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a b s t r a c t

A novel approach for continuous phase demodulation in digital holography is proposed. This method
allows direct recovery of continuous phase information encoded in digital holography. Transport-of-
intensity-equation is invoked following the numerical reconstruction and propagation of the digital
hologram. The recovered phase is free from the 2π discontinuities and thus phase unwrapping problems
are avoided. Furthermore, it provides a new way to eliminate the tilt and quadratic phase aberration
inherent in digital holography without cumbersome physical or digital compensation procedure. The
performance and feasibility of the method are demonstrated through two applications in micro-optics
and bio-imaging.

Crown Copyright & 2013 Published by Elsevier B.V. All rights reserved.
1. Introduction

Phase retrieval has been a subject of considerable interest in
many fields where either phase imaging or structure retrieval is an
issue, such as optical testing, bio-medical imaging and materials
science [1–3]. Various interferometric techniques have been
developed in the past couple of decades to obtain full field,
quantitative, and absolute phase imaging [2,4]. Among these
techniques, digital holography has emerged as a front-runner for
phase imaging for its attractive ability to reconstruct simulta-
neously an amplitude-contrast and a phase-contrast image from a
single hologram [5,6]. Unlike Fourier phase or Hilbert phase
microscopy, digital holography does not require recording in-
focus images of the specimen on the digital detector (CCD or
CMOS camera), because numerical focusing can be achieved by the
numerical wavefront propagation. For an off-axis hologram, the
object wave is spatially separated from the zero-order un-dif-
fracted wave and the conjugate object wave. Thus, the amplitude
and phase information of the object at the hologram plane can be
delineated via spatially filtering in the Fourier domain [7]. The
filtered hologram is then multiplied by a numerical reference
(usually a plane wave) and the resulting wave-field is propagated
13 Published by Elsevier B.V. All r
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to the image plane to determine the resulting in-focus amplitude
and phase of the object. However, phase aberrations including tilt
due to the off-axis geometry and phase curvature caused by the
microscope objective superimposes on the object phase. In order
to accurately recover the phase information induced by the object
only, a time-consuming and tedious compensation procedure,
either physical or numerical, is often performed [8–12]. Another
major obstacle that frustrates this and other phase measurement
techniques is that the recovered phase is mathematically limited
to the interval ð�π; π�, corresponding to the principal value of the
arctangent function. Therefore phase unwrapping must be carried
out before any reconstruction of the physical quantities from the
given phase map. Several algorithms for phase unwrapping have
been reported in literature to overcome this difficulty [13–15].
However, only a few of them are good enough for practical
applications in the presence of noise, rapid phase variations and
phase residues. Sometimes not just the unwrapping from the local
region is flawed, but phase errors also often propagate outward
to rest of the image. Besides, most existing phase unwrapping
algorithms are computationally intensive and, thus, difficult to
implement in real-time.

Transport of intensity equation (TIE) [16], as a non-interferometric
single-beam phase retrieval method, has gained increasing attentions
and applications in quantitative phase imaging [17–20]. One of the
great advantages of TIE is it needs a minimum of just two intensity
measurements of the optical wave at two closely spaced planes
perpendicular to the direction of propagation to directly reconstruct
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the continuous phase of the wave, without the need for phase
unwrapping [18,21]. Taking advantage of this appealing feature, in
this paper, we propose a new fast phase demodulation algorithm for
deterministic continuous phase retrieval in digital holography based
on solving the TIE from the normalized wavefield obtained during
the numerical reconstruction of the hologram. This method allows
direct recovery of continuous phase information encoded in digital
holography and thus phase unwrapping problems are avoided. Since
just one hologram is needed, it facilitates dynamic imaging as well.
Furthermore, our method provides a new way to eliminate the tilt
and quadratic phase aberration inherent in digital holography with-
out cumbersome physical or numerical compensation procedure.
Since the method employs fast Fourier transforms (FFT), it is simple
and computationally efficient. Two experiments are carried out to
verify the effectiveness of our method.
2. Basic principles of digital holography and transport-of-
intensity phase retrieval

In both transmission and reflective setups for digital hologra-
phy, a coherent laser beam is split into two parts—the reference
beam directly illuminates the imaging device. The object beam
either passes through or reflects off the sample and interferes with
the reference beam at the CCD plane with a small angle to
generate an off-axis hologram. The intensity distribution recorded
by the camera can simply be written as

IHðx; yÞ ¼ jOj2 þ jRj2 þ ROn þ RnO ð1Þ
Rðx; yÞ and Oðx; yÞ are the reference and object waves, respectively,
ndenotes the complex conjugate. This hologram is sampled by the
digital camera and then transferred into a computer as an array of
numbers. Filtering the hologram′s two-dimensional Fourier spec-
trum can eliminate unwanted zero-order and the twin image term
[7,22]. The diffracted field, including amplitude and phase dis-
tribution at the image plane is then numerically propagated from
the hologram plane using Fresnel transform, convolution, or
angular spectrum methods. However, phase aberrations including
tilt due to the off-axis geometry and phase curvature caused by the
microscope objective superimposes on the object phase, such that
the reconstructed phase map can be represented as [5,8,11]

φðx; yÞ ¼ φoðx; yÞ þ kxxþ kyyþ lrðx2 þ y2Þ; ð2Þ
where φoðx; yÞ is the phase delay introduced by the object.
The factors kx, ky denote the linear phase difference between the
object and reference beam due to the off-axis geometry of the
setup. The parameter lr describes the relative divergence between
the object and reference beams due to the mismatch in spherical
phase curvature. The phase aberration must be compensated by
some physical or numerical method [9–12] in order to accurately
recover the phase information induced by the object only. Once
the complex field has been calculated at the image plane, the
object phase, the arctangent of a ratio of the imaginary part and
the real part of the complex amplitude, can be determined.
However, the phase mapping is ambiguous for objects of optical
depths greater than the wavelength, as absolute phase is wrapped
in the intervals of 2π because the arctangent function returns the
value of the angle in modulo 2π instead of its absolute value.
Therefore, the phase unwrapping procedure has to be applied in
order to recover a continuous phase distribution that extends over
a range of greater than 2π.

TIE uses only object field intensities at multiple axially dis-
placed planes without any interference with a separate reference
beam. The experimental configuration for TIE typically involves a
4f imaging system. By translating the camera or the object,
multiple intensity images at different image distance can be
obtained. TIE determines the object-plane phase from the first
derivative of intensity in the near Fresnel region [16]

�k
∂IðrÞ
∂z

¼∇ � IðrÞ∇φðrÞ½ �; ð3Þ

where I is the in-focus intensity, k is the wave number¼2π=λ, r is
the position vector with spatial coordinates ðx; yÞ.∇ is the gradient
operator with respect to r. zdenotes the wave propagation direc-
tion and is perpendicular to the x�y plane. Eq. (3) indicates that
the transverse phase of the wave can be deduced from the
derivative of intensity along propagation direction. Using this
equation the phase distribution can be uniquely recovered without
phase unwrapping even if the phase varies over many multiples of
2π [18,21].
3. Direct continuous phase demodulation in digital
holography with TIE

It is to be noted that for TIE phase retrieval, the continuous
phase can be uniquely determined by solving the partial-
differential equation (Eq. (3)), with only the intensity distribution
and its derivative with respect to z. Though the intensity derivative
cannot be measured directly, it can be estimated by finite differ-
ence taken between two closely separated images. Without con-
sidering effects of noise, a smaller separation between the two
planes yields a more accurate approximation of the phase deriva-
tive [19,20]. Conventionally, to acquire the two images with slight
defocus, either the camera or the object has to be mechanically
translated, which inevitably complicates the data acquisition
process and slows down the acquisition speed. Numerical focusing
is a unique capability of digital holography, where a single
hologram is used to calculate the optical field at any number of
image planes, emulating the focusing control of a conventional
imaging system. This inspires us to properly combine these two
techniques so that merits of both methods can be accrued.

The most direct idea is to numerically propagate the recovered
field by digital holography to two distances at and very close to the
image plane resulting in the two intensity images with slightly
defocus. These two images are used to approximate intensity
derivative and used in the TIE algorithm to retrieve phase. The
angular-spectrum method [7,11,23] is a preferred approach for this
purpose as it maintains the pixel size, has no minimum distance
requirement for the reconstruction plane, and is flexible and
effective in filtering in Fourier domain. The reconstructed wave-
field Uzðx; yÞ at distance z from the wavefield at the hologram
plane U0ðx; yÞ can be written as [7,11,23]

Uzðx; yÞ ¼F�1fF fU0ðx; yÞgHðf x; f yÞg; ð4Þ

where Hðf x; f yÞ is the angular spectrum optical transfer function in
the spatial frequency domain which is expressed as

Hðf x; f yÞ ¼ exp j
2πz
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðλf xÞ2�ðλf yÞ2

q� �
; ð5Þ

where f x and f y are the spatial frequencies in the x and y directions.
F and F�1 are the Fourier transform and the inverse Fourier
transform, respectively. Hence it is possible to numerically recon-
struct intensity images at the focused plane and defocused plane
with a small defocus distance Δz. These reconstructed intensity
images can then be used in the TIE formulation (Eq. (3)) to
determine the absolute phase free from 2π discontinuity.

Though this method is based on a sound theory and seems
quite straightforward, it is not a good choice for practical imple-
mentation. TIE is elliptic partial differential equation for the phase
function φ and in order to solve the inverse Laplacian by fast
numerical methods (such as FFT) an auxiliary function ψ , which
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satisfy ∇ψ ¼ I∇φ has to be used to convert TIE to the following two
Poisson equations

�k
∂I
∂z

¼∇2ψ ; ð6Þ

and

∇ � ðI�1∇ψÞ ¼∇2φ; ð7Þ
solving the above two equations involve 8 FFT operations, which is
a non-trivial computational load. Besides, the auxiliary function
∇ψ ¼ I∇φ inherently induce some error since the rotational term is
ignored in the Helmholtz decomposition [24]. In addition, TIE
works under the assumption that there are no zeros in the
intensity image and proper boundary conditions are needed to
obtain a unique solution [25,26]. The intensity images recon-
structed by digital holography are usually accompanied with
varying degrees of speckle noise, making it difficult to get an
exact solution from TIE.

The above difficulties can be overcome by making some
modification in the implementation, which can be summarized
as the following four steps:
(1)
 Calculate the complex wavefield at the focus plane by numeri-
cally propagating the filtered hologram as in traditional digital
holographic reconstruction.
(2)
 Normalize the reconstructed complex field by its amplitude.
This step makes the object into a pure-phase object with unit
intensity at the focus plane (IðrÞ ¼ 1; for all pixels).
(3)
 Obtain the defocused image IΔz by propagating the normalized
complex field over a small distance Δz. Note Δz should be
limited to a very small value (e.g. 1 μm) to minimize the error
caused by neglecting high-order terms in finite-difference
approximation of the intensity derivative. Since all intensity
images are numerically reconstructed, using a small difference
interval does not introduce noise as in real measurement. The
multiple-plane methods [19,20] are also applicable to reduce
the nonlinearity error in finite-difference, but not recom-
mended for their extra computational cost.
(4)
 Finally, the two intensity images serve as the input data to
solve the TIE. Since in this case the in-focus image has uniform
unit intensity, the TIE (Eq. (3)) can be simplified to a standard
Poisson equation [17,19,20]
�k
∂IðrÞ
∂z

¼∇2φðrÞ; ð8Þ

where

∂IðrÞ
∂z

≈
IΔzðrÞ�IðrÞ

Δz
: ð9Þ

Eq. (8) can be solved using the FFT based Poisson solver of the
form [17]

φðrÞ ¼F�1 kF ∂IðrÞ=∂z� �
4π2ðf 2x þ f 2yÞ

( )
: ð10Þ

Note the solving the Poisson equation only needs two FFTs,
which provides a very fast numerical implementation with very
little memory demands. Besides, no auxiliary function is needed
and the zero intensity problems can be simultaneously solved by
assuming a uniform intensity at the image plane.

Unlike the first method discussed above, we discard the
intensity information (assume it is uniform) at the image plane
and the second intensity is calculated from the phase distribution
only. Apparently, the second intensity distribution obtained is not
exactly the same as the real intensity at distance Δz. However, this
does not affect the accurate phase retrieval because the test object
is deliberately assumed to be a pure phase one with uniform
intensity distribution. Imagine a different object which has the
same phase distribution as the actual one under test but with
different but uniform intensity distribution, TIE can also extracted
the correct phase from the numerical propagated intensity, which
is somewhat like performing a numerical simulation on the TIE
algorithm. Besides, the angular spectrum method implies spatial
periodicity of the complex field which is completely correspon-
dent with the periodic boundary condition inherent in the FFT
based Poisson solver [26], therefore the exact solution of TIE can
be obtained, and an accurate estimate of the continuous phase can
be recovered.

A close inspection of Eq. (8) reveals that the tilt aberration can
be automatically removed by our method because a linear phase
resulting from the periodic carrier frequency does not introduce
any transverse intensity gradient. This is a unique advantage
provided by our method, making the subsequent quadratic aber-
ration compensation simpler because only a single parameter lr in
Eq. (2) needs to be adjusted. Furthermore, if the curvature induced
by the microscope objective is largely compensated by introducing
a same microscope objective or adjustable lens in the reference
arm (i.e. only reduced aberrations are introduced), the spherical
phase aberration will typically reside in lower spatial frequencies
as opposed to the details of the sample which occupy the higher
spatial frequencies. In this case, a Tikhonov-regularization treat-
ment [27,28] which is commonly used to remove very low
frequency artifacts in TIE can also be adopted to simply suppress
the quadratic aberration without additional processing

φðrÞ ¼F�1 kðf 2x þ f 2yÞF f∂IðrÞ=∂zg
4π2½ðf 2x þ f 2yÞ2 þ γ�

( )
; ð11Þ

where γ is the regularization parameter (typical value γ ¼ ðmaxðDx;

DyÞÞ�1, where Dx and Dy are the physical dimensions of the image)
that acts to filter out the slowly varying feature corresponding to
the spherical phase aberration.
4. Experiments

Experiments were carried out to verify the feasibility and the
effectiveness of the proposed algorithm. As a first example, a
regular array of micro-bumps fabricated on a Si substrate was used
to demonstrate the power of our approach in the presence of rapid
phase variations, vortices and noise. The regularly-patterned sur-
face bumps were formed by use of the laser-induced thermal
oxidation under pure O2 with 0.75 bar pressures. Precise topo-
graphic reconstruction of such microstructures is of great interest
in different application fields such as integrated optics, microelec-
tronics, and solar cells. Usually the depth profile of such structures
is measured by a confocal microscope (see Fig. 1(a) and (b) for the
confocal topographic image and a cross-section profile) or atomic
force microscope, both of which require time consuming scann-
ing operations. In this work, a common-path digital holography
microscope (DHM) based on a single cube beam splitter (SCBS)
interferometer [12] was adopted as a characterization tool for the
inspection of the structure topography by a relatively fast and non-
invasive procedure with only a single acquisition. Since the object
beam and reference beam share the same optical path, the
wavefront curvatures are physically compensated. In this case,
the off-axis tilt could be numerical compensated by spectrum
centering [8,9,11] in the numerical reconstruction process effec-
tively. Fig. 1(c) shows the wrapped phase obtained by the tradi-
tional holographic reconstruction method. It can be seen that the
wrapped phase maps contain abundant phase vortices (features
in which a closed-loop excursion around a point produces a
2π difference in phase), causing difficulties in conventional
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Fig. 1. Experimental results of a regular array of micro-bumps: (a) confocal topographic image; (b) one line profile through the centers of three micro-bumps indicated in (a);
(c) wrapped phase image obtained by the SCBS DHM; (d) unwrapped phase obtained by a path-dependent unwrapping method; (e) unwrapped phase obtained by a quality-
map guided unwrapping method; (f) continuous phase obtained by our method; (g) 3D visualization of the surface profile; (h) one cross-section of the height distribution
along the red line marked in (f).
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phase-unwrapping algorithms. Fig. 1(d) shows the unwrapped
result obtained by a simple path-dependent phase unwrapping
method. Severe line-structure artifacts can be clearly seen caused
by error accumulation and propagation. A more complicated
quality-guided unwrapping algorithm is capable of preventing
these errors from propagating through the image and corrupting
good data, but it could not prevent the errors from occurring in the
first place (Fig. 1(e)). Some unwrapping artifacts are visibly present
in the unwrapped phase map especially around the top regions of
the micro-bumps due to rapid phase variations (see the enlarged
image). However, using the proposed phase demodulation
method, an intact continuous phase map is obtained (Fig. 1(f)),
free from any erroneous regions and unwrapping problems. The
three-dimensional (3D) topographic image of Fig. 1(f) is shown in
Fig. 1(g), by converting the phase map to the physical height of the
object. Fig. 1(h) shows the height distribution along one specific
line (identified by the red line in Fig. 1(f)), which appears to be
consistent with the confocal result. Since our approach requires
only four FFTs (two for numerical propagation and another two for
solving TIE) with a computational complexity of 4N2 log N, which
results in fast processing speeds. The computational time in this
example was 321.3 ms for an hologram size of 1280�960 pixels
using a 2.5 GHz laptop and in the MATLAB environment. While the
conventional quality guided unwrapping method took approxi-
mately six times (1.971 s) as long to unwrap the same experi-
mental data. Additionally, since FFT is well suited for parallel
computing devices such as graphic processing units (GPUs) [29], it
is anticipated that real-time phase reconstruction can be easily
realized if GPUs are utilized to solve the TIE algorithm.
A second experiment on a human macrophage cell was per-
formed using a DHM based on a Michelson interferometer
geometry [11]. Due to the mismatch between the object and
reference curvature, quadratic phase aberration exists, which
makes spectrum centering (and hence tilt compensation) less
accurate since the spectrum has a broader spread [8,9,11]. The
reconstructed wrapped phase after tilt correction (Fig. 2(a)) appear
as off-centered concentric circular patterns due to the quadratic
phase factor and improper spectrum centering. Fig. 2(b) shows the
pseudo-color-encoded unwrapped phase map using the quality
guided unwrapping algorithm. The unwrapped phase, aside from
some phase unwrapping artifacts, shows a curved background
which would affect accurate measurement of sample. To show the
ability of the proposed approach to deal with the phase aberration,
the proposed algorithm was applied to the filtered hologram
directly without any tilt compensation procedure (no spectrum
centering). In this case, the unwrapped phase obtained by the
traditional method contained a carrier phase with very high
frequency, as shown in Fig. 2(c). Since the continuous phase
directly recovered by our method assumes a much larger dynamic
range, the continuous phase map was rewrapped (see Fig. 2(d)) to
permit a clearer illustration and a direct comparison with the
wrapped phase shown in Fig. 2(a). It is surprising that the carrier
frequency was removed by our method automatically, re-centering
the concentric circular patterns to the center of field-of-view.
Furthermore, when the Tikhonov-regularization was applied
(γ ¼ 2� 10�3 μm�1), the curved background could be effectively
flattened, as plotted in Fig. 2(e) and (f). Close inspection shows our
method extracted the pure phase delay induced by the test object



-10

0

10

20

30

Unit(rad)

Unit(rad)

-3

-2

-1

0

1

2

3
Unit(rad)

10
0

20

40

60

80

Y (µm) X (µm)

P
ha

se
 (r

ad
)

100

80

60

40

20

12

10

8

6

4

2

0

-2

-4

Fig. 2. Experimental results on human macrophage cells; (a) wrapped phase reconstructed after spectrum centering; (b) unwrapped phase map of (a); (c) wrapped phase
reconstructed without any tilt compensation; (d) rewrapped phase obtained by the proposed method; (e) continuous phase map obtained by the proposed method with
Tikhonov-regularization. (f) 3D rendering of (e).

C. Zuo et al. / Optics Communications 309 (2013) 221–226 225
successfully without reconstruction artifacts such as phase un-
wrapping errors.
5. Conclusions

In conclusion, a new fast phase demodulation algorithm for
deterministic continuous phase retrieval in digital holography
based on TIE is proposed. One major advantage of the proposed
method is that the absolute phase without 2π discontinuities can
be directly recovered. It is simple, reliable, and easy to implement.
This provides the opportunity for research to focus on more
important issues than the cumbersome task of unwrapping the
phase data. Besides, its unique ability to remove the inherent
phase aberration in digital holography should be potentially useful
for saving cumbersome physical or digital adjusting procedure,
increasing the performance of automatic testing, and aiding in
visualizing and quantitative analyzing the object phase.

Finally, it should be mentioned that our method can also be
applied as a phase unwrapping method which is applicable to many
other field such as speckle interferometry, adaptive or compensated
optics, magnetic resonance imaging, and synthetic aperture radar
interferometry. Actually, solving the Poisson equation (Eq. (8)) is
equivalent to finding a target continuous phase function whose
Laplacian approaches the intensity derivative the best (left hand side
of Eq. (8)). Therefore, if one wants to use our method as a pure phase
unwrapping algorithm, it is recommended that (1) Zero-pad the
source image properly in order to avoid artifacts that stem from the
periodic nature of the FFT and thus makes the Poisson equation
satisfy both Dielectric and Neumann boundary conditions (the phase
value and phase gradient are assumed both zeros at the image
boundary); (2) The TIE-retrieved phase is only used as a reference
phase for determining the number of phase jumps, and the final
result is obtained by adding corresponding multiples of 2π to the
original unwrapped phase maps.
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