrations for the network to learn the direct 

mapping relations. When using experimental data as ground truth, the reconstructed performance is inevitably 

contaminated by noise. Geometric changes such as rotation, translation, and deformation are implemented in 

images by finding inter-image feature points to eliminate the distortion errors between different lenses. When the 

distortion error is eliminated, we consider that coarse registration can be regarded as finished, and only the 

displacement between pixel levels remains for the registration error with respect to two images. Consequently, the 

frequency domain cross-correlation method [37] is adopted for precise registration to achieve sub-pixel error 

correction between image pairs. Considering the invariant characteristics of the imaging system, we could complete 

the registration of all datasets by performing only one-time coarse and fine registration. 

 

Fig. 4. Schematic diagram of the dual-path image alignment processing. 

3.2. Quantitative evaluation based on the USAF resolution target 

A USAF resolution target was employed to quantitatively validate the performance of the proposed method 

in terms of image resolution. Depending on the system parameters mentioned in Subsection 2.1, the forward model 

of the system is simulated with explicit degradation to acquire LR-HR image pairs in Subsection 3.1. The cellular 

fiber image in Fig. 5(a) is generated from the original high-resolution infrared image, which is shown in Fig. 5(e), 

through the dual discrete sampling of the fiber bundle imaging system. Fig. 5(b)–5(d) presents the reconstructed 
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results using U-Net, super-resolution convolutional network (SRCNN) [38], and MBIN methods, respectively. It is 

clearly observed from Fig. 5 that the MBIN method addresses nearly all the major limitations of the other methods. 

Although all methods exhibit removal of the honeycomb patterns, images reconstructed by U-Net and SRCNN 

still survive with distinct pixelated patterns along the edge of bars, where the recovered edges are jagged rather 

than smooth. On the contrary, MBIN eliminates these artifacts along edges, maintaining uniformity in intensity 

closer to the original image. As shown in Fig. 5(a), the minimum line pairs that can be resolved in the synthetic 

image is the element of the third group on the left, with a corresponding line width of 0.92 µm. To intuitively 

compare the performance of the three methods, we intercept regions of the rectangular box for comparison, as 

shown in Fig. 5(f)–5(h). Note that results reconstructed by U-Net and SRCNN are blurred, and line pairs cannot be 

distinguished in the zoomed-in area.  

Obviously, high-resolution images can be effectively reconstructed using our proposed method, and more 

specifically, our method can enhance the original resolution to the third group on the right, corresponding to a line 

pair resolution of 0.54 µm. The proposed method extends the imaging resolution to 1.7 folds, successfully breaking 

through the imaging resolution limited by the physical size of the original intrinsic system. Furthermore, we can be 

surprised to observe that the intensity profile of MBIN in Fig. 5(i) achieves the best performance in both contrast 

and resolution. Evidentially, the proposed MBIN demonstrates apparent advantages in terms of linewidth and 

sharpness exhibited in the reconstructed image. 

 

Fig. 5. Comparison of U-Net, SRCNN, and MBIN on the synthetic USAF resolution target: (a) Input USAF target image. 

(b)–(d) Reconstructed images respectively used U-Net, SRCNN, and MBIN methods; (e) Original USAF target image 

(ground truth). (f)–(h) Zoomed-in images of the region of interest (ROI) in (b)–(d); (i) Cross-sectional profile of dash 

line shown in (b)–(d). 
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3.3. The network performance on real datasets 

To further demonstrate that the proposed MBIN indeed improves the image performance, we conducted real 

scene data experiments with the dual-path imaging system. For the sake of efficient learning of the end-to-end 

mapping relations, except for the interpolation and registrations mentioned in 3.1, the LR images are pre-processed 

with background noise reduction and infrared image enhancement before feeding into the network model. We 

compared the MBIN with two state-of-the-art restorative neural networks to verify the network's performance 

capabilities. In Fig. 6(a), the patterns are partial images captured by the system oriented to the blackbody radiator 

and different hollow boards. The soldering iron and the tank model belong to self-heating objects directly recorded 

by the system. Obviously, these results indicate that all three methods could exhibit favorable performance in 

recovering the hidden information from the honeycomb patterns, whereas the high-frequency edges of the 

restored images obtained by U-Net and SRCNN are blurred. In contrast, sharper images reconstructed by MBIN 

distinguish finer details. We plot the average loss value and the average PSNR value for the validation dataset 

against the training epoch number of MBIN in Fig. 6(b). Such two curves oscillate in the early epochs and converge 

stably after more training epochs. 

 

Fig. 6. (a) Comparison of fiber bundle image reconstruction; (b) The average Loss value and average PSNR value of 

the validation dataset against the number of training epochs; (c) The dual-path imaging system. 

In order to further quantitatively evaluate the results obtained by different methods, the PSNR value and the 

structural similarity (SSIM) value are calculated for each reconstructed image relative to the corresponding ground 

truth, as listed in Table 1. It is obviously desirable that MBIN has the highest metrics values in all cases. Specifically, 

it shows superior performance in both SSIM and PSNR, which are, on average, 5% and 5dB greater than other 

methods, respectively. Perhaps not surprisingly, the principle behind this result is that the proposed network 

removes the honeycomb patterns effectively, and the hidden details are restored extremely similar to their ground 

truth, with higher PSNR and SSIM values representing more satisfactory results.  
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Table 1 

Measurement of different reconstruction methods on PSNR/SSIM. 

Object/Algorithms U-Net 

PSNR/SSIM 

SRCNN 

PSNR/SSIM 

MBIN 

PSNR/SSIM 

Character "w" 23.05/0.889 23.52/0.898 28.63/0.942 

Character "4" 22.45/0.904 23.08/0.896 28.54/0.963 

Musical symbol 25.81/0.921 25.58/0.904 29.34/0.968 

Soldering iron 30.39/0.964 31.30/0.966 36.74/0.981 

Tank model 28.18/0.880 28.75/0.896 32.88/0.965 

In the practical engineering application, multiple sub-eyes of the single-aperture fiber bundle can be arranged 

in the form of a compound eye array to capture multiple images at the same time, achieving high resolution and 

large field of view simultaneously by stitching multiple adjacent images with overlapping regions. Based on the 

super-resolution reconstruction method in this paper, the 2 × 1 compound eye array system with infrared fiber 

bundles is established. The system can be shifted horizontally to physically scan corresponding areas of the hollow 

board in front of the blackbody radiator continuously for acquiring 2 × 5 sub-images. Following that, a large-field 

image of the target is obtained by stitching sub-images, as shown in Fig. 7, expanding the horizontal field of view 

angle from 21.48° to 65.31°. 

 

Fig. 7. Stitching results based on the fiber bundle and corresponding sub-eye images. 

 

4. Conclusions 

We have established and investigated a computational compound-eye imaging system with super-resolution 

reconstruction. The real-world infrared fiber bundle images and their corresponding ground truth images are both 
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generated by the development dual-way imaging system. Image registration and rectification algorithms are 

developed to progressively align the image pairs. The constructed dataset can address the real-world image super-

resolution problem with better performance. We also find that with the aid of introducing a physical model-based 

network, the solution can be incorporated to preclude some disturbing terms in the ill-posed inverse problem and 

possibly comply with the imaging model. As such, we gain insights into questions concerning image restoration 

problems. Finally, simply utilizing larger dimension imaging sensors and coordinating with multiple sub-eye images 

could, in principle, further push the imaging field of view and spatial resolution. The proposed MBIN method 

promises to enable new measurement opportunities for military defense detection and evolve our knowledge in 

the photoelectric detection field. 
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