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In this Letter, we report a new long-range synthetic aperture
Fourier ptychographic imaging technique, termed learning-
based single-shot synthetic aperture imaging (LSS-SAI).
LSS-SAI uses a camera array to record low-resolution inten-
sity images corresponding to different non-overlapping spec-
tral regions in parallel, which are synthesized to reconstruct
a super-resolved high-quality image based on a physical
model-based dual-regression deep neural network. Com-
pared with conventional macroscopic Fourier ptychographic
imaging, LSS-SAI overcomes the stringent requirement on
a large amount of raw data with a high spectral overlap-
ping ratio for high-resolution, high signal-to-noise imaging
of reflective objects with diffuse surfaces, making single-shot
long-range synthetic aperture imaging possible. Experi-
mental results on rough reflective samples show that our
approach can improve the peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM) by 10.56 dB and 0.26,
respectively. We also demonstrate the single-shot ptychog-
raphy capability of the proposed approach by the synthetic
aperture imaging of a dynamic scene at a camera-limited
speed (30 fps). To the best of our knowledge, this is the
first demonstration of macroscopic Fourier ptychography to
single-shot synthetic aperture imaging of dynamic events.
© 2023 Optica Publishing Group
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Acquiring high-resolution images has emerged as an indispens-
able requirement in application scenarios such as astronomy,
remote sensing, and geological exploration. A major limitation
of remote imaging detection is the spatial resolution, which is
jointly capped by the finite aperture size and pixel size cor-
responding to the Nyquist sampling frequency. Astronomers
attempted to extend the effective aperture of the system by either
employing a well-designed large-aperture lens or splicing the
primary mirror, posing significant challenges for lightweight
designs. This approach also tends to introduce optical aber-
rations with bulky dimensions, which precludes its feasibility
in practical imaging. Pioneering research has emerged to

circumvent the inherent limitations of imaging systems, e.g.,
coherent optical detection [1] and flat plate interference [2].

As a promising and elegant computational imaging approach,
Fourier ptychographic microscopy (FPM) [3], invented in 2013,
breaks the trade-off between the large field of view and high-
resolution (HR) with a combination of synthetic aperture radar
(SAR) [4] and optical phase retrieval [5]. Combined with the
concept of Fourier optics, the imaging process can be under-
stood as sampling the different regions of the HR Fourier domain
of an object. Its application potential has been demonstrated
in both microscopic biomedical imaging [6–8], and remote
sensing [9,10], and meanwhile, the technology has been incor-
porated in the latest Fourier optics publications. Undoubtedly,
during each acquisition, a certain amount of redundant informa-
tion (at least 35% aperture overlapping percentage [11] in the
Fourier domain) needs to be leveraged to perform the lost phase
information decoupling, as the sensor can only record inten-
sity information. The converged intensity and phase images
are yielded by iterative optimization, jointly imposing both
space and frequency-domain constraints on the observed data.
This, in turn, is laborious, which implies it is less suitable for
dynamic scenes, hampering its application in dynamic scenarios
(default: the observed scene remains stationary over a time-
lapse). Adaptive compensation [12] and simulated annealing
correction algorithms [13] have also been proposed successively
to tackle the artifact phenomenon in the reconstruction results,
providing fast convergence speed with few computational over-
heads. Motivated by the rise of convolutional neural network
(CNN) techniques [14] and their flexibility to the prior latent fea-
tures as network layers, many efforts [15–17] to refine the FPM
framework have been catalyzed. It has been proven that Neu-
ral networks can simultaneously restore the envisaged images
by aggregating multi-scale features and nonlinear mappings
[18,19], notably in the field of phase recovery.

In this Letter, we report a new super-resolution technique,
termed learning-based single-shot synthetic aperture imaging,
which is capable of “regenerating” the lost spatial resolution
with deep learning. The proposed method leverages the advan-
tages of deep learning data fitting to address the problem of
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Fig. 1. Overview of the proposed LSS-SAI framework. The
object is illuminated by a fiber laser, and the Fourier spectrum
is formed at the aperture plane. The specific optical path tracing
diagram is shown in the upper left-hand corner.

speckles and artifacts in reconstruction, rekindling sparse aper-
ture, single shot, and ambiguity-free super-resolved imaging.
Inspired by a priori knowledge in image processing, we could
impute the extension of the Fourier spectrum to the physical prior
of four elaborate-designed parallel network architectures. CNN
can excavate more texture features from the original multiple
encoded images, refining the details while balancing the speckle
interference. The iterative non-negativity constraint was further
employed to compute the filling of the missing information,
yielding optimal outcomes. As a similar concept, the learning-
based network [20,21] has achieved tremendous success in
searching the map functions (statistical model of desirable target
and the observational data) for various underdetermined imag-
ing problems, verifying the feasibility of constraining the inverse
problem through the network.

In the construction system, as shown in Fig. 1, a coherent
laser is introduced to illuminate the 3 × 3 camera array on the
receiver side. The sub-aperture will receive the wave vector of
the incident beam from different angles, and the specific imaging
process can be expressed as follows:

ooutput(x, y) = h(x, y) ⊗
[︁
oinput(x, y) eium,nx+ivm,ny]︁ , (1)

where oinput(x, y) and ooutput(x, y) represent the complex ampli-
tudes of the input and output optical fields, respectively; ⊗

represents the two-dimensional convolution process; eium,nx+ivm,ny

denotes the wave vector of the mth row and nth column of the
angled incident plane light wave. The light field at the imaging
aperture plane can be described as Ψ(u, v) for the sensor, which
can only record intensity information, and the measurements
are phaseless, whereupon the intensity information recorded is
formulated as follows:

I (x, y) =
|︁|︁F −1 [Ψ(u, v) · P (u − uc, v − vc)]

|︁|︁2 , (2)

where (uc, vc) is the center of the aperture; P(u, v) is the Fourier
transform of h(x, y), i.e., the coherent transfer function of the
optical imaging system (NA/λ). It is also the intrinsic concept
of FP to increase the resolution by obtaining the sub-spectrum
at different locations, thus extending the range of the equiva-
lent spectrum and widening the size of the equivalent aperture.
We mainly focus on the reconstruction quality enhancement of

the long-range rough reflective samples. Therefore, it is neces-
sary to consider the influence of phase fluctuations on the rough
surface, which implies that a random phase distribution will
be integrated. The ingenious exploitation of angular illumina-
tion to mitigate the influence of speckle noise is a thoughtful
approach to coherent synthetic aperture imaging. Object infor-
mation is encrypted in disordered-seeming speckles, especially
those related to the phase fluctuations of the surface, which can
be decoded by inverse transmission matrices and CNN. From the
perspective of information optics, the whole reflection process
can be analogized to the dot product between the scattering layer
and the smooth non-diffuse target [9]. We set the scattering inten-
sity A and the corresponding phase φ randomly distributed in
the interval [0, 1] and [0, 2π], respectively. Thereby, the complex
amplitude distribution S can be expressed as S = A exp(iφ).

The proposed verification platform contains nine imaging sen-
sors (pixel size of 1.85µm) equipped with the FUJINON lens
(75 mm focal length, F# from 2.8 to 16). Coherent illumina-
tion conditions are required to be satisfied in FP imaging. The
illumination source employed in the demonstration is a semi-
conductor laser with a wavelength of 632 nm and a maximum
power of 5 mW. The distance between the measured object
and our system is 2.3 m. The specific imaging optical path
is shown in Fig. 1, and we can observe that each sub-camera
is tightly arranged (non-overlapping) with the corresponding
acquired images presented in the right-hand corner. For cap-
tured image pairs, the sequence captured by the camera with a
lens (F-number 4) is recorded as the ground truth HR sequence,
and the sequence captured by the camera with a lens (F-number
12) is adapted to generate the corresponding LR sequence, gen-
erating a dataset for 3× super-resolved imaging. Based on this
setup, we built a dataset containing 1000 raw data tailored
by off-the-shelf detectors for the proposed network. Figure 2
reveals the intrinsic model of the proposed network, which is
a nine-path CNN. It is noteworthy that the method takes the
form of a “forward generation–reverse regression” procedure.
The network attempts to recover an estimate of the envisioned
object from the degraded image by prior mapping knowledge
(e.g., the system transfer function). Physics-informed learning
seamlessly incorporates both data and mathematical models to
address the under-determined problem, even in noisy and high-
dimensional contexts. Nine non-overlapping intensity data were
fed into the network simultaneously to derive a high-resolution
super-resolved image with high signal-to-noise. We hypothesize
that the training process can be regarded as a prior learning

Fig. 2. Proposed network follows the form of a “forward gen-
eration–reverse regression” procedure. The proposed method is a
nine-input, single-output supervised network.
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process, including illumination angle, speckle noise, and acqui-
sition position, which will further bolster the interpretability of
the model.

The proposed algorithm is flexible since once the training task
is completed, no further manual adjustment of parameters is
required to optimize the reconstruction performance. In order to
yield reasonable predictions, the forward generation process and
the reverse regression process are simultaneously constrained
in the network model, and the dual loss functions compen-
sate each other to produce the entire loss function balance. In
the constructed network environment, the Adam optimizer is
installed to implement structure feedback, with initial learning
rate, batch size, and epoch setting to 10−4, 4, and 200, respec-
tively. The model was operated on the configured computer
with an Nvidia RTX2080Ti graphics card and an Intel Core
TM i7-9700K CPU @ 3.60GHz×8 processor. The training and
testing times for the entire network are 7.7 hours and 0.2 sec-
onds, respectively. The network feeds back/refines the fitting
errors between the data through the optimizer to avoid produc-
ing contrived results, thus, effectively retaining latent texture
information. The mathematical expression of the loss function
is presented as

Loss =
N∑︂

i=1

Loss1 [F (xi) , yi] + λ Loss2 [D (yi) , xi] , (3)

where xi and yi represent the input LR and output HR images,
respectively; Loss1 [F (xi) , yi] and Loss2 [D (yi) , xi] describe the
loss functions of forward regression and inverse regression
tasks, respectively. The super-resolved image F(xi) is constantly
approaching the similarity with its corresponding HR image
in the training process. Simply put, the similarity between
the predicted map D(yi) and the forward-fed map is continu-
ously approached during the regression process. Hinting that
the forward loss value is preferred, hereby, we set the weight
distribution λ of the hybrid loss function to 0.1.

We evaluated the proposed method on both synthetic and
real-world datasets. To test the effectiveness of the proposed
method, we first reconstructed the low-resolution scene with-
out coherent speckles (dataset was created by DIV2K [22]). To
establish the unique advantages of the proposed method over tra-
ditional ptychography imaging, we conduct quantitative analyses
in terms of input images having different overlaps, as illus-
trated in Figs. 3(a1)–3(a4). The bottom row of Figs. 3(a1)–3(a5)
presents the line profile along the red dotted line. As one would
expect, the robustness of the network is boosted, and more tex-
ture components of the image are reproduced with the increasing
amount of data fed into the network. We also perform the
reconstruction of diffuse reflective objects (rough paper), as
shown in Fig. 3(b), and the corresponding zoomed-in areas are
shown in Figs. 3(b1)–3(b5) and Figs. 3(c1)–3(c5). It is noted
that the proposed network results still defeat the other network
method [23], such as Generative Adversarial Network, in terms
of the maximum improvement of 3.38 dB in peak signal-to-noise
ratio (PSNR). The learning-based single-shot synthetic aperture
imaging (LSS-SAI) approach supports significant improvement
(extreme reduction from 50 minutes to 0.2 seconds) in imaging
speed with a negligible decline in reconstruction quality against
the related methods.

Furthermore, we selected a coin made of metal alloy with
a diameter of 27 mm as the object, as shown in Fig. 4. Fig-
ures 4(c1)–4(c5) demonstrate the different reconstruction results

Fig. 3. Comparison of network reconstruction results. (a) Simu-
lation reconstruction results of specular objects. (b) Performance of
the LSS-SAI platform for the smooth object. (a1)–(a5), (b1)–(b5),
(c1)–(c5) Corresponding region reconstruction results.

Fig. 4. Comparison of reconstruction results in the case of dif-
fuse reflection. (a) The original images fed into the network. (b)
Predicted reconstruction results of the network. (c1)–(c5) Results
of image quality evaluations for the region of interest in different
cases/methods (the reference image with an aperture F-number of
4 is selected as the label).

in the magnified region of interest for the commemorative
coin. The gray scale profile of the magnified region is plot-
ted below the corresponding one, for which the smooth profile
indicates lower scattering noise. Figure 4(c1) illustrates that
the signal-to-noise ratio and the resolution of the coin are too
inferior to distinguish the features. As shown in Fig. 4(c2),
although the noise is partially suppressed as a result of tak-
ing the cumulative average of the nine sub-aperture maps, the
detailed components of the images are not yet reproducible.
Theoretically, with enough low-resolution images, this method
is able to increase the resolution of the image by a factor of
two. Although the high-frequency components of the image are
a super-resolved reconstruction, there is still significant speckle
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Fig. 5. Constructed vehicle dynamic pursuit imaging results. (a)
Comparison of the recorded low-resolution image (under F-number
12) with the predicted super-resolved image. (b1)–(b5) Magnifica-
tion of the regions in the low-resolution images. (c1)–(c5) Super-
resolution reconstruction results of the corresponding regions. (d)
Comparison of the PSNR and SSIM curves of the original image
and the reconstructed image in the dynamic experiment. (e) The
corresponding curves of displacement distance versus time for the
two vehicles.

noise in Fig. 4(c3). Moreover, the same trade-off between mas-
sive data volume (temporal resolution) and spatial resolution has
to be compromised. On the contrary, the reconstruction result
of the proposed method is presented in Fig. 4(c4), improv-
ing 10.56 and 0.26 in both PSNR and structural similarity
(SSIM) indexes, respectively. The proposed method demon-
strates efficient noise suppression capabilities while improving
image resolution, elegantly solving the problems of conventional
methods.

Moreover, we demonstrate the high temporal resolution
of LSS-SAI by performing super-resolved videography of a
dynamic scenario containing two isolated samples (See Visu-
alization 1 for the whole video recording). The established
system is depicted in Fig. 5, which employs a linear displace-
ment stage to push the movement of both toy vehicles separately
and places a stationary sign at the rear. Figure 5(b) shows that the
reconstructed result from raw low-resolution data is too coarse
to identify the model tire and steering sign details, which is
capped by the combined limitation of aperture diffraction and
laser speckle noise. In contrast, the proposed LSS-SAI yielded
the best super-resolved reconstruction with well-reproduced sur-
face details, as shown in Fig. 5(c), which is almost reproduced to
the ground-truth data. The reconstruction method improves the
PSNR and SSIM metrics by up to 0.12 and 15.23, respectively,
compared with the original image for 1500 consecutive frames.
Furthermore, we also performed the corresponding linear fits
for the two moving targets, which can be inversely calculated as
0.6 cm/s and 1.5 cm/s for the two vehicles, respectively. Experi-
ments show that the proposed algorithm is a powerful approach
for improving the performance of Fourier ptychography even if
containing complex speckle noise.

In this Letter, we have presented a learning-based single-shot
synthetic aperture imaging, endowing the capability to overcome
the reconstruction quality deterioration and stringent overlap-
ping ratio constraints in conventional FP. Moreover, thanks to
its single-shot nature, LSS-SAI is fundamentally immune to arti-

fact induced by object motion. The proposed method has great
potential for performing super-resolution imaging of macro-
scopic diffuse reflectance observations. More modifications and
innovations remain to be implemented in further, e.g., whether
it is promising to reconstruct the phase information of far-field
diffuse scattering objects.
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