


光学成像的起源可以追溯到约公元前四百年前墨子的“小孔成像”，但直到最近半个多世纪才得

以迅速发展。这得益于20世纪几项重要的发明：信号传输与通信、激光与光全息、光电信号数字

化及数字信号处理技术，这些技术的融合催生了“光电成像”技术。2009年，我研究生考入南京

理工大学，有幸加入导师陈钱教授领衔的“光电成像与信息处理”科研团队的一员。记得在那一

年，诺贝尔物理学奖授予了对光的研究成果为现代数字时代奠定基础的科学家，其中包括贝尔实

验室的威拉德·博伊尔（Willard Sterling Boyle）和乔治·史密斯（George Smith），以表彰他们

发明了电荷耦合（Charge-coupled Device,CCD）图像传感芯片。这个小小的芯片，带领人类对光

学影像的记录从金属感光板与胶片的“模拟时代”迈入了“数字时代”。

进入21世纪，“可调控”光电器件、高性能处理器/并行处理单元、新型数学/信号处理工具三方

面的迅速发展与无缝结合推动了光电成像技术由传统的强度、彩色探测发展进入计算光学成像时

代。这种转变体现在前端物理域的光学调控与后端数字域的信息处理的紧密结合上，为打破传统

成像技术的限制提供了创新的解决方案，并预示着未来先进光学成像技术的发展趋势。在博士期

间，我有幸见证了这一切的发生与发展，从红外探测器基于场景非均匀性校正，到高速结构光投

影三维成像，再到非干涉相位恢复与定量相位显微成像，我不知不觉地成为了一名“计算成像”

领域的“探索者”。

2014年底，我于南京理工大学博士毕业后留校工作，并创建了一个仅有不足十人的科研小组，

命名为“智能计算成像实验室”（Smart Computational Imaging Laboratory，SCILab）。这或许是

国内最早以“计算成像”来命名的实验室之一，而在“计算成像”之前，我加上了“智能”一词

来加以修饰。因为我相信未来的成像技术，不单应该像通信与信息系统一样富含调制与解调的内

涵，还应该像我们的眼睛与大脑一样强大而智能。近年来，我又一次有幸见证并参与了这一切的

发生与发展——人工智能与深度学习技术的飞跃式发展为计算光学成像技术开启了一扇全新的大

门：深度学习赋能了各类计算成像与测量技术,它不但解决了许多传统技术难以求解的非线性逆

问题，还使成像系统的信息获取能力、功能、性能指标获得了质的提升。与国内外的很多同仁们

一起，我们不知不觉地成为了一群“智能计算成像”领域的“开拓者”。

时隔十年后的2024年，当地时间10月8日，瑞典皇家科学院宣布，将2024年诺贝尔物理学奖授予

美国普林斯顿大学的约翰·霍普菲尔德（John J. Hopfield）和加拿大多伦多大学的杰弗里·辛顿

（Geoffrey Hinton )，以表彰他们为推动利用人工神经网络进行机器学习作出的基础性发现和发

明。次日，诺贝尔化学奖则部分授予了谷歌旗下DeepMind公司AI科学家德米斯·哈萨比斯（
Demis Hassabis）和约翰·江珀（John M. Jumper），以表彰他们研发出的“Alpha Fold2”模型在

蛋白质结构预测方面的成就。当AI首次成为诺贝尔奖的主要元素，这不仅是对科学家的认可，

也是对“AI赋能科学研究（AI for Science）”这一趋势的肯定。此前人们一直认为，诺贝尔奖主

要授予在传统自然科学领域做出杰出贡献的个人或组织。此次诺奖标志着以人工智能驱动的科研

方式已不再是“偏门”而是逐渐成为“主流”，并获得了传统自然科学领域的广泛认可。



回顾这十年的发展历程，我们从最初的不足十人的小团队起步，逐渐成长为一个结构多元、开放

包容、充满活力的国际化研究团队。为了纪念这一历史性的时刻，促进学术交流，以及推动相关

领域向纵深发展，我们南京理工大学智能计算成像实验室特别策划了本期“人工智能赋能计算成

像与测量”虚拟专题，以集中展示实验室在该领域的最新研究进展。该专题共包含论文27篇，其

中综述论文4篇，研究论文21篇，评述论文2篇，还包括Nature Portfolio Communities旗下“Behind 
the Paper”栏目邀请报道1篇。这些论文涵盖了当前计算光学成像领域的三大热点研究方向：①快

速三维光学传感，涉及条纹分析与相位处理、结构光三维成像等；②生物医学显微成像，包括定

量相位显微成像、光声成像、荧光超分辨显微成像等；③计算光电成像探测，覆盖光谱成像、合

成孔径、红外探测等。这些论文反映了深度学习赋能计算光学成像的最新进展与发展趋势：深度

学习摒弃了对传统“正向物理模型”和“逆向重构算法”的严格依赖，以“样本数据驱动”的方

式给计算光学成像技术带来了颠覆性的变革，打破了传统技术的功能/性能疆界，从极少的原始

图像数据中挖掘出更多场景的本质信息，显著提升了信息获取能力，为计算光学成像技术打开了

一扇新的大门。未来，我们实验室将在“AI for Science”这一科技浪潮中逐浪前行，为人工智能

最后，感谢实验室各位老师与论文作者对本专栏的付出与贡献；感谢各位专家同仁们长期以来对

我们工作的帮助与指导；感谢各个期刊杂志社对我们团队成果的信任与纳荐；感谢每一位读者对

我们实验室关注与支持。希望本“人工智能赋能计算成像与测量”专题能够为广大读者和相关从

业人员提供有益的参考。

与计算成像的无尽探索贡献自己的一份微薄之力。

 左超

 ——  代表SCILab全体成员

        2024年10月25日



The origins of optical imaging can be traced back to Mozi’s “pinhole imaging” around 400 BC, but it has 
experienced rapid development only in the last half-century. This advancement is attributed to several 
key inventions of the 20th century, including signal transmission and communication, lasers and optical 
holography, photoelectric signal digitization, and digital signal processing. The integration of these tech-
nologies gave rise to “photoelectric imaging”. In 2009, I entered Nanjing University of Science and Tech-
nology as a graduate student and was fortunate to join the research team led by Professor Chen Qian, 
focusing on “Photoelectric Imaging and Information Processing”. I recall that year when the Nobel Prize 
in Physics was awarded to scientists from Bell Labs, Willard Boyle and George Smith, for their invention 
of the charge-coupled device (CCD) image sensor chip, which laid the foundation for the modern digital 
era. This small chip facilitated the transition from the “analog era” of photographic plates and film to the 
“digital era” of optical image recording.

As we entered the 21st century, the rapid development and seamless integration of “tunable” photoelec-
tric devices, high-performance processors, and new mathematical and signal processing tools have 
propelled photoelectric imaging technology from traditional intensity and color detection into the era of 
computational optical imaging. This transformation is marked by the close coupling of optical modula-
tion in the physical domain and information processing in the digital domain, providing innovative solu-
tions to overcome the limitations of traditional imaging techniques and indicating future trends in 
advanced optical imaging technology. During my doctoral studies, I was fortunate to witness these devel-
opments, from scene-based non-uniformity correction in infrared detectors to high-speed structured light 
projection 3D imaging, and from non-interferometric phase retrieval to quantitative phase microscopy, 
unwittingly becoming an “explorer” in the field of “computational imaging”.

At the end of 2014, after graduating with a PhD from Nanjing University of Science and Technology, I 
stayed on to work and established a research group of fewer than ten members, named the “Smart Com-
putational Imaging Laboratory” (SCILab). This may be one of the first laboratories in China specifically 
named for “computational imaging”. I prefixed it with “smart”, believing that future imaging technology 
should not only be rich in modulation and demodulation, like communication systems, but should also as 
powerful and intelligent as our eyes and brains. In recent years, I have once again witnessed and partici-
pated in the rapid advancements in artificial intelligence and deep learning, which have opened a new 
door for computational optical imaging technology. Deep learning has empowered various computational 
imaging and measurement technologies, solving many nonlinear inverse problems that traditional meth-
ods struggled to address, and qualitatively enhancing the capabilities, functions, and performance of 
imaging systems. Alongside many colleagues at home and abroad, we have unknowingly become “pio-
neers” in the field of “intelligent computational imaging”.

A decade later, on October 8, 2024, the Royal Swedish Academy of Sciences announced that the 2024 
Nobel Prize in Physics was awarded to John J. Hopfield from Princeton University and Geoffrey Hinton 
from the University of Toronto for their foundational discoveries and inventions that advanced the use of 
artificial neural networks in machine learning. The following day, the Nobel Prize in Chemistry was 
awarded in part to AI scientists Demis Hassabis and John Jumper from DeepMind for their achievements 
with the “AlphaFold2” model in protein structure prediction. With AI becoming a key element of the 
Nobel Prizes for the first time, this not only recognizes the contributions of individual scientists but also 
affirms the trend of “AI for Science”. Previously, it was believed that the Nobel Prize primarily honored 
outstanding contributions in traditional natural sciences. This year’s Nobel recognition signifies that 
AI-driven research is no longer considered “niche” but is gradually becoming “mainstream” and gaining 
broad recognition in traditional natural science fields.



 Chao Zuo
— On behalf of all SCILab members

October 25, 2024

Reflecting on the past decade, we have grown from a small team of fewer than ten members into a 
vibrant, diverse, and internationally collaborative research group. To commemorate this historic moment, 
promote academic exchange, and advance related fields, the Smart Computational Imaging Laboratory at 
Nanjing University of Science and Technology has curated this virtual special issue on “AI for Imaging 
& Metrology” to showcase the latest research advancements in this area. This special issue features 27 
papers, comprising 4 review articles, 21 research papers, and 2 commentary papers, along with an invited 
report in the “Behind the Paper” section of Nature Portfolio Communities. These papers explore three 
major research directions in current computational optical imaging: (1) rapid 3D optical sensing, includ-
ing fringe analysis and phase processing, and structured light 3D imaging; (2) biomedical microscopic 
imaging, covering quantitative phase microscopy, photoacoustic imaging, and fluorescence super-resolu-
tion microscopy; (3)computational optoelectronic imaging detection, encompassing spectral imaging, 
synthetic aperture, and infrared detection. These papers reflect the latest progress and trends in deep 
learning-empowered computational optical imaging: deep learning has discarded strict reliance on tradi-
tional “forward physical models” and “inverse reconstruction algorithms”, bringing transformative 
changes through a “data-driven” approach, breaking the functional and performance boundaries of tradi-
tional technology, and extracting more essential scene information from minimal original image data, 
significantly enhancing information acquisition capabilities, thus opening new doors for computational 
optical imaging. In the future, our laboratory will continue to embrace the “AI for Science” trend, contrib-
uting our modest efforts to the endless exploration of artificial intelligence and computational imaging.

Finally, I would like to express my gratitude to all the teachers and authors in the laboratory for their con-
tributions to this special issue; to the experts and colleagues for their long-term support and guidance; to 
the various journals for their trust in and recommendations of our team’s work; and to every reader for 
their attention to and support of our laboratory. I hope this special issue on “AI for Imaging & Metrology” 
will provide valuable references for a wide audience and professionals in the field.
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Deep learning in optical metrology: a review
Chao Zuo 1,2✉, Jiaming Qian 1,2, Shijie Feng1,2, Wei Yin 1,2, Yixuan Li1,2, Pengfei Fan1,2,3, Jing Han2,
Kemao Qian4✉ and Qian Chen2✉

Abstract
With the advances in scientific foundations and technological implementations, optical metrology has become
versatile problem-solving backbones in manufacturing, fundamental research, and engineering applications, such as
quality control, nondestructive testing, experimental mechanics, and biomedicine. In recent years, deep learning, a
subfield of machine learning, is emerging as a powerful tool to address problems by learning from data, largely driven
by the availability of massive datasets, enhanced computational power, fast data storage, and novel training
algorithms for the deep neural network. It is currently promoting increased interests and gaining extensive attention
for its utilization in the field of optical metrology. Unlike the traditional “physics-based” approach, deep-learning-
enabled optical metrology is a kind of “data-driven” approach, which has already provided numerous alternative
solutions to many challenging problems in this field with better performances. In this review, we present an overview
of the current status and the latest progress of deep-learning technologies in the field of optical metrology. We first
briefly introduce both traditional image-processing algorithms in optical metrology and the basic concepts of deep
learning, followed by a comprehensive review of its applications in various optical metrology tasks, such as fringe
denoising, phase retrieval, phase unwrapping, subset correlation, and error compensation. The open challenges faced
by the current deep-learning approach in optical metrology are then discussed. Finally, the directions for future
research are outlined.

Introduction
Optical metrology is the science and technology of

making measurements with the use of light as standards
or information carriers1–3. Light is characterized by its
fundamental properties, namely, amplitude, phase,
wavelength, direction, frequency, speed, polarization,
and coherence. In optical metrology, these fundamental
properties of light are ingeniously utilized as informa-
tion carriers of a measurand, enabling a wide range of
optical metrology tools that allow the measurement
of a wide range of subjects4–6. For example, optical

interferometry takes advantage of the wavelength of
light as a precise dividing marker of length. The speed
of light defines the international standard of length, the
meter, as the length traveled in vacuum during a time
interval of 1/299,792,458 of a second7. As a result,
optical metrology is being increasingly adopted in many
applications where reliable data about the distance,
displacement, dimensions, shape, roughness, surface
properties, strain, and stress state of the object under test
are required8–10. Optical metrology is a broad and inter-
disciplinary field relating to diverse disciplines such as
photomechanics, optical imaging, and computer vision.
There is no strict boundary between those fields, and in
fact, the term “optical metrology” is often interchangeably
used with “optical measurement”, in which achieving
higher precision, sensitivity, repeatability, and speed is
always a priority11,12.
There are a few inventions that revolutionized optical

metrology. The first is the invention of laser13,14. The
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advent of laser interferometry could be traced back to
experiments conducted independently in 1962 by Deni-
syuk15 and Leith and Upatnix16 with the objective of
marrying coherent light produced by lasers with Gabor’s
holography method17. The use of lasers as a light source in
optical metrology marked the first time that such highly
controlled light became available as a physical medium to
measure the physical properties of samples, opening up
new possibilities for optical metrology. The second revo-
lution was initiated with the invention of charged coupled
device (CCD) cameras in 1969, which replaced the earlier
photographic emulsions by virtue of recording optical
intensity signals from the measurand digitally8. The use of
the CCD camera as a recording device in optical metrology
represented another important milestone: the compat-
ibility of light with electricity, i.e., “light” can be converted
into “electrical quantity (current, voltage, etc.)”. This
means that the computational storage, access, analysis, and
transmission of captured data are easily attainable, leading
to the “digital transition” of optical metrology. Computer-
based signal processing tools were introduced to automate
the quantitative determination of optical metrology data,
eliminating the inconvenience associated with the manual,
labor-intensive, time-consuming evaluation of fringe pat-
terns18–20. Methods such as digital interferometry21, digital
holography22, and digital image correlation (DIC)23 have
become state of the art by now.
With the digital transition, image processing plays an

essential role in optical metrology for the purpose of
converting the observed measurements (generally dis-
played in the form of deformed fringe/speckle patterns)
into the desired attributes (such as geometric coordi-
nates, displacements, strain, refractive index, and oth-
ers) of an object under study. Such information-
recovery process is similar to those of computer vision
and computational imaging, presenting as an inverse
problem that is often ill-posed with respect to the
existence, uniqueness, and stability of the solution24–27.
Tremendous progress has been achieved in terms of
accurate mathematical modeling (statistical models of
noise and the observational data)28, regularization
techniques29, numerical methods, and their efficient
implementations30. For the field of optical metrology,
however, the situation becomes quite different due to
the fact that the optical measurements are frequently
carried out in a highly controlled environment. Instead
of explicitly interpreting optical metrology tasks from
the perspective of solving inverse problems (based on a
formal optimization framework), mainstream scientists
in optical metrology prefer to bypass the ill-posedness
and simplify the problem by means of active strategies,
such as sample manipulation, system adjustment, and
multiple acquisitions31. A typical example is the phase-
shifting technique32, which sacrifices the time and effort

of capturing multiple fringe patterns to exchange for a
deterministic and straightforward solution. Under such
circumstances, the phase retrieval problem is well-posed
or even over-determined (when the phase-shifting step
is larger than 3), and employing more evolved algo-
rithms, such as compressed sensing33 and nonconvex
(low-rank) regularization34 seem redundant and unne-
cessary, especially as they fail to demonstrate clear
advantages over classical ones in terms of accuracy,
adaptability, speed, and, more importantly, ease-of-use.
This gives us the key question and motivation of this
review paper: whether machine learning will be the
driving force in optical metrology not only provides
superior solutions to the growing new challenges but
also tolerates imperfect measurement conditions with
the least efforts, such as additive noise, phase-shifting
error, intensity nonlinearity, motion, and vibration.
In the past few years, we have indeed witnessed the

rapid progress on high-level artificial intelligence (AI),
where deep representations based on convolutional and
recurrent neural network models are learned directly
from the captured data to solve many tasks in computer
vision, computational imaging, and computer-aided
diagnosis with unprecedented performance35–37. The
early framework for deep learning was established on
artificial neural networks (ANNs) in the 1980s38, yet
only recently the real impact of deep learning became
significant due to the advent of fast graphics processing
units (GPUs) and the availability of large datasets39. In
particular, deep learning has revolutionized the com-
puter vision community, introducing non-traditional
and effective solutions to numerous challenging pro-
blems such as object detection and recognition40, object
segmentation41, pedestrian detection42, image super-
resolution43, as well as medical image-related applica-
tions44. Similarly, in computational imaging, deep
learning has led to rapid growth in algorithms and
methods for solving a variety of ill-posed inverse com-
putational imaging problems45, such as super-resolution
microscopy46, lensless phase imaging47, computational
ghost imaging48, and image through scattering media49.
In this context, researchers in optical metrology have
also made significant explorations in this regard with
very promising results within just a few short years, as
evidenced by the ever-increasing and the respectable
number of publications50–55. Meanwhile, those research
works are scattered rather than systematic, which gives
us the second motivation to provide a comprehensive
review to understand their principles, implementations,
advantages, applications, and challenges. It should be
noted that optical metrology covers a wide range of
methods and applications today. It would be beyond
the scope of this review to discuss all relevant technol-
ogies and trends. We, therefore, restrict our focus to
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phase/correlation measurement techniques, such as
interferometry, holography, fringe projection, and
DIC. Although phase retrieval and wave-field
sensing technologies, such as defocus variation
(Gerchberg–Saxton–Fienup-type methods56,57), trans-
port of intensity equation (TIE)58,59, aperture modula-
tion60, ptychography61,62, and wavefront sensing (e.g.,
Shack–Hartmann63, Pyramid64, and computational
shear interferometry65), has been recently introduced to
optical metrology66–68, they may be more appropriately
placed in the field of “computational imaging”. The
reader is referred to the earlier review by Barbastathis
et al.45 for more detailed information on this topic. It is
also worth mentioning that (passive) stereovision, which
extracts depth information from stereo images, is an
important branch of photogrammetry that has been
extensively studied by the computer vision community.
Although stereovision techniques do not strictly fall into
the category of optical metrology, due to the fact that
many ideas and algorithms in DIC and fringe projection
were “borrowed” from stereovision, they are also
included in this review.
The remainder of this review is organized as follows.

We start by summarizing the relevant foundations and
image formation models of different optical metrology
approaches, which are generally required as a priori
knowledge in conventional optical metrology methods.
Next, we present a general hierarchy of the image-
processing algorithms that are most commonly used in
conventional optical metrology in the “Image processing
in optical metrology” section. After a brief introduction
to the history and basic concept of deep learning, we
recapitulate the advantages of using deep learning in
optical metrology tasks by interpreting the concept as an
optimization problem. We then present a recollection of
the deep learning methods that have been proposed in
optical metrology, suggesting the pervasive penetration
of deep learning in almost all aspects of the image-
processing hierarchy. The “Challenges” section discusses
both technical and implementation challenges faced by
the current deep-learning approach in optical metrology.
In the “Future directions” section, we give our outlook
for the prospects for deep learning in optical metrology.
Finally, conclusions and closing remarks are given in the
“Conclusions” section.

Image formation in optical metrology
Optical metrology methods often form images (e.g.,

fringe/speckle patterns) for processing. Thus image for-
mation is essential to reconstruct various quantities. In
most interferometric metrological methods, the image is
formed by the coherent superposition of the object and
reference beams. As a result, the raw intensity across the
object is modulated by a harmonic function, resulting in

the bright and dark contrasts, known as fringe patterns.
A typical fringe pattern can be written as18,19

I x; yð Þ ¼ A x; yð Þ þ B x; yð Þ cos ϕ x; yð Þ½ � ð1Þ

where (x, y) refers to the spatial coordinates along the
horizontal and vertical directions, A(x, y) is the back-
ground intensity, B(x, y) is the fringe amplitude, ϕ(x, y)
is the phase distribution. In most cases, phase is the
primary quantity of the fringe pattern to be retrieved as
it is related to the final object quantities of interest, such
as surface shape, mechanical displacement, 3D coordi-
nates, and their derivations. The related techniques
include classical interferometry, photoelasticity, holo-
graphical interferometry, digital holography, etc. On a
different note, the fringe patterns can also be created
noninterferometrically by overlapping of two periodic
gratings as in geometric moiré, or incoherent projection
of structured patterns onto the object surface as in
fringe projection profilometry (FPP)/deflectometry. As
summarized in Fig. 1, though the final fringe patterns
obtained in all forms of fringe-based techniques
discussed herein are similar in form, the physics behind
the image formation process and the meanings of the
fringe parameters are different. In DIC, the measured
intensity images are speckle patterns of the specimen
surface before and after deformation,

Id x; yð Þ ¼ Ir xþ Dxðx; yÞ; yþ Dyðx; yÞ
� � ð2Þ

where Dxðx; yÞ;Dyðx; yÞ
� �

refers to the displacement
vector-field mapping from the undeformed/reference
pattern Ir(x, y) to the deformed one Id(x, y). It directly
provides full-field displacements and strain distribu-
tions of the sample surface. The DIC technique can also
be combined with binocular stereovision or stereopho-
togrammetry to recover depth and out-of-plane defor-
mation of the surface from the displacement field (so-
called disparity) by exploiting the unique textures
present in two or more images of the object taken from
different viewpoints. The image formation processes for
typical optical metrology methods are briefly described
as follows.
(1) Classical interferometry: In classical

interferometry, the fringe pattern is formed by
superimposition of two smooth coherent
wavefronts, one of which is typically a flat or
spherical reference wavefront and the other a
distorted wavefront formed and directed by optical
components69,70 (Fig. 1a). The phase of the fringe
pattern reflects the difference between the ideal
reference wavefront and object wavefront. Typical
examples of classical interferometry include the use
of configurations such as the Michelson, Fizeau,
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Twyman Green, and Mach-Zehnder interferometers
to characterize the surface, aberration, or roughness
of optical components with high accuracy, of the
order of a fraction of the wavelength.

(2) Photoelasticity: Photoelasticity is a nondestructive,
full-field, optical metrology technique for
measuring the stress developed in transparent
objects under loading71,72. Photoelasticity is based
on an optomechanical property, so-called “double
refraction” or “birefringence” observed in many
transparent polymers. Combined with two circular
polarizers (linear polarizer coupled with quarter
waveplate) and illuminated with a conventional
light source, a loaded photoelastic sample (or
photoelastic coating applied to an ordinary
sample) can produce fringe patterns whose phases
are associated with the difference between the
principal stresses in a plane perpendicular to the
light propagation direction73 (Fig. 1b).

(3) Geometric moiré/Moiré interferometry: In
optical metrology, the moiré technique is defined
as the utilization of the moiré phenomenon to
measure shape, deformation, or displacements of
surfaces74,75. A moiré pattern is formed by the
superposition of two periodic or quasi-periodic
gratings. One of these gratings is called reference
grating, and the other one is object grating
mounted or engraved on the surface to be
studied, which is subjected to distortions induced
by surface changes. For in-plane displacement and
strain measurements, moiré technology has evolved
from low-sensitivity geometric moiré75–77 to high-
sensitivity moiré interferometry75,78. In moiré
interferometry, two collimated coherent beams
interfere to produce a virtual reference grating
with high frequencies, which interacts with the
object grating to create the moiré pattern with
fringes representing subwavelength in-plane
displacements per contour (Fig. 1c).

(4) Holographic interferometry: Holography,
invented by Gabor17 in the 1940 s, is a technique
that records an interference pattern and uses
diffraction to reproduce a wavefront, resulting in
a 3D image that still has the depth, parallax, and
other properties of the original scene. The principle
of holography can also be utilized as an optical
metrology tool. In holographic interferometry, a
wavefront is first stored in the hologram and later
interferometrically compared with another,
producing fringe patterns that yield quantitative
information about the object surface deriving
these two wavefronts79,80. This comparison can be
made in three different ways that constitute the
basic approaches of holographic interferometry:

real-time81, double-exposure82, and time-average
holographic interferometry83,84 (Fig. 1d), allowing
for both qualitative visualization and quantitative
measurement of real-time deformation and
perturbation, changes of the state between two
specific time points, and vibration mode and
amplitude, respectively.

(5) Digital holography: Digital holography utilizes a
digital camera (CMOS or CCD) to record the
hologram produced by the interference between a
reference wave and an object wave emanating
from the sample85,86 (Fig. 1e). Unlike classical
interferometry, the sample may not be precisely in-
focus and can even be recorded without using any
imaging lenses. The numerical propagation using
Fresnel transform or angular spectrum algorithm
enables digital refocusing at any depths of the
sample without physically moving it. In addition,
digital holography also provides an alternative and
much simpler way to realize double-exposure87

and time-averaged holographic interferometry88,89,
without additional benefits of quantitative
evaluation of holographic interferograms and
flexible phase-aberration compensation86,90.

(6) Electronic speckle pattern interferometry
(ESPI): In ESPI, the tested object generally has
an optically rough surface. When illuminated by a
coherent laser beam, it will create a speckle pattern
with random phase, amplitude, and intensity91,92.
If the object is displaced or deformed, the object-
to-image distance will change, and the phase of the
speckle pattern will change accordingly. In ESPI,
two speckle patterns are acquired one each for the
undeformed and deformed states, by double
exposure, and the absolute difference between
these two deformed patterns results in the form of
fringes superimposed on the speckle pattern where
each fringe contour normally represents a
displacement of half a wavelength (Fig. 1f).

(7) Electronic speckle shearing interferometry
(shearography): Electronic speckle shearing
interferometry, commonly known as
shearography, is an optical measurement
technique similar to ESPI. However, instead
of using a separate known reference beam,
shearography uses the test object itself as the
reference; and the interference pattern is created
by two sheared speckle fields originated from the
light scattered by the surface of the object under
test93,94. In shearography, the phase encoded in the
fringe pattern depicts the derivatives of the surface
displacements, i.e., to the strain developed on the
object surface (Fig. 1g). Consequently, the
anomalies or defects on the surface of the object
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can be revealed more prominently, rendering
shearography one of the most powerful tools for
nondestructive testing applications.

(8) Fringe projection profilometry/deflectometry:
Fringe projection is a widely used
noninterferometic optical metrology technique
for measuring the topography of an object at a
certain angle between the observation and the
projection point95,96. The sinusoidal pattern in
fringe projection techniques is generally
incoherently formed by a digital video projector
and directly projected onto the object surface. The
corresponding distorted fringe pattern is recorded
by a digital camera. The average intensity and
intensity modulation of the captured fringe pattern
are associated with the surface reflectivity and
ambient illuminations, and the phase is associated
with the surface height32 (Fig. 1h). Deflectometry
is another structured light technique similar to
FPP, but instead of being produced by a projector,
similar types of fringe patterns are displayed on a
planar screen and distorted by the reflective
(mirror-like) test surface97,98. The phase
measured in deflectometry is directly sensitive to
the surface slope (similar to shearography), so it is
more effective for detecting shape defects99,100.

(9) Digital image correction (DIC)/stereovision:
DIC is another important noninterferometic
optical metrology method that employs image
correlation techniques for measuring full-field
shape, displacement, and strains of an object
surface23,101,102. Generally, the object surface
should have a random intensity distribution (i.e.,
a random speckle pattern), which distorts together
with the sample surface as a carrier of deformation
information. Images of the object at different
loadings are captured with one (2D-DIC)23, or two

synchronized cameras (3D-DIC)103, and then
these images are analyzed with correlation-based
matching (tracking or registration) to extract full-
field displacement and strain distributions (Fig. 1i).
Unlike 2D-DIC that is limited to in-plane
deformation measurement of nominal planar
objects, 3D-DIC, also known as stereo-DIC,
allows for the measurement of 3D displacements
(both in-plane and out-of-plane) for both planar
and curved surfaces104,105. 3D-DIC is inspired by
binocular stereovision or stereophotogrammetry
in the computer vision community, which
recovers the 3D coordinates by finding pixel
correspondence (i.e., disparity) of unique features
that exist in two or more images of the object
taken from different points of view106,107.
Nevertheless, unlike DIC, in which the
displacement vector can be along both x and y
directions, in stereophotogrammetry, after
epipolar rectification, disparities between the
images are along the x direction only108.

Image processing in optical metrology
The elementary task of digital image processing in

optical metrology can be defined as the conversion of
the captured raw intensity image(s) into the desired
object quantities taking into account the physical model
of the intensity distribution describing the image for-
mation process. In most cases, image processing in
optical metrology is not a one-step procedure, and a
logical hierarchy of image processing steps should be
accomplished. As illustrated in Fig. 2, the image-
processing hierarchy typically encompasses three main
steps, pre-processing, analysis, and postprocessing, each
of which includes a series of mapping functions that are
cascaded to form a pipeline structure. For each opera-
tion, the corresponding f is an operator that transforms

Image(s) 

I’I Φ

I ’=fpre(I)= fL(…(f2(f1(I)))
Φ=fanal (I’)= fM (…(fL+2(fL+1 (I’))) q=fpost (Φ)= fN(fN-1(…(fM+1 (Φ)))
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Fig. 2 Image-processing pipeline of typical optical metrology methods. The pipeline of a typical optical metrology method (e.g., FPP)
encompasses a sequence of distinct operations (algorithms) to process and analyze the image data, which can be further categorized into three main
steps: pre-processing (e.g., denoising, image enhancement), analysis (e.g., phase demodulation, phase unwrapping), and postprocessing (e.g., phase-
depth mapping)
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Fig. 3 Hierarchy and typical algorithms of image processing in optical metrology. Image processing in optical metrology is not a one-step
procedure. Depending on the purpose of the evaluation, a logical hierarchy of processing steps should be implemented before the desired
information can be extracted from the image. In general, the image processing architecture in optical metrology consists of three main steps: pre-
processing, analysis, and post-processing.
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the image-like input into an output of corresponding
(possibly resampled) spatial dimensions. Figure 3 shows
the big picture of the image-processing hierarchy with
various types of algorithms distributed in different lay-
ers. Next, we will zoom in one level deeper on each of
the hierarchical steps.

Pre-processing
The purpose of pre-processing is to assess the quality of

the image data and improve the data quality by suppres-
sing or minimizing unwanted disturbances (noise, alias-
ing, geometric distortions, etc.) before being fed to the
following image analysis stage. It takes place at the lowest
level (so-called iconic level) of image processing —the
input and output of the corresponding mapping function
(s) are both intensity images, i.e., fanal : I ! I 0. Repre-
sentative image pre-processing algorithms in optical
metrology includes but not limited to:

● Denoising: In optical metrology, noise in captured
raw intensity data has several sources that are related
to the electronic noise of photodetectors and the
coherent noise (so-called speckle). Typical numerical
approaches to noise reduction include median filter109,
spin filter110, anisotropic diffusion111, coherence
diffusion112, Wavelet113, windowed Fourier transform
(WFT)114,115, block matching 3D (BM3D)116, etc. For
more detailed information and comparisons of these
algorithms, the reader may refer to the reviews by
Kulkarnia and Rastogi117 and Bianco et al.118.

● Enhancement: Image enhancement is a crucial pre-
processing step in intensity-based fringe analysis
approaches, such as fringe tracking or skeletonizing.
Referring to the intensity model, the fringe pattern
may still be disturbed by locally varying background
and intensity modulation after denoising. Several
algorithms have been developed for fringe pattern
enhancement, e.g., adaptive filter119, bidimensional
empirical mode decomposition120,121, and dual-tree
complex wavelet transform122.

● Color channel separation: Because a Bayer color
sensor-camera captures three monochromatic (red,
green, and blue) images at once, color multiplexing
techniques are often employed in optical metrology
to speed up the image acquisition process123–127.
However, the separation of three color channels is
not so straightforward due to the coupling and
imbalance among the three color channels. Many
cross-talk-matrix-based color channel calibration
and leakage correction algorithms have been
proposed to minimize such side effects128–130.

● Image registration and rectification: Image
registration and rectification are aimed at aligning
two or more images of the same object to a reference
or correcting image distortion due to lens aberration.

In stereophotogrammetry, epipolar (stereo)
rectification determines a reprojection of each
image plane so that pairs of conjugate epipolar
lines in both images become collinear and parallel to
one of the image axes108.

● Interpolation: Image interpolation algorithms, such
as the nearest neighbor, bilinear, bicubic109, and
nonlinear regression131 are necessary when the
measured intensity image is sampled at an
insufficient dense grid. In DIC, to reconstruct
displacements with subpixel accuracy, the
correlation criterion must be evaluated at non-
integer-pixel locations132–134. Therefore, image
interpolation is also a key algorithm for DIC to
infer subpixel gray values and gray-value gradients in
many subpixel displacement registration algorithms,
e.g., the Newton–Raphson method133–135.

● Extrapolation: Image extrapolation, especially fringe
extrapolation is often employed in Fourier transform
(FT) fringe analysis methods to minimize the
boundary artifacts induced by spectrum leakage.
Schemes for the extrapolation of the fringe pattern
beyond the borders have been reported, such as soft-
edged frequency filter136 and iterative FT137.

Analysis
Image analysis is the core component of the image-

processing architecture to extract the key information-
bearing parameter(s) reflecting the desired physical
quantity being measured from the input images. In phase
measurement techniques, image analysis refers to the
reconstruction of phase information from the fringe-like
modulated intensity distribution(s), i.e., fanal : I ! ϕ.

● Phase demodulation: The aim of phase
demodulation, or more specifically, fringe analysis,
is to obtain the wrapped phase map from the quasi-
periodic fringe patterns. Various techniques for
fringe analysis have been developed to meet
different requirements in diverse applications,
which can be broadly classified into two categories:

Spatial phase demodulation: Spatial phase-
demodulation methods are capable of estimating the
phase distribution through a single-fringe pattern.
FT138,139, WFT114,115,140, and wavelet transform
(WT)141 are classical methods for the spatial carrier
fringe analysis. For closed-fringe patterns without the
carrier, alternative methods, such as Hilbert spiral
transform142,143, regularized phase tracking (RPT)144,145

and frequency-guided sequential demodulation146,147,
can be applied provided that the cosinusoidal component
of the fringe pattern can be extracted by pre-processing
algorithms of denoising, background removal, and fringe
normalization. The interested reader may refer to the
book by Servin et al.148 for further details.
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Temporal phase demodulation: Temporal phase-
demodulation techniques detect the phase distribution
from the temporal variation of fringe signals, as typified
by heterodyne interferometry149 and phase-shifting
techniques150. Many phase-shifting algorithms have
originally been proposed for optical interferometry/
holography and later been adapted and extended to
fringe projection, for example, standard N-step phase-
shifting algorithm151, Hariharan 5-step algorithm21, 2+
1 algorithm152 etc. The interested reader may refer to the
chapter “Phase shifting interferometry”153 of the book
edited by Malacara4 and the review article by Zuo et al.32

for more details about phase-shifting techniques in the
contexts of optical interferometry and FPP, respectively.
● Phase unwrapping: No matter which phase-

demodulation technique is used, the retrieved
phase distribution is mathematically wrapped to
the principal value of the arctangent function
ranging between −π and π. The result is what is
known as a wrapped phase image, and phase
unwrapping has to be performed to remove any
2π-phase discontinuities. Phase unwrapping
algorithms can be broadly classified into three
categories:

Spatial phase unwrapping: Spatial phase unwrapping
methods use only a single wrapped phase map to retrieve
the corresponding unwrapped phase distribution, and
the unwrapped phase of a given pixel is derived based on
the adjacent phase values. Representative methods
include Goldstein’s method154, reliability-guided
method155, Flynn’s method156, minimal Lp-norm
method157, and phase unwrapping max-flow/min-cut
(PUMA) method158. The interested reader may refer to
the book by Ghiglia et al. for more technical details.
There are also many reviews on the performance
comparisons of different unwrapping algorithms for
specific applications159–161. Limited by the assumption of
phase continuity, spatial phase unwrapping methods
cannot fundamentally address the inherent fringe order
ambiguity problem when the phase difference between
neighboring pixels is greater than π.
Temporal phase unwrapping: To remove the phase
ambiguity, temporal phase unwrapping methods gen-
erally generate different or synthetic wavelengths by
adjusting flexible system parameters (wavelength, angu-
lar separation of light sources, spatial frequency,
orientation of the projected fringe patterns) step by step,
so that the object can be covered by fringes with different
periods. Representative temporal phase unwrapping
algorithms include gray-code methods162,163, multi-
frequency (hierarchical) methods164–166, multi-
wavelength (heterodyne) methods167–169, and number-
theoretical methods170–173. For more detailed informa-
tion about these methods, the reader can refer to the

comparative review by Zuo et al.174 The advantage of
temporal phase unwrapping lies in that the unwrapping
is neighborhood-independent and proceeds along the
time axis on the pixel itself, enabling an absolute
evaluation of the mod-2π phase distribution.
Geometric phase unwrapping: Geometric phase
unwrapping approaches can solve the phase ambiguity
problem by exploiting the epipolar geometry of
projector–camera systems. If the measurement volume
can be predefined, depth constraints can be incorporated
to preclude some phase ambiguities corresponding to the
candidates falling out of the measurement range175–185.
Alternatively, an adaptive depth-constraint strategy can
provide pixel-wise depth constraint ranges according to
the shape of the measured object186. By introducing
more cameras, tighter geometry constraints can be
enforced so as to guarantee the unique correspondence
and improve the unwrapping reliability185,187.
In stereomatching techniques, image analysis refers to

determining (tracking or matching) the displacement
vector of each pixel point between a pair of acquired
images, i.e., fanal : ðIr; IdÞ ! ðDx;DyÞ. In the routine
implementation for DIC and stereophotogrammetry, a
region of interest (ROI) or subset in the image is specified
at first. The subset is further divided into an evenly spaced
virtual grid. The similarity is evaluated at each point of the
virtual grid in the reference image to obtain the dis-
placement between two subsets. A full-field displacement
map can be obtained by sliding the subset in the searching
area of the reference image and obtaining the displace-
ment at each location.

● Subset correlation: In DIC, to quantitatively
evaluate the similarity or difference between the
selected reference subset and the target subset,
several correlation criteria have been proposed,
such as cross-correlation (CC), the sum of absolute
difference (SAD), the sum of squared difference
(SSD), zero-mean normalized cross-correlation
criterion (ZNCC), zero-mean normalized sum of
squared difference (ZNSSD), and the parametric
sum of squared difference (PSSD)188–190. The
subsequent matching procedure is realized by
identifying the peak (or valley) position of the
correlation coefficient distribution based on certain
optimization algorithms. In stereophotogrammetry,
nonparametric costs rely on the local ordering (i.e.,
Rank191, Census192, and Ordinal measures193) of
intensity values, which are more frequently used due
to their robustness against radiometric changes and
outliers, especially near object boundaries192–194.

● Subpixel refinement: The subset correlation
methods mentioned above can only provide
integer-pixel displacements. To further improve the
measurement resolution and accuracy, many
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subpixel refinement methods were developed,
including intensity interpolation (i.e., the
coarse–fine search method)195,196, correlation
coefficient curve-fitting133,197, gradient-based
method198,199, Newton–Raphson (NR)
algorithm135,200,201, and inverse compositional
Gauss–Newton (IC-GN) algorithm202–204. Among
these algorithms, NR and IC-GN are most
commonly used for their high registration accuracy
and effectiveness in handling high-order surface
transformations. However, they suffer from
expensive computation cost stemming from their
iterative nonlinear optimization and repeated
subpixel interpolation. Therefore, accurate initial
guesses obtained by integer-pixel subset correlation
methods are critical to ensure the rapid
convergence205 and reduce the computational
cost206. In stereovision, the matching algorithms
can be classified as local207–209, semi-global210, and
global methods211. Local matching methods utilize
the intensity information of a local subset centered at
the pixel to be matched. Global matching methods
take the result obtained by local matching methods
as the initial value and then optimize the disparity by
minimizing a predefined global energy function.
Semi-global matching methods reduce the 2D global
energy minimization problem into a 1D one,
enabling faster and more efficient implementations
of stereomatching.

Postprocessing
In optical metrology, the main task of postprocessing is

to further refine the measured phase or retrieved dis-
placement field, and finally transform them into the
desired physical quantity of the measured object, i.e., the
corresponding operator fpost : ϕ=ðDx;DyÞ ! q, where q is
the desired sample quantity.

● Denoising: Instead of applying to raw fringe
patterns, image denoising can also be used as a
postprocessing algorithm to remove noise directly
from the retrieved phase distribution. Various phase
denoising algorithms have been proposed, such as
least-square (LS) fitting212, anisotropic average
filter213, WFT214, total variation215, and nonlocal
means filter216.

● Digital refocusing: The numerical reconstruction of
propagating wavefronts by diffraction is a unique
feature of digital holography. Since the hologram of
the object may not be recorded in the in-focus plane.
Numerical diffraction or backpropagation
algorithms (e.g., Fresnel diffraction and angular
spectrum methods) should be used to obtain a
focused image by performing a plane-by-plane
refocusing after the image acquisition217–219.

● Error compensation: There are various types of
phase errors associated with optical metrology
systems, such as phase-shifting error, intensity
nonlinearity, and motion-induced error, which
can be compensated with different types of
postprocessing algorithms60,220,221. In digital
holographic microscopy, the microscope objective
induces additional phase curvature on the measured
wavefront, which needs to be compensated in order
to recover the phase information induced by the
sample. Typical numerical phase-aberration
compensation methods include double exposure222,
2D spherical fitting223 Zernike polynomials fitting224,
Fourier spectrum filtering225, and principal
component analysis (PCA)226.

● Quantity transformation: The final step of
postprocessing and also the whole measurement
chain is to convert the phase or displacement field
into the desired sample quantity, such as height,
thickness, displacement, stress, strains, and 3D
coordinates, based on sample parameters (e.g.,
refractive index, relative stress constant) or
calibrated system parameters (e.g., sensitivity vector
and camera (intrinsic, extrinsic) parameters). The
optical setup should be carefully designed to
optimize the sensitivity with respect to the
measuring quantity in order to achieve a successful
and efficient measurement227,228.

Finally, it should be mentioned that since optical
metrology is a rapidly expanding field in both its scientific
foundations and technological developments, the image-
processing hierarchy used here cannot provide full cov-
erage of all relevant methods and technologies. For
example, phase retrieval and wave-field sensing technol-
ogies have shown great promise for inexpensive, vibra-
tion-tolerant, non-interferometric, optical metrology of
optical surfaces and systems66,67. These methods con-
stitute an important aspect of computational imaging as
they often involve solving ill-posed inverse problems.
There are also some optical metrology methods based on
solving constrained optimization problems with added
penalties and relaxations (e.g., RPT phase demodula-
tion144,145 and minimal Lp-norm phase unwrapping
methods157), which may make pre- and postprocessing
unnecessary. For a detailed discussion on this topic, please
refer to the subsection “Solving inverse optical metrology
problems: issues and challenges”.

Brief introduction to deep learning
Deep learning is a subset of machine learning, which is

defined as the use of specific algorithms that enable
machines to automatically learn patterns from large
amounts of historical data, and then utilize the uncovered
patterns to make predictions about the future or enable
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decision making under uncertain intelligently229,230. The
key specific algorithm used in machine learning is the
ANN, which exploits input data x 2 X � Rn to predict an
unknown output y 2 Y. The tasks accomplished by the
ANN can be broadly divided as classification tasks or
regression tasks, depending on whether y is a discrete
label or a continuous value. The objective of machine
learning is then to find a mapping function f : x ! y.
The choice of such functions is given by the neural net-
work models with additional parameters θ 2 Θ: i.e., ŷ ¼
f x; θð Þ � y. The goal of this section is to provide a brief
introduction to deep learning, as a preparation for the
introduction of its applications in optical metrology
later on.

Artificial neural network (ANN)
Inspired by the biological neural network (Fig. 4a),

ANNs are composed of interconnected computational
units called artificial neurons. As illustrated in Fig. 4b,
the simplest neural network following the above concept
is the perceptron, which consists of only one single
artificial neuron231. An artificial neuron takes a bias b
and weight vector w ¼ w1;w2; � � � ;wnð ÞT as parameters
θ ¼ b;w1;w2; � � � ;wnð ÞT to map the input x ¼
x1; x2; � � � ; xnð ÞT to the output fP xð Þ through a nonlinear
activation function σ as

fP xð Þ ¼ σ wTxþ b
� � ð3Þ

Typical choices for such activation functions are the
sign function σ xð Þ ¼ sgn xð Þ, sigmoid function σ xð Þ ¼

1
1þ e�x, hyperbolic tangent function σ xð Þ ¼ ex � e�x

ex þ e�x, and
rectified linear unit (ReLU) σ xð Þ ¼ max 0; xð Þ232. A single
perceptron can only model a linear function, but because
of the activation functions and in combination with other
neurons, the modeling capabilities will increase dramati-
cally. Arranged in a single layer, it has already been shown
that neural networks can approximate any continuous
function f(x) on a compact subset of Rn. A single-layer
network, also called single-layered perceptron (SLP), is
represented as a linear combination of M individual
neurons:

f1NN xð Þ ¼
XM
i¼1

viσ wT
i xþ bi

� � ð4Þ

where vi is the combination weight of the ith neuron. We
can further extend the mathematical specification of SLP
by stacking several single-layer networks into a multi-
layered perceptron (MLP)233. As the network goes deeper
(number of layers increase), the number of free para-
meters increases, as well as the capability of the network

to represent highly nonlinear functions234. We can
formalize this mathematically by stacking several single-
layer networks into a deep neural network (DNN) with N
layers, i.e.

fDNN xð Þ ¼ f1NN f1NN � � � f1NN xð Þð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N

¼ f1NN � f1NN � � � � f1NN xð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N

ð5Þ

where the circle ◦ is the symbol for the composition of
functions. The first layer is referred to as the input layer,
the last as the output layer, and the layers in between the
input and output are termed as hidden layers. We refer to
these using the term “deep”, when a neural network
contains many hidden layers, hence the term “deep
learning”.

Neural network training
Having gained basic insights into neural networks and

their basic topology, we still need to discuss how to train
the neural network, i.e., how its parameters θ are actually
determined. In this regard, we need to select the appro-
priate model topology for the problem to be solved and
specify the various parameters associated with the model
(known as “hyper-parameters”). In addition, we need to
define a function that assesses the quality of the network
parameter set θ, the so-called loss function L, which
quantifies the error between the predicted value ŷ ¼ fθ xð Þ
and the true observation y (label)235.
Depending on the type of task accomplished by the

network, the loss function can be divided into classification
loss and regression loss. Commonly used classification
loss functions include hinge loss (LHinge ¼Pn

i¼1 max½0; 1� sgnðyiÞŷi�) and cross-entropy loss LCE ¼
�Pn

i¼1 ½yi log ŷi þ ð1� yiÞ logð1� ŷiÞ�)236. Since the opti-
cal metrology tasks involved in this review mainly belong to
regression tasks, here we focus on the regression loss
functions. The mean absolute error (MAE) loss (LMAE ¼
1
n

Pn
i¼1 yi � ŷij j) and the mean squared error (MSE) loss

(LMSE ¼ 1
n

Pn
i¼1 ðyi � ŷiÞ2) are the two most commonly

used loss functions, which are also known as L1 loss and L2
loss, respectively. In image-processing tasks, MSE is usually
converted into a peak signal-to-noise ratio (PSNR) metric:

LPSNR ¼ 10 log10
MAX2

LMSE
, where MAX is the maximum pixel

intensity value within the dynamic range of the raw
image237. Other variants of L1 and L2 loss include RMSE,
Euclidean loss, smooth L1, etc.238. For natural images, the
structural similarity (SSIM) index is a representative image
fidelity measurement, which judges the structural similarity
of two images based on three metrics (luminance, contrast,
and structure): LSSIM ¼ lðy;byÞcðy;byÞsðy;byÞ239, where
lðy;byÞ, cðy;byÞ, and sðy;byÞ are the similarities of the local
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patch luminances, contrasts, and structures, respectively.
For more details about these loss functions, readers may
refer to the article by Wang and Bovik240. With the defined
loss function, the objective behind the training process of
ANNs can be formalized as an optimization problem241

bθ ¼ argmin
θ2Θ

Lðfθðx; yÞÞ ð6Þ

The learning schemes can be broadly classified into
three categories, supervised learning, semi-supervised
learning, and unsupervised learning36,242–244. Supervised
learning dominates the majority of practical applications,

in which a neural network model is optimized based on a
large amount dataset of labeled data pairs (x, y), and the
training process amounts to find the model parameters bθ
that best predict the data based on the loss function
L by; yð Þ. In unsupervised learning, training algorithms
process input data x without corresponding labels y, and
the underlying structure or distribution in the data has to
be modeled based on the input itself. Semi-supervised
learning sits in between both supervised and unsupervised
learning, where a large amount of input data x is available
and only some of the data is labeled. More detailed dis-
cussions about semi-supervised and unsupervised learn-
ing can be found in the “Future directions” section.
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From perceptron to deep learning
As summarized in Fig. 4, despite the overall upward

trend, a broader look at the history of deep learning
reveals three major waves of development. Concepts of
machine learning and deep learning commenced with the
research into the artificial neural network, which was
originated from the simplified mathematical model of
biological neurons established by McCulloch and Pitts in
1943245. In 1958, Rosenblatt231 proposed the idea of
perceptron, which was the first ANN that allows neurons
to learn. The emergence of perceptron marked the first
peak of neural network development. However, a single-
layer perceptron model can only solve linear classification
problems and cannot solve simple XOR and XNOR
problems246. These limitations caused a major dip in their
popularity and stagnated the development of neural net-
works for nearly two decades.
In 1986, Rumelhart et al.247 proposed the idea of a

backpropagation algorithm (BP) for MLP, which con-
stantly updates the network parameters to minimize the
network loss based on a chain rule method. It effectively
solves the problems of nonlinear classification and
learning, leading neural networks into a second develop-
ment phase of “shallow learning” and promoting a boom
of shallow learning. Inspired by the mammalian visual
cortex (stimulated in the restricted visual field)248, LeCun
et al.249 proposed the biologically inspired CNN model
based on the BP algorithm in 1989, establishing the
foundation of deep learning for modern computer vision.
During this wave of development, various models like
long short-term memory (LSTM) recurrent neural net-
work (RNN), distributed representation, and processing
were developed and continue to remain key components
of various advanced applications of deep learning to this
date. Adding more hidden layers to the network allows a
deep architecture to be built, which can accomplish more
complex mappings. However, training such a deep net-
work is not trivial because once the errors are back-
propagated to the first few layers, they become negligible
(so-called gradient vanishing), making the learning pro-
cess very slow or even fails250. Moreover, the limited
computational capacity of the available hardware at that
time could not support training large-scale neural net-
works. As a result, deep learning suffered a second major
roadblock.
In 2006, Hinton et al.251,252 proposed a Deep Belief

Network (DBN) (the composition of simple, unsupervised
networks such as Deep Boltzmann Machines (DBMs)253

(Fig. 4f) or Restricted Boltzmann Machines (RBMs)254

(Fig. 4e)) training approach based on the brain graphical
models, trying to overcome the gradient-vanishing pro-
blem. They gave the new name “deep learning” to mul-
tilayer neural network-related learning methods251,252.
This milestone revolutionized the approaching prospects

in machine learning, leading neural networks into the
third upsurge along with the development of computer
hardware performance, the development of GPU accel-
eration technology, and the availability of massive labeled
datasets.
In 2012, Krizhevsky et al.255 proposed a deep CNN

architecture — AlexNet, which won the 2012 ImageNet
competition, making CNN249,256 become the dominant
framework for deep learning after more than 20 years of
silence. Meanwhile, several new deep-learning network
architectures and training approaches (e.g., ReLU232

given by σðxÞ ¼ maxð0; xÞ, and Dropout257 that discards a
small but random portion of the neurons during each
iteration of training to prevent neurons from co-adapting
to the same features) were developed to further combat
the gradient vanishing and ensure faster convergence.
These factors have led to the explosive growth of deep
learning and its applications in image analysis and com-
puter vision-related problems. Different from CNN, RNN
is another popular type of DNN inspired by the brain’s
recurrent feedback system. It provides the network with
additional “memory” capabilities for previous data, where
the inputs of the hidden layer consist of not only the
current input but also the output from the previous step,
making it a framework specialized in processing
sequential data258–260 (Fig. 4d). CNNs and RNNs usually
operate on Euclidean data like images, videos, texts, etc.
With the diversification of data, some non-Euclidean
graph-structured data, such as 3D-point clouds and
biological networks, are also considered to be processed
by deep learning. Graph neural networks (GNNs), where
each node aggregates feature vectors of its neighbors to
compute its new feature vector (a recursive neighbor-
hood aggregation scheme), are effective graph repre-
sentation learning frameworks specifically for non-
Euclidean data261,262.
With the focus of more attention and efforts from both

academia and industry, different types of deep neural
networks have been continuously proposed in recent
years with exponential growth, such as VGGNet263 (VGG
means “Visual Geometry Group”), GoogLeNet264 (using
“GoogLe” instead of “Google” is a tribute to LeNet, one of
the earliest CNNs developed by LeCun256), R-CNN
(regions with CNN features)265, generative adversarial
network (GAN)266, etc. In 2015, the emergence of the
residual block (Fig. 4h), containing two convolutional
layers activated by ReLU that allow the information (from
the input or those learned in earlier layers) to penetrate
more into the deeper layers, significantly reduces the
vanishing gradient problem as the network gets deeper,
making it possible to train large-scale CNNs efficiently267.
In 2016, the Google-owned AI company DeepMind
shocked the world by beating Lee Se-dol with its AlphaGo
AI system, alerting the world to deep learning, a new
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breed of machine learning that promised to be smarter
and more creative than before268. For a more detailed
description of the history and development of deep
learning, readers can refer to the chronological review
article by Schmidhuber39.

Convolutional neural network (CNN)
In the subsection “Artificial neural network”, we talked

about the simplest DNN, so-called MLPs, which basically
consist of multiple layers of neurons, each fully connected
to those in the adjacent layers. Each neuron receives some
inputs, which are multiplied by their weights, with non-
linearity applied via activation functions. In this subsec-
tion, we will talk about CNNs, which are considered an
evolution of the MLP architecture that is developed to
process data in single or multiple arrays, and thus are
more appropriate to handle image-like input. Given the
prevalence of CNNs in image processing and analysis
tasks, here we briefly review some basic ideas and con-
cepts widely used in CNNs. For a comprehensive intro-
duction to CNN, we refer readers to the excellent book by
Goodfellow et al.36.
CNN follows the same pattern as MLP: artificial neu-

rons are stacked in hidden layers on top of each other;
parameters are learned during network training with
nonlinearity applied via activation functions; the loss
L by; yð Þ is calculated and back-propagated to update the
network parameters. The major difference between them
is that instead of regular fully connected layers, CNN uses
specialized convolution layers to model locality and
abstraction (Fig. 5b). At each layer, the input image x
(lexicographically ordered) is convolved with a set of
convolutional filters W (note here W represents block-
Toeplitz convolution matrix) and added biases b to gen-
erate a new image, which is subjected to an elementwise
nonlinear activation function σ (normally use ReLU
function σðxÞ ¼ maxð0; xÞ), and the same structure is
repeated for each convolution layer k:

xk ¼ σ Wk�1xk�1 þ bk�1
� � ð7Þ

The second key difference between CNNs and MLPs is
the typical incorporation of pooling layers in CNNs,
where pixel values of neighborhoods are aggregated by
applying a permutation invariant function, such as the
max or mean operation, to reduce the dimensionality of
the convolutional layers and allows significant features to
propagate downstream without being affected by neigh-
boring pixels (Fig. 5c). The major advantage of such an
architecture is that CNNs exploit spatial dependencies in
the image and only consider a local neighborhood for
each neuron, i.e., the network parameters are shared in
such a way that the network performs convolution

operations on images. In other words, the idea of a CNN
is to take advantage of a pyramid structure to first identify
features at the lowest level before passing these features to
the next layer, which, in turn, create features of a higher
level. Since the local statistics of images are invariant to
location, the model does not need to learn weights for the
same feature occurring at different positions in an image,
making the network equivariant with respect to transla-
tions of the input. It makes CNNs especially suitable for
processing images captured in optical metrology, e.g., a
fringe pattern consisting of sinusoidal signal repeated over
different image locations. In addition, it also drastically
reduces the number of parameters (i.e., the number of
weights no longer depends on the size of the input image)
that need to be learned.
Figure 5a shows a CNN architecture for the image-

classification task. Every layer of a CNN transforms the input
volume to an output volume of neuron activation, eventually
leading to the final fully connected layers, resulting in a
mapping of the input data to a 1D feature vector. A typical
CNN configuration consists of a sequence of convolution
and pooling layers. After passing through a few pairs of
convolutional and pooling layers, all the features of the image
have been extracted and arranged into a long tube. At the
end of the convolutional stream of the network, several fully
connected layers (i.e., regular neural network architecture,
MLP, that discussed in the previous subsection) are usually
added to fatten the features into a vector, with which tasks,
such as classifications, can be performed. Starting with
LeNet256, developed in 1998 for recognizing handwritten
characters with two convolutional layers, CNN architectures
have evolved since then to deeper CNNs like AlexNet264 (5
convolutional Layers) and VGGNet263 (19 convolutional
Layers) and beyond to more advanced and super-deep net-
works like GoogLeNet264 and ResNet267, respectively. These
CNNs have been extremely successful in computer vision
applications, such as object detection269, action recogni-
tion270, motion tracking271, and pose estimation272.

Fully convolutional network architectures for image
processing
Conventionally, CNNs have been used for solving classi-

fication problems. Due to the presence of a parameter-rich
fully connected layer at the end of the network, typical
CNNs throw away spatial information and produce non-
spatial outputs. However, for most image-processing tasks
that we encountered earlier in the Section “Image processing
in optical metrology”, the network must have a whole-
resolution output with the same or even larger size com-
pared with the input, which is commonly referred to as
dense prediction (contrary to the single target category per
image)273. Specifically, fully convolutional network archi-
tectures without fully connected layers should be used for
this purpose, which accepts input of any size, is trained with
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a regression loss, and produces an output of the corre-
sponding dimensions273,274. Here, we briefly review three
representative network architectures with such features.

● SRCNN: In conventional CNN, the downsampling
effect of pooling layers results in an output with a far
lower resolution than the input. Thus, a relatively
naive and straightforward solution is simply stacking
several convolutions layers while skipping pooling
layers to preserve the input dimensions. Dong
et al.275 firstly adopt this idea and propose SRCNN
for the image super-resolution task. SRCNN utilizes
traditional upsampling algorithms to obtain low-
resolution images and then refine them by learning
an end-to-end mapping from interpolated coarse
images to high-resolution images of the same
dimension but with more details, as illustrated in
Fig. 6a. Due to its simple ideal and implementation,
SRCNN has gradually become one of the most
popular frameworks in image super-resolution276

and been extended to many other tasks such as radar
image enhancing277, underwater image high
definition display278, and computed tomography279.
One major disadvantage of SRCNN is the cost of
time and space to keep the whole resolution through
the whole network, limiting SRCNN only practical
for relatively shallow network structures.

● FCN: The fully convolutional network (FCN)
proposed by Long et al.273 is a popular strategy and
baseline for semantic-segmentation tasks. FCN is

inspired by the fact that the fully connected layers in
classification CNN (Fig. 5) can also be viewed as
convolutions with kernels that cover their entire input
regions. As illustrated in Fig. 6b, FCN uses the existing
classification CNN as the encoder module of the
network and replace these fully connected layers into
1 × 1 convolution layers (also termed as deconvolution
layers) as the decoding module, enabling the CNN to
upsample the input feature maps and get pixel-wise
output. In FCN, skip connections combining (simply
adding) information in fine layers and coarse layers
enhances the localization capability of the network,
allowing for the reconstruction of accurate fine details
that respect global structure. FCN and its variants have
achieved great success in the application of dense pixel
prediction as required in many advanced computer
vision understanding tasks280.

● U-Net: Ronneberger et al.281 took the idea of FCN one
step further and proposed the U-Net architecture,
which replaces the one-step upsampling part with a
bunch of complimentary upsampling convolutions
layers, resulting in a quasi-symmetrical encoder-
decoder model architecture. As illustrated in Fig. 6c,
the basic structure of U-Net consists of a contractive
branch and an expansive branch, which enables
multiresolution analysis and general multiscale
image-to-image transforms. The contractive branch
(encoder) downsamples the image using conventional
strided convolution, producing a compressed feature
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Fig. 5 The typical CNN architecture for image-classification tasks. a The typical CNN architecture for image classification tasks consists of the
input layer, convolutional layers, fully connected layers, and output prediction. b Convolution operation. c Pooling operation
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representation of the input image. The expansive
branch (decoder), complimentary to the contractive
branch, uses upsampling methods like transpose
convolution to provide the processed result with the
same size as the input. In addition, U-Net features skip
connections that concatenate the matching resolution
levels of the contractive branch and the expansive
branch. Ronneberger’s U-Net is a breakthrough toward
automatic image segmentation and has been
successfully applied in many tasks that require
image-to-image transforms282.

Since the feature extraction is only performed in low-
dimensional space, the computation and spatial com-
plexity of the above encoder-decoder structured networks
(FCN and U-Net) can be much reduced. Therefore, the
encoder-decoder CNN structure has become the main-
stream for image segmentation and reconstruction283.
The encoder is usually a classic CNN (Alexnet, VGG,
Resnet, etc.) in which downsampling (pooling layers) is
adopted to reduce the input dimension so as to generate
low-resolution feature maps. The decoder tries to mirror
the encoder to upsample these feature representations

Fig. 6 Three typical CNN structures for image-processing tasks with pixel-level image output. a SRCNN. b FCN. c U-Net
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and restore the original size of the image. Thus, how to
perform upsampling is of great importance. Although
traditional upsampling methods, e.g., nearest neighbor,
bilinear, and bicubic interpolations, are easy to imple-
ment, deep-learning-based upsampling methods, e.g.,
unpooling284, transpose convolution273, subpixel con-
volution285, has gradually become a trend. All these
approaches can be combined with the model mentioned
above to prevent the decrease in resolution and obtain a
full-resolution image output.

● Unpooling upsampling: Unpooling upsampling
reverts maxpooling by remembering the location of
the maxima in the maxpooling layers and in the
unpooling layers copy the value to exactly this
location, as shown in Fig. 7a.

● Transposed convolution: The opposite of the
convolutional layers are the transposed convolution
layers (also misinterpreted as deconvolution
layers280), i.e., predicting the possible input based
on feature maps sized like convolution output.
Specifically, it increases the image resolution by
expanding the image by inserting zeros and
performing convolution, as shown in Fig. 7b.

● Sub pixel convolution: The subpixel layer performs
upsampling by generating a plurality of channels by
convolution and then reshaping them, as Fig. 7c
shows. Within this layer, a convolution is firstly
applied for producing outputs with M times
channels, where M is the scaling factor. After that,
the reshaping operation (a.k.a. shuffle) is performed
to produce outputs with size M times larger than
the original.

As discussed in the Section “Image processing in
optical metrology”, despite their diversity, the image-
processing algorithms used in optical metrology share
a common characteristic—they can be regarded as a
mapping operator that transforms the content of
arbitrary-sized inputs into pixel-level outputs, which

fits exactly with DNNs with a fully convolutional
architecture. In principle, any fully convolutional net-
work architectures presented here can be used for a
similar purpose. By applying different types of training
datasets, they can be trained for accomplishing differ-
ent types of image-processing tasks that we encoun-
tered in optical metrology. This provides an alternative
approach to process images such that the produced
results resemble or even outperform conventional
image-processing operators or their combinations.
There are also many other potential desirable factors
for such a substitution, e.g., accuracy, speed, generality,
and simplicity. All these factors were crucial to enable
the fast rise of deep learning in the field of optical
metrology.

Invoking deep learning in optical metrology:
principles and advantages
Let us return to optical metrology. It is essential that the

image formation is properly understood in order to
reconstruct the required geometrical or mechanical
quantities of the sample, as we discussed in Section “Image
formation in optical metrology”. In general, the relation
between the observed images I 2 Rm (frame-stacked lex-
icographically ordered with m × 1 in dimension) and the
desired sample parameter (or information-bearing para-
meter that clearly reflects the desired sample quantity, e.g.,
phase or displacement field) P 2 Rm (or Cn) can be
described as

I ¼ N A pð Þf g ð8Þ

where A is the (possibly nonlinear) forward measurement
operator mapping from the parameter space to the image
space, which is given by the physics laws governing the
formation of data; N represents the effect of noise (not
necessarily additive). This model seems general enough to
cover almost all image formation processes in optical
metrology. However, this does not mean that p can be
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directly obtained from I. More specifically, we have to
conclude in general from the effect (i.e., the intensity at
the pixel) to its cause (i.e., shape, displacement, deforma-
tion, or stress of the surface), suggesting that an inverse
problem has to be solved.

Solving inverse optical metrology problems: issues and
challenges
Given the forward model represented by Eq. (8), our

task is to find the parameters by an approximate inverse of
A (denoted as ~A�1) such that bp ¼ bR Ið Þ ¼ ~A�1 Ið Þ � p.
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However, in real practice, there are many problems
involved in this process:

● Unknown or mismatched forward model. The
success of conventional optical metrology
approaches relies heavily on the precise pre-
knowledge about the forward model A, so they are
often regarded as model-driven or knowledge-driven
approaches. In practical applications, the forward
model A used is always an approximate description
of reality, and extending it might be challenging due
to a limited understanding of experimental
perturbations (noise, aberrations, vibration, motion,
nonlinearity, saturation, and temperature variations)
and non-cooperative surfaces (shiny, translucent,
coated, shielded, highly absorbent, and strong
scattering). These problems are either difficult to
model or result in a too complicated (even
intractable) model with a large number of
parameters.

● Error accumulation and suboptimal solution. As
described in the section “Image processing in optical
metrology”, “divide-and-conquer” is a common
practice for solving complex problems with a
sequence of cascaded image-processing algorithms
to obtain the desired object parameter. For example,
in FPP, the entire image-processing pipeline is
generally divided into several sub-steps, i.e.,
image pre-processing, phase demodulation, phase
unwrapping, and phase-to-height conversion.
Although each sub-problem or sub-step becomes
simpler and easier to handle, the disadvantages are
also apparent: error accumulation and suboptimal
solution, i.e., the aggregation of optimum solutions
to subproblems may not be equivalent to the global
optimum solution.

● Ill-posedness of the inverse problem. In many
computer vision and computational imaging tasks,
such as image deblurring24, sparse computed
tomography25, and imaging through scattering
media27, the difficulty in retrieving the desired
information p from the observation I arises from
the fact that the operator A is usually poorly
conditioned, and the resulting inverse problem is
ill-posed, as illustrated in Fig. 8a. Due to the similar
indirect measurement principle, there are also many
important inverse problems in optical metrology that
are ill-posed, among which the phase demodulation
from a single-fringe pattern and phase unwrapping
from single wrapped phase distributions are the best
known for specialists in optical metrology (Fig. 8b).
The simplified model for the intensity distribution of
fringe patterns (Eq. (1)) suggests that the observed
intensity I results from the integration of several
unknown components: the average intensity A(x, y),

the intensity modulation B(x, y), and the desired
phase function ϕ(x, y). Simply put, we do not have
enough information to solve the corresponding
inverse problem uniquely and stably.

In the fields of computer vision and computational
imaging, the classical approach in solving an ill-posed
inverse problem is to reformulate the ill-posed original
problem into a well-posed optimization problem by
imposing certain prior assumptions about the solution p
that helps in regularizing its retrieval:

bp¼ argmin
p

I�A pð Þk k22þγR pð Þ ð9Þ
where || ||2 indicates the Euclidean norm, R(p) is a
regularization penalty function that incorporates the
prior information about p, such as smoothness286, sparsity
in some basis287 or dictionary288. γ is a real positive
parameter (regularization parameter) that governs the
weight given to the regularization against the need to fit
the measurement and should be selected carefully to
make an admissible compromise between the prior
knowledge and data fidelity. Such an optimization
problem can be solved efficiently with a variety of
algorithms289,290 and provide theoretical guarantees on
the recoverability and stability of the approximate
solution to an inverse problem291.
Instead of regularizing the numerical solution, in optical

metrology, we prefer to reformulate the original ill-posed
problem into a well-posed and adequately stable one by
actively controlling the image acquisition process so as to
add systematically more knowledge about the object to be
investigated into the evaluation process31. Due to the fact
that the optical measurements are frequently carried out
in a highly controlled environment, such a solution is
often more practical and effective. As illustrated by
Fig. 8c, by acquiring additional multi-frequency phase-
shifted patterns, absolute phase retrieval becomes a well-
posed estimation or regression problem, and the simple
standard (unconstrainted, regularization-free) least-
square methods in regression analysis provides a stable,
precise, and efficient solution292,293:

bp¼ argmin
p

I�A pð Þk k22 ð10Þ

The situation may become very different when we step
out of the laboratory and into the complicated environ-
ment of the real world294. The active strategies mentioned
above often impose stringent requirements on the mea-
surement conditions and the object under test. For
instance, high-sensitivity interferometric measurement in
general needs a laboratory environment where the
thermal-mechanical settings are carefully controlled to
preserve beam path conditions and minimize external
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disturbances. Absolute 3D shape profilometry usually
requires multiple fringe pattern projections, which
requires that the measurement conditions remain invar-
iant while sequential measurements are performed.
However, harsh operating environments where the object
or the metrology system cannot be maintained in a
steady-state may make such active strategies a luxurious
or even unreasonable request. Under such conditions,
conventional optical metrology approaches will suffer
from severe physical and technical limitations, such
as a limited amount of data and uncertainties in the
forward model.
To address these challenges, researchers have made

great efforts to improve state-of-the-art methods from
different aspects over the past few decades. For example,
phase-shifting techniques were optimized from the per-
spective of signal processing to achieve high-precision
robust phase measurement and meanwhile minimize the
impact of experimental perturbations32,153. Single-shot
spatial phase-demodulation methods have been explicitly
formulated as a constrained optimization problem similar
to Eq. (9) with an extra regularization term enforcing a
priori knowledge about the recovered phase (spatially
smooth, limited spectral extension, piecewise constant,
etc.)140,148. Multi-frequency temporal phase unwrapping
techniques have been optimized by utilizing the inherent
information redundancy in the average intensity and the
intensity modulation of the fringe images, allowing for
absolute phase retrieval with the reduced number of
patterns32,295. Geometric constraints were introduced in
FPP to solve the phase ambiguity problem without addi-
tional image acquisition175,183. Despite these extensive
research efforts for decades, how to extract the absolute
(unambiguous) phase information, with the highest pos-
sible accuracy, from the minimum number (preferably
single shot) of fringe patterns remains one of the most
challenging open problems in optical metrology. Conse-
quently, we are looking forward to innovations and
breakthroughs in the principles and methods of optical
metrology, which are of significant importance for its
future development.

Solving inverse optical metrology problems via deep
learning
As a “data-driven” technology that has emerged in

recent years, deep learning has received increasing
attention in the field of optical metrology and made
fruitful achievements in very recent years. Different from
the conventional physical model and knowledge-driven
approaches that the objective function (Eqs. (9) and (10))
is built based on the image formation model A, in deep-
learning approaches, we create a set of true object para-
meters p and the corresponding raw measured data I, and
establish their mapping relation Rθ based on a deep

neural network with all network parameters θ learned
from the dataset by solving the following optimization
problem (Fig. 9):

cRθ ¼ argmin
Rθ ;θ2Θ

p�Rθ Ið Þk k22 þR θð Þ ð11Þ
with k k22 being the L2-norm error (loss) function once
again (different types of loss functions discussed in the
subsection “Neural network training” can be specified
depending on the type of training data) and R is a
regularizer of the parameters to avoid overfitting. A key
element in deep-learning approaches is to parameterizecRθ by parameters θ 2 Θ. The “learning” process refers to
finding an “optimal” set of network parameters from the
given training data by minimizing Eq. (11) over all
possible network parameters θ 2 Θ. And the “optimality”
is quantified through the loss function that measures the
quality of the learned Rθ . Different deep-learning
approaches can be thought of as different ways to
parameterize the reconstruction network Rθ. Different
from conventional approaches that solving the optimiza-
tion problem directly gives the final solution cRθ to the
inverse problem corresponding to a current given input,
in deep-learning-based approaches, the optimization
problem is phrased as to find a “reconstruction algorithm”cRθ satisfying the pseudo-inverse property bp ¼ cRθ Ið Þ ¼
~A�1 Ið Þ � p from the prepared (previous) dataset, which is
then used for the reconstruction of the future input.
Most of the deep-learning techniques currently used in

optical metrology belong to supervised learning, i.e., a
matched dataset of ground-truth parameters p and cor-
responding measurements I should be created to train the
network. Ideally, the dataset should be collected by phy-
sical experiments based on the same metrology system to
account for all experimental conditions (which are usually
difficult to be fully described by the forward image for-
mation model). The ground truth can be obtained by
measuring various samples that one is likely to encounter
by employing active strategies mentioned above, without
considering the ill-posedness of the real problem. To be
more precise, in deep-learning-based optical metrology
approaches, active strategies frequently used in conven-
tional optical metrology approaches are shifted from the
actual measurement stage to the preparation (network
training) stage. Although the situation faced during the
preparation stage may be different from that in the actual
measurement stage, the information obtained in the for-
mer can be transferred to the latter in many cases. What
we should do during the training stage is to reproduce the
sample (using representative test objects), the system
(using the same measurement system), and the error
sources (noise, vibration, background illumination) dur-
ing the measurement stage to ensure that the captured
input data is as close as possible to those in the real
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measurement. On the other hand, we should make the
remaining environmental variables as controllable as
possible so that more active strategies (sample manip-
ulation, illumination changing, multiple acquisitions) can
be involved in the training stage to derive the ground
truth corresponding to these captured data. Once the
network is trained, we can then strip out these ideal
environment variables and make the network run in a
realistic experimental condition.
For example, for an interferometric system working in a

harsh environment or a FPP system designed for mea-
suring dynamic objects, phase demodulation from a
single-fringe pattern is the most desirable choice. The
inherent ill-posedness of the problem makes it a very
good example for deep learning in this regard. In the
training stage, we reproduce all the experimental condi-
tions except that we employ the multi-frame phase-
shifting technique with large phase-shifting steps to
obtain the ground truth for the training samples. Once the
network is established, it can map from only one single-
fringe pattern to the desired phase distribution, and thus
can be used in harsh environments where the single-shot
phase-demodulation technique should be applied. Note

that in this example, all the training data is fully generated
by experiments, so the reconstruction algorithm (inverse
mapping) cRθ can be established without the knowledge of
the forward model A in principle. Even though, since we
have sufficient real-world training observations of the
form (p, I), it can be expected that those experimental
data can reflect the true A in a complete and realistic way.
It should be noted that there are also many cases that

the ground truth corresponding to the experimental data
is inaccessible. In such cases, the matched dataset can be
obtained by a “learning from simulation” scheme —
simulating the forward operator (with the knowledge of
the forward image formation model A) on ideal sample
parameters. However, due to the complexity of real
experimental conditions, we typically only know an
approximation of A. Subsequently, the inconsistency or
uncertainty in the forward operator A may lead to a
compromised performance in real experiments (see the
“Challenges” section for detailed discussions). On the
other hand, partial knowledge of the forward model A can
be leveraged and incorporated in the deep neural network
design to alleviate the “black box” nature of conventional
neural network architectures, which may reduce the
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amount of required training data and provide more
accurate and reliable network reconstruction (see the
“Future directions” section for more details).

Advantages of invoking deep learning in optical metrology
In light of the above discussions, we summarize the

potential advantages that can be gained by using a deep-
learning approach in optical metrology. Figure 10 shows
the advantages of deep-learning techniques compared to
traditional optical metrology algorithms by taking FPP as
an example. One may have noticed that FPP has appeared
a few times, and in fact, it will appear more times. The
reason is that FPP is currently one of the most promising
and well-researched areas at the intersection of deep
learning and optical metrology, offering a representative
and convincing example of the use of deep learning in
optical metrology.
(1) From “physics-model-driven” to “data-driven”

Deep learning subverts the conventional “physics-model-
driven” paradigm and opens up the “data-driven”
learning-based representation paradigm. The recon-
struction algorithm (inverse mapping) cRθ can be learned
from the experimental data without resorting to the pre-
knowledge of the forward model A. If the training data is
collected under an environment that reproduces the real
experimental conditions (including metrology system,
sample types, measurement environment, etc.), and the
amount (diversity) of data are sufficient, the trained modelcRθ should reflect the true A more precisely and com-
prehensively and is expected to produce better recon-
struction results than conventional physics-model-driven
or knowledge-driven approaches. The “data-driven”
learning-based paradigm eliminates the need to design
different processing flows for specific image-processing
algorithm based on experience and pre-knowledge. By
applying different types of training datasets, one specific
class of neural network can be trained to perform various
types of transformation for different tasks, significantly
improving the universality and reducing the complexity of
solving new problems.
(2) From “divide-and-conquer” to “end-to-end

learning” In contrast to the traditional optical metrology
approach that solves the sequence of tasks independently,
deep learning allows for an “end-to-end” learning struc-
ture, where the neural network can learn the direct
mapping relation between the raw image data and the
desired sample parameters in one step, i.e., bp ¼ cRθ Ið Þ, as
illustrated in Fig. 10b. Compared with the “divide-and-
conquer” scheme, the “end-to-end” learning allows to
jointly solve multiple tasks, with great potential to alle-
viate the total computational burden. Such an approach
has the advantage of synergy: it enables sharing infor-
mation (features) between parts of the network that per-
form different tasks, which is more likely to get better

overall performance compared to solving each task
independently.
(3) From “solving ill-posed inverse problems” to

“learning pseudo-inverse mapping” Deep learning uti-
lizes complex neural network structures and nonlinear
activation functions to extract high-dimensional features
of the sample data, remove irrelevant information, and
finally establish a nonlinear pseudo-inverse mapping
model that is sufficient to describe the entire measure-
ment process. The major reason for the success of deep
learning is the abundance of training data and the explicit
agnosticism from a priori knowledge of how such data are
generated. Instead of hand-crafting a regularization
function or specifying prior, deep learning can auto-
matically learn it from the example data. Consequently,
the learned prior R(θ) is tailored to the statistics of real
experimental data and, in principle, provides stronger and
more reasonable regularization to the inverse problem
pertaining to a specific metrology system. Consequently,
the obstacle of “solving nonlinear ill-posed inverse pro-
blems” can be bypassed, and the pseudo-inverse mapping
relation between the input and the desired output can be
established directly.

The use of deep learning in optical metrology
Deep-learning-enabled image processing in optical
metrology
Owing to the above-mentioned advantages, deep

learning has been gaining increasing attention in optical
metrology, demonstrating promising performance in
various optical metrology tasks and in many cases
exceeding that of classic techniques. In this section, we
review these existing researches leveraging deep learn-
ing in optical metrology according to an architecture
similar to that introduced in the section “Image pro-
cessing in optical metrology”, as summarized in Fig. 11.
The basic network types, loss functions, and data
acquisition methods of some representative examples
are listed in Table 1.
(1) Pre-processing: Many early works applying deep

learning to optical metrology focused on image pre-
processing tasks, such as denoising and
enhancement. This is mainly due to the fact that
the successful use cases of deep learning to such
pre-processing tasks can be easily found in the
computer vision community. Many image pre-
processing algorithms in optical metrology could
receive a performance upgrade by simply
reengineering these existing neural network
architectures for a similar kind of problem.

● Denoising: Yan et al.55 constructed a CNN
composed of 20 convolutional layers for fringe
denoising (Fig. 12a). Simulated fringe patterns with
artificial Gaussian noise were generated as the
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Fig. 11 Deep learning in optical metrology. Because of the significant changes that deep learning brings to the concept of optical metrology
technology, almost all elementary tasks of digital image processing in optical metrology have been reformed by deep learning
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Table 1 Basic network structures, loss functions, and data acquisition methods for deep-learning methods applied to
optical metrology tasks

Task Reference Network

structure

Training database Loss function

Pre-processing Denoising Yan et al.55 SRCNN Simulation MAE

Jeon et al.296 U-Net+ ResNet Simulation MAE

Hao et al.54 SRCNN+ ResNet Simulation Euclidean loss

Lin et al.297 SRCNN+ ResNet Simulation Euclidean loss

Color channel separation Qian et al.300 FCN+ ResNet Experiment MSE

Enhancement Shi et al.51 SRCNN Experiment MSE

Yu et al.303 FCN Experiment MSE

Analysis Phase demodulation Feng et al.50,304 FCN+ ResNet Experiment MSE

Yang et al.307 GAN Experiment GAN loss

Li et al.311 U-Net Experiment MSE

Zhang et al.315 GAN Simulation GAN loss

Phase unwrapping Wang et al.321 U-Net Simulation SSIM

Spoorthi et al.323 FCN Simulation MSE

Zhang et al.325 FCN+ U-Net Simulation Cross-entropy

Kando et al.326 U-Net Simulation RMSE

Yin et al.52 FCN+ ResNet Experiment MSE

Subset correlation Žbontar and LeCun334 CNN KITTI459, Middlebury460 Hinge loss

Luo et al.336 CNN KITTI459 Cross-entropy

Guo et al.344 FCN Scene Flow388, KITTI459 Smooth L1

Subpixel refinement Pang et al.347 FCN FlyingThings3D387, Middlebury460,

KITTI459
MAE

Hartmann et al.338 CNN+ ResNet Scene Flow388, KITTI459 Smooth L1

Denoising Montresor et al.362 SRCNN+ ResNet Simulation MSE

Yan et al.363 SRCNN+ ResNet Simulation MSE

Digital refocusing Ren et al.365 SRCNN+ ResNet Experiment MSE

Wang et al.309 U-Net Experiment MSE

Lee et al.370 CNN Simulation MSE

Shinmobaba et al.371 CNN Experiment MSE

Error compensation Nguyen et al.374 U-Net Experiment Cross-entropy

Aguénounon et al.377 U-Net Experiment Mse

Postprocessing Phase to height conversion Li et al.378 BP neural network Experiment –

End-to-end From fringe to 3D shape Nguyen et al.381 FCN, U-Net Experiment MSE

Van et al.382 SRCNN Simulation RMSE

Machineni et al.384 FCN+ ResNet Simulation Smooth L1

Zheng et al.385 U-Net Simulation RMSE

From stereo images to

disparity

Kendall et al.389 SRCNN+ ResNet Scene Flow, KITTI MSE

Chang et al.390 FCN+ ResNet Scene Flow, KITTI Smooth L1
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training dataset, and corresponding noise-free
versions were used as ground truth. Figure 12d, e
shows the denoising results of WFT114 and the
deep-learning-based method, showing that their
method was free of the boundary artifacts in WFT
and achieved comparable denoising performance in
the central region. Jeon et al.296 proposed a fast
speckle-noise reduction method based on U-Net,
which showed robust and excellent denoising
performance for digital holographic images. Hao
et al.54 constructed a fast and flexible denoising
convolutional neural network (FFDNet) for batch
denoising of ESPI fringe images. Lin et al.297

developed a denoising CNN (DnCNN) for
speckle-noise suppression of fringe patterns.
Reyes-Figueroa and Rivera298 proposed a fringe
pattern filtering and normalization technique based
on autoencoder299. The autoencoder was able to
fine-tune the U-Net network parameters and
reduce residual errors, thereby improving the
stability and repeatability of the neural network.
Since it is difficult to access noise-free ground-truth
images in real experimental conditions, the training
datasets of these deep-learning-based denoising
methods are all generated based on simulations.

● Color channel separation: Our group reported a
single-shot 3D shape measurement approach with
deep-learning-based color fringe projection
profilometry that can automatically eliminate
color cross-talk and channel imbalance300. As
shown in Fig. 13a, the network predicted the sine
and cosine terms related to high-quality cross-talk-
free phase information from the input 3-channel

fringe images of different wavelengths. In order to
get rid of color cross-talk and chromatic aberration,
the green monochromatic fringe patterns were
projected and only the green channel of the
captured patterns was used to generate labels.
Figure 13b–d shows 3D reconstruction results of
a David plaster model measured by the traditional
color-coded method301 and our method, showing
that the deep-learning-based method yielded more
accurate surface details. The quality of the 3D
reconstruction was comparable to the ground truth
(Fig. 13e) obtained by the non-composite
(monochromatic) multi-frequency phase-shifting
method174. The deep-learning-based method was
applied for dynamic 360° 3D digital modeling,
demonstrating its potential in rapid reverse
engineering and related industrial applications
(Fig. 13f–i).

● Enhancement: Shi et al.51 proposed a fringe-
enhancement method based on deep learning, and
the flowchart of which is given in Fig. 14a. The
captured fringe image and the corresponding
enhanced one obtained by the subtraction of two
fringe patterns with π relative phase shift were used
to establish the mapping between the raw fringe
and the desired enhanced versions. Figure 14b–d
shows the 3D reconstruction results of a moving
hand using the traditional FT method138 and the
deep-learning method, suggesting that the deep-
learning method outperformed FT in terms of detail
preservation and SNR. Goy et al.302 proved that
DNN could recover an image with decent quality
under low-photon conditions, and successfully
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Fig. 12 Flowchart of deep-learning-based fringe pattern denoising and the denoising results of different methods. a The flowchart of deep-
learning-based fringe pattern denoising method: taking noisy fringe patterns as input to DCNN and predicting the denoised image directly. b The
noisy input pattern. c Ground truth. d The predicted result of deep learning. e The denoising result of WFT114. a–e Adapted with permission from
ref. 55, Copyright (2021), with permission from Elsevier
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applied their method to phase retrieval. Yu et al.303

proposed a fringe-enhancement method in which
the fringe modulation was improved by deep
learning, facilitating high-dynamic 3D shape
measurement without resorting to conventional
multi-exposure schemes.

(2) Analysis: Image analysis is the most critical step in
the image-processing architecture of optical
metrology. Consequently, most deep-learning
techniques applied to optical metrology are
proposed to accomplish the tasks associated with
image analysis. For phase measurement techniques,
deep learning is extensively explored for (both spatial
and temporal) phase demodulation and (spatial,
temporal, and geometric) phase unwrapping.

● Phase demodulation:
Spatial phase retrieval: To address the contradiction
between the measurement efficiency and accuracy of
traditional phase retrieval methods, our group, for the
first time, introduced deep learning to fringe pattern

analysis, substantially enhancing the phase-
demodulation accuracy from a single-fringe pattern50.
As illustrated in Fig. 15a, the background image A was
first predicted from the acquired fringe image I through
CNN1. Then CNN2 was employed to realize the
mapping from I and A to the numerator (sine) term M
and denominator (cosine) term D. Finally, the wrapped
phase information can be acquired by computing the
arctangent of M/D. Figure 15b compares the phases
retrieved by two representative traditional single-frame
phase retrieval methods (FT138, WFT114) and the deep-
learning method, revealing that our deep-learning-based
single-frame phase retrieval method achieved the highest
reconstruction quality, which almost visually reproduced
the ground-truth information obtained by the 12-step
phase-shifting method. We have incorporated the deep-
learning-based phase retrieval technique into the micro-
Fourier transform profilometry (μFTP) technique to
eliminate the need for additional uniform patterns,
doubling the measurement speed and achieving an
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unprecedented 3D imaging frame rate up to
20,000 Hz304. Figure 15c shows the 3D measurement
results of a rotating fan at different speeds (3000 and
5000 revolutions per minute (RPM)), suggesting that the

3D shape of fan blades can be intactly reconstructed
without any motion-induced artifacts visible. Qiao
et al.305 applied this deep-learning-based phase extrac-
tion technique for phase measuring deflectometry, and
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achieved single-shot high-accuracy 3D shape measure-
ment of specular surfaces. Some other network struc-
tures, such as structured light CNN (SL-CNN)306 and
deep convolutional GAN307 were also adopted for single-
frame phase retrieval. In addition, deep learning can also
be applied to Fourier transform profilometry for
automatic spectrum extraction by identifying the carrier
frequency components bearing the object information in
the Fourier domain, facilitating automatical spectrum
extraction, and achieving higher phase retrieval accuracy
without human intervention308. Wang et al.309 proposed
an automatical holographic reconstruction framework
(Y-Net) consisting of two symmetrical U-Nets, allowing
for simultaneous recovery of phase and intensity
information from a single off-axis digital hologram. They
also doubled the capability of Y-Net, extending it to the
reconstruction of dual-wavelength complex amplitudes,
while overcoming the spectral overlapping issue in
common-path dual-wavelength digital holography310.
Recently, our group used U-Net to realize aliasing-free
phase retrieval from a dual-frequency composite fringe
pattern311. Compared with the traditional Fourier trans-
form profilometry, the deep-learning-enabled approach
avoids the complexities associated with dual-frequency
spectra separation and extraction, allowing for higher-
quality single-shot absolute 3D shape reconstruction.
Temporal phase retrieval: Wang et al.312 introduced a
deep-learning scheme to the phase-shifting technique in
FPP. As shown in Fig. 16a, by introducing a fully
connected DNN, the link between three low- and unit-
frequency phase-shifting fringe patterns and high-quality

absolute phases calculated from high-frequency fringe
images were established, and thus, the 3D measurement
accuracy could be significantly enhanced. The three
unit-frequency phase-shifting patterns were encoded in
three monochrome channels of a color image and
projected by a 3LCD projector. The individual fringe
patterns were then decoded and projected by the
projector sequentially and rapidly313,314. Consequently,
the hardware system allowed for real-time 3D surface
imaging of multiple objects at a speed of 25.6 fps. Zhang
et al.315 developed a deep-phase-shift network (DPS-Net)
based on GAN, with which multi-step phase-shifting
interferograms with accurate arbitrary phase shifts for
calculating high-quality phase information were pre-
dicted from a single interferogram. Besides random
intensity noise, conventional phase-shifting algorithms
are also sensitive to other experimental imperfections,
such as phase-shifting error, illumination fluctuations,
intensity nonlinearity, lens defocusing, motion-induced
artifacts, and detector saturation. Deep learning also
provides a potential solution to eliminate or at least
partially alleviate the impact of these error sources on
phase measurement. For example, Li et al.316 proposed a
deep-learning-based phase-shifting interferometric phase
recovery approach. The constructed U-Net was capable
of predicting the accurate wrapped phase map from two
interferogram inputs with unknown phase shifts. Zhang
et al.317 applied CNN to extract a high-accuracy wrapped
phase map from conventional 3-step phase-shifting
fringe patterns. In the training stage, low-modulation
or saturated fringe patterns were used as the raw dataset,
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and the relation between these imperfect raw fringe and
high-quality error-free unwrapped phase (obtained by
12-step phase-shifting algorithms) were established
based on CNN. Consequently, the deep-learning-based
approach could accommodate both dark and reflective
surfaces, and the related phase errors (noise and
saturation) in the conventional three-step phase-shifting
method were significantly suppressed, making it a
promising approach for high-dynamic-range (HDR) 3D
measurement of surfaces with large reflectivity variations
(Fig. 16d–g). Wu et al.318 proposed a deep-learning-
based phase-shifting approach to overcome the phase
errors associated with intensity nonlinearity. Through a
well-trained FCN, the distortion-free high-quality phase
map could be reconstructed conveniently and efficiently
from the raw phase-shifting fringe patterns with a strong
gamma effect. Yang et al.319 constructed a three-to-three
deep-learning framework (Tree-Net) based on U-Net to
compensate for the nonlinear effect in the phase-shifting
images, which effectively and robustly reduced the phase
errors by about 90%. Recently, our group demonstrated
that the nonsinusoidal errors (e.g., residual high-order
harmonics in binary defocusing projection, intensity
saturation, gamma effect of projectors and cameras, and
their coupling) in phase-shifting profilometry could be
handled by an integrated deep-learning framework. A
well-trained U-Net could effectively suppress the phase
errors caused by different types of nonsinusoidal fringe
with only a minimum of three fringe patterns as input320.

● Phase unwrapping:
Spatial phase unwrapping: Wang et al.321 proposed a
one-step phase unwrapping approach based on deep

learning. Various ideal (noise-free) continuous phase
distributions and the corresponding wrapped phase
maps with different types of noises (Gaussian, salt and
pepper, or multiplicative noises) were simulated and
used as the training dataset for a CNN based on U-Net.
Upon completion of the training, the absolute phases can
be predicted directly from a noisy wrapped phase map, as
illustrated in Fig. 17a. Figure 17b–f shows the compar-
isons of phase unwrapping results obtained by the
traditional least-square (LS) method322 and deep-
learning-based method, demonstrating that deep learn-
ing can directly fulfill the complicated nonlinear phase
unwrapping task in one step with improved anti-noise
and anti-aliasing ability. Spoorthi et al.323 developed a
CNN-based phase unwrapping framework-PhaseNet.
The fringe order (2π integer phase jumps) used for
phase unwrapping can be obtained pixel by pixel through
a semantic segmentation-based deep-learning framework
of the encoder-decoder structure. Recently, they devel-
oped an enhanced phase unwrapping framework—
PhaseNet 2.0, which could directly map a noisy wrapped
phase to a denoised absolute one324. Zhang et al.325

transferred the task of phase unwrapping to a multi-class
classification problem and generated fringe orders by
feeding the wrapped phase into a convolutional segmen-
tation network. Zhang et al.53 proposed a deep-learning-
based approach for rapid 2D phase unwrapping, which
demonstrated good denoising and unwrapping perfor-
mance and outperformed the conventional path-
dependent and path-independent methods. Kando
et al.326 applied U-Net to achieve absolute phase
prediction from a single interferogram, and the quality

CNN
Wrapped image Absolute phase

a

Deep learning Error of LS

c f13π

0

LS

e 13π

0

Error of deep learning

d –π

π

–π

π

Input

b

Fig. 17 Flowchart of the one-step deep-learning-based phase unwrapping approach and the unwrapping results of different methods.
a The flowchart of the one-step deep-learning-based phase unwrapping approach: the absolute phase can be predicted directly from a noisy
wrapped phase based on the trained CNN. b The wrapped phase map of living mouse osteoblast. c Unwrapped phase of (b) obtained by deep
learning. d Phase errors of (c). e Unwrapped phase of (b) obtained by the conventional LS method322. f Phase errors of (e). a–f Adapted with
permission from ref. 321, Optica publishing
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of the recovered phase was superior to that obtained by
the conventional FT method, especially for closed-fringe
patterns. Li et al.327 proposed a deep-learning-based
phase unwrapping strategy for closed fringe patterns.
They compared four different network structures for
phase unwrapping and found that the improved FCN
architecture performed the best in terms of accuracy and
speed. However, it should be mentioned that, similar to
the case of fringe denoising, true absolute phase maps
corresponding to the real experimentally obtained
wrapped phase maps are generally quite hard to obtain
in many interferometric techniques (which requires
sophisticated multi-wavelength illuminations and het-
erodyne operations). Therefore, the training datasets
used in the above-mentioned deep-learning-based spatial
phase unwrapping methods are generated based on
numerical simulation instead of real experiments. More-
over, since only one single wrapped phase map is used as
input, the above-mentioned deep-learning-based spatial
phase unwrapping methods still suffers from the 2π
ambiguity problem inherent in traditional phase mea-
surement techniques.
Temporal phase unwrapping: Our group developed a
deep-learning-based temporal phase unwrapping frame-
work, as illustrated in Fig. 18a52. The inputs of the
network are a single-period (wrap-free) phase map and a
high-frequency wrapped phase map, from which the
constructed CNN could directly predict the fringe orders
corresponding to the high-frequency phase to be
unwrapped. Figure 18b–e gives the comparison between
the traditional multi-frequency temporal phase unwrap-
ping (MF-TPU) method174 and the deep-learning-based

approach for the 3D reconstructions obtained by
unwrapping the wrapped phase maps using the (1–32)
and (1–64) frequency combination of fringe patterns,
respectively. In comparison with MF-TPU, the deep-
learning-assisted method produced phase unwrapping
results with higher accuracy and robustness even in the
case of different types of error sources (low SNR,
intensity nonlinearity, and object motion). Liu et al.328

further improved this approach by using a lightweight
classification CNN to extract the fringe orders from a
pair of low-high-frequency phase maps, which saved a
large amount of training time and made it possible to
deploy the network on mobile devices. Li et al.329

proposed a deep-learning-based dual-wavelength phase
unwrapping approach in which only a single-wavelength
interferogram was used to predict another interferogram
recorded at a different wavelength with a conditional
GAN (CGAN). Though their approach still suffered
from the phase ambiguity problem when measuring
discontinuous surface or isolated objects, it provided an
effective and potential solution to phase unwrapping and
extended the measurement range of single-wavelength
interferometry and holography techniques. Yao et al.
designed FCNs by incorporating residual layers to
predict the fringe orders of wrapped phases from only
two330 or even single331 Gray-code image(s), significantly
reducing the required images compared with the
conventional Gray-code technique.
Geometric phase unwrapping: Our group proposed a
deep-learning-assisted geometric phase unwrapping
approach for single-shot 3D surface measurement332.
The flowchart of this approach is shown in Fig. 19a.
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unwrapping approaches. a The flowchart of deep-learning-based temporal phase unwrapping. b The 3D reconstruction obtained from phase
unwrapping of (1+ 32)-frequency combination by MF-TPU164. c The 3D reconstruction obtained from phase unwrapping of (1+ 32)-frequency
combination by the deep-learning-based method. d The 3D reconstruction obtained from phase unwrapping of (1+ 64)-frequency combination by
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permission from Springer Nature: Scientific Reports52, Copyright (2021)
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Two CNNs (CNN1 and CNN2) were constructed for
phase retrieval and phase unwrapping, respectively.
Based on a stereo camera system, dual-view single-shot
fringe patterns, as well as the reference plane images,
were fed into CNN2 to determine the fringe orders.
With the predicted wrapped phases and fringe orders,
the absolute phase map can be recovered. Figure 19b–e
is the comparison of 3D reconstructions obtained
through different conventional geometric phase
unwrapping methods175,179,186 and the deep-learning-
based method, demonstrating that the deep-learning-
based method can robustly unwrap the wrapped phases
of dense fringe patterns within a larger measurement
volume under the premise of single-frame projection. It
should be mentioned that it is indeed a straightforward
idea to establish the relationship between the fringe
pattern to the corresponding absolute phase directly.
However, since the rationality of the deep-learning-
based approach is largely dependent on the input data,

when the input fringe itself is ambiguous, the network
can never always produce reliable phase unwrapped
results. For example, in Yu’s work333, when there exist
large depth discontinuities and isolated objects, even
with the assistance of deep learning, one fringe image is
insufficient to eliminate the 2π phase ambiguity.

In DIC and stereophotogrammetry, image analysis aims to
determine the displacement vector of each pixel point
between a pair of acquired images. Recently, deep learning
has also been extensively applied to stereomatching in
order to achieve improved performance compared with
traditional subset correlation and subpixel refinement
methods.
Subset Correlation: Zbontar and LeCun334 presented a
deep-learning-based approach for estimating the dis-
parity map from a rectified stereo image pair. A siamese-
structured CNN was reconstructed to address the
matching cost computation problem through learning
the similarity measure from small image patches.
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The output of CNN was utilized for initializing the
stereomatching cost, followed by some postprocessing
processes, as shown in Fig. 20a. Figure 20d–h is the
disparity images obtained from the traditional Census
transform method335 and the deep-learning-based
method, from which we can see that the deep-
learning-based approach achieved a lower error rate
and better prediction result. Luo et al.336 exploited a
siamese CNN connected by point product layer to speed
up the calculation of matching score and obtained
improved matching performance. Recently, our group
improved Luo’s network by introducing additional
residual blocks and convolutional layers to the head of
the neural network and replacing the original inner
product with the fully connected layers with shared
weights337. The improved network can extract a more
accurate initial absolute disparity map from speckle
image blocks after epipolar correction, and showed
better matching capability than Luo’s network. Hart-
mann et al.338 constructed a CNN with five siamese
branches to learn a matching function, which could
directly predict a scalar similarity score from multiple
image patches. It should be noted that the siamese CNN
is one of the most widely used network structures in
stereovision applications, which has been frequently
employed and continuously improved for subset correla-
tion tasks339–343. On a different note, Guo et al.344

improved the 3D-stacked hourglass network to obtain
the cost volume by group-wise correlation and then
realized stereomatching. Besides conventional supervised
learning approaches, unsupervised learning was also
introduced to subset correlation. Zhou et al.345 proposed
an unsupervised deep-learning framework for learning
the stereomatching cost, using a left-right consistency
check to guide the training process to converge to a
stable state. Kim et al.346 constructed a semi-supervised
network to estimate stereo confidence. First, the
matching probability was calculated according to
the matching cost with residual networks. Then, the
confidence measure was estimated based on a unified
deep network. Finally, the confidence feature of the
disparity map is extracted by synthesizing the results
obtained by the two networks.
Subpixel refinement: Pang et al.347 proposed a cascade
(two-stage) CNN architecture for subpixel stereomatch-
ing. Figure 21a shows the flowchart of their method. In
the first stage, the disparity image with more details was
obtained from the input stereo images through Dis-
pFulNet (“Ful” means full resolution) equipped with
extra upsampling modules. Then the initialized disparity
was rectified and the residual signals across multiple
scales were generated through the hourglass structure
DispResNet (“Res” means residual) in the second stage.
According to the combination of the outputs from the
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Fig. 20 Flowchart of the deep-learning-based method for extracting depth information and the estimated disparity images using different
methods. a The flowchart of deep-learning-based method for extracting depth information: two network architectures (one tuned for speed, the
other for accuracy) are trained to learn the matching cost computation. The output of CNN is applied to initialize the stereomatching cost, followed
by a series of postprocessing processes. b, c The input stereo images. d Ground truth. e, g The disparity estimation results using Census335 and CNN.
f, h The disparity errors of (e, g). a–h Adapted from ref. 334. © 2016 Jure Zbontar and Yann LeCun, Microtome Publishing
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two stages, the final disparity with subpixel accuracy can
be obtained. Figure 21d–g shows the predicted disparity
images and error distributions of the input stereo image
pairs (Fig. 21b) obtained by DispFulNet and DispResNet.
It can be seen from the experimental results that after
the second stage of optimization, the quality of the
disparity was significantly improved. Based on different
considerations, a large variety of network structures were
proposed for subpixel refinement, e.g., StereoNet348,
LGC-Net349, DeepMVS350,351, StereoDRNet352, Deep-
Pruner353, LAF-Net354, 3D CNN355, MADNet356,
Unos357, left-right comparative recurrent model358,
CNN-based disparity map optimization359, deep-
learning-based fringe-image-assisted stereomatching
method360, and UltraStereo361.
(3) Postprocessing: Deep-learning techniques also

play an important role in the final postprocessing
stage of the image-processing architecture of
optical metrology. Examples of applying deep
learning for postprocessing are very diverse,
including further optimization of the
measurement results (e.g., phase denoising, error
compensation, and refocusing) and converting the
measured intermediate variable to the desired
physical quantity (e.g., system calibration and
phase-to-height mapping in FPP).

● Denoising: Montrésor et al.362 proposed to use
DnCNN for phase denoising. As illustrated in
Fig. 22a, the sine and cosine components of the
noisy phase map were fed into a DnCNN to produce
the corresponding denoised version, and the resultant
phase information was calculated by the arctangent

function. The phase was then fed back into and
refined by DnCNN again, and this process was
repeated several times to achieve a better denoising
performance. In order to generate more realistic
training datasets via simulation, the additive
amplitude-dependent speckle noise was carefully
modeled by taking its non-Gaussian statistics, non-
stationary properties, and a correlation length into
account. Figure 22b–e shows the comparison of the
denoising results obtained by WFT114 and the deep-
learning methods, suggesting that DnCNN yielded
comparable standard deviation but lower peak-to-
valley phase error than WFT. Yan et al.363 proposed
a CNN-based wrapped phase denoising method. By
filtering the original numerator and denominator of
the arctangent function, phase denoising results can
be achieved without tuning any parameters. They
also presented a deep-learning-based phase
denoising technique for digital holographic speckle
pattern interferometry364. Their approach could
obtain an enhanced wrapped phase map by
significantly suppressing the speckle noise, and
outperformed traditional phase denoising methods
when processing phases with steep spatial gradients.

● Digital refocusing: Ren et al.365 proposed the
holographic reconstruction network (HRNet) to
deal with the holographic reconstruction problem,
which could perform automatic digital refocusing
without employing any prior knowledge. Figure 23a
gives the schematic of their deep-learning workflow,
where a hologram input (the first block) was fed into
HRNet, and then the reconstructed image (the third
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Fig. 21 Flowchart of the cascade CNN architecture consisting of two stages for disparity estimation and the corresponding predicted
disparities. a Flowchart of the cascade CNN architecture consisting of two stages for disparity estimation: the first stage outputs the disparity image
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block) corresponding to the specific input was
directly predicted. A typical lens-free Mach-
Zehnder interferometer was constructed to acquire
training input images, and traditional convolution
method366, PCA aberration compensation226,
manual artifacts removal, and phase unwrapping367

were successively employed to obtain the
corresponding label images. Figure 23b–f shows
the results of refocusing and hologram

reconstruction with different methods, proving
that the predicted images by HRNet were
precisely in-focus and noise-free, whereas there are
significant noises and artifacts in the reconstruction
results obtained by traditional convolution and
angular spectrum method368. Alternatively, the
autofocusing problem in DH could be recast as a
regression problem, with the focal distance being a
continuous response corresponding to a digital
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hologram. Ren et al.369 constructed a CNN to
achieve nonparametric autofocusing for digital
holography, which could accurately predict the
focal distance without knowing the physical
parameters of the optical imaging system. Lee
et al.370 constructed a CNN-based estimator
combined with Discrete Fourier Transform (DFT)
to realize the automatic focusing of off-axis digital
holography. Their method can automatically
determine the object-to-image distance rapidly and
effectively, and a sharp in-focus image of the object
can be reconstructed accurately. Shimobaba et al.371

used the regression-based CNN for holographic
reconstruction, which could directly predict the
sample depth position with millimeter accuracy
from the power spectrum of the hologram.
Jaferzadeh et al.372 proposed a regression-layer-
toped CNN to determine the optimal focus
position for numerical reconstruction of micro-
sized objects, which can be extended to the study
of biological samples such as cancer cells. Pitkäaho
et al.373 constructed a CNN based on AlexNet and

VGG16 to learn the defocus distances from a large
number of holograms. The well-trained network can
determine the high-accuracy in-focus position of a
new hologram without resorting to conventional
numerical propagation algorithms.

● Error compensation: Nguyen et al.374 proposed a
phase-aberration compensation framework
combining CNN and Zernike polynomial fitting, as
illustrated in Fig. 24a. The unwrapped phase
aberration map of the hologram was fed into a
CNN with the U-Net structure to detect the
background regions, which were then sent into
the Zernike polynomial fitting375 to determine the
conjugated phase aberration. For training data
collection/preparation, the PCA method226 was
used for training data collection/preparation.
Figure 24b–e gives the phase aberration
compensation results of PCA and the deep-
learning method, showing that the phase
aberrations were completely eliminated by using
the deep-learning technique, while they were still
visible in the phase results obtained by the PCA
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method. In addition, the deep-learning-based
technique was fully automatic, and the robustness
and accuracy were shown to be superior to PCA. Lv
et al.376 used DNN to compensate projector
distortion-induced measurement errors in a FPP
system. By learning the mapping between the 3D
coordinates of the object and their corresponding
distortion-induced error distribution, the distortion
errors of the original test 3D data can be accurately
predicted. Aguenounon et al.377 leveraged a DNN
with a double U-Net structure to provide the single
snapshot of optical properties imaging with the
additional function of real-time profile correction.
The real-time visualization of the resulting profile-
corrected optical property (absorption and reduced
scattering) map has the potential to be deployed to
guide surgeons.

● Quantity transformation: Li et al.378 proposed an
accurate phase-height mapping approach for fringe
projection based on a “shallow” (3-layer) BP neural
network. The flowchart of their method is shown in
Fig. 25a, where the camera image coordinates
(Xci, Yci) and their corresponding horizontal ones
Xpi of the projector image were fed into the network
to predict the desired 3D information (Xi, Yi, Zi). To
obtain the training data, a standard calibration board
with circle marks fixed on a high-precision
displacement stage was captured at different
Z-direction positions. With the captured images,
the marks’ centers coordinates (Xci, Yci)with subpixel

accuracy were extracted with the conventional circle
center detection algorithm379, and the horizontal
coordinates Xpi of the corresponding projector
image for each mark center were calculated
through the absolute phase value. Figure 25b
shows the 3D reconstruction result of a standard
stair sample predicted by the neural network.
Figure 25c and d shows the error distributions of
the measurement results obtained by traditional
phase-height conversion method380 and neural
network, showing that the learning-based method
was insensitive to the fringe intensity nonlinearity
and could recover the 3D shape of a workpiece with
high accuracy.

End-to-end learning in optical metrology
As mentioned earlier, “divide and conquer” is a core

idea of solving complex optical metrology problems by
breaking the whole image-processing pipeline into several
modules or sub-steps. On a different note, deep learning
enables direct mapping between the original input and the
desired output, and the whole process can be trained as a
whole, in an end-to-end fashion. Although somewhat
brute-force, such a straightforward treatment has been
extensively used in deep learning, and gradually intro-
duced to many subfields of optical metrology, e.g., FPP
and DIC.

● From fringe to 3D shape: In FPP, the imaging
processing pipeline generally consists of pre-
processing, phase demodulation, phase unwrapping,
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and phase-to-height conversion. Deep learning
provides a viable and efficient way to reconsider
the whole problem from a holistic perspective, taking
human intervention out of the loop and solving the
“fringe to 3D shape” problem in a purely data-driven
manner. Based on this idea, Nguyen et al.381

proposed an end-to-end neural network to directly
perform the mapping from a fringe pattern to its
corresponding 3D shape, the flowchart of which is
shown in Fig. 26a. Three different deep CNNs,
including FCN, autoencoder299, and U-Net, were

trained based on the datasets obtained by the
conventional multi-frequency phase-shifting
profilometry method. Figure 26b, c gives an input
and its corresponding ground-truth 3D shape.
Figure 26c shows the best 3D reconstruction
results predicted by the three networks with the
depth measurement accuracy of 2mm. Van et al.382

presented an SRCNN-based DNN to directly extract
absolute height information from a single-fringe
image. Through simulated fringe and depth image
pairs, the trained network was able to obtain
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high-accuracy full-field depth information from a
single-fringe pattern. Recently, they compared the
effect of different loss functions (MAE, MSE, and
SSIM) on a modified U-Net for mapping a fringe
image to the corresponding depth, and designed
a new mixed gradient loss function that yielded
higher-quality 3D reconstructions than conventional
ones383. Machineni et al.384 constructed a CNN with
multiresolution similarity assessment to directly
reconstruct the object’s shape from the
corresponding deformed fringe image. Their
proposed method can achieve promising results
under various challenging conditions such as low
SNR, low fringe density, and high dynamic range.
Zheng et al.385 utilized the calibration matrix from a
real-world FPP system to construct its “digital twin”,
which provided abundant simulation data (fringe
pattern and corresponding depth map) required for
the model training. The trained U-Net can then be
employed to the real-world FPP system to extract
the 3D geometry encoded in the fringe pattern in one
step. Similarly, Wang et al.386 constructed a virtual
FPP system for the training dataset generation. A
modified loss function based on SSIM index was
employed, providing improved performance in terms
of measurement accuracy and detail preservation.

● From stereo images to disparity: Deep learning
can also be applied to DIC and
stereophotogrammetry to bypass all intermediate
image-processing steps in the pipeline for
displacement and 3D reconstruction. Mayer
et al.387 presented end-to-end networks for the
estimation of disparity (DispNet) and optical flow
(FlowNet). In DispNet, a 1D correlation was
proposed along the disparity line corresponding to
the stereo cost volume. In addition, they also offered
a large synthetic dataset, Scene Flow388, for training
large-scale stereomatching networks. Kendall
et al.389 established an end-to-end Geometry and
Context Network (GC-Net) mapping from a
rectified pair of stereo images to disparity maps
with subpixel accuracy (Fig. 27a). Stereo images
were fed into the network to directly output
disparity images of two perspectives. Figure 27b–d
shows the test results on Scene Flow, where Fig. 27b
is the left input, Fig. 27c is the disparity predicted by
deep learning, and Fig. 27d is the ground truth.
Experimental results show that the end-to-end
learning method produced high-resolution
disparity images and could tolerate large
occlusions. Chang et al.390 developed a pyramid
stereomatching network (PSMNet) to enhance the
matching accuracy by using the 3D CNN-based
spatial pyramid pooling and multiple hourglass

networks. Zhang et al.391 proposed a cost
aggregation network incorporating the local guided
filter and semi-global-matching-based cost
aggregation, achieving higher matching quality as
well as better network generalization. Recently, our
group proposed an end-to-end speckle correlation
strategy for 3D shape measurement, where a
multiscale residual subnetwork was utilized to
obtain feature maps of stereo speckle images, and
the 4D cost volume at one-fourth of the original392.
Besides, a saliency detection network was integrated
to generate a pixel-wise mask to exclude the
shadow-noised regions. Nguyen et al.393 used three
U-Net-based networks to convert a single speckle
image into its corresponding 3D information. It
should be mentioned that stereophotogrammetry is
a representative field that deep learning has been
extensively applied. Many other end-to-end deep-
learning structures directly mapping stereo images
to disparity have been proposed, such as hybrid
CNN-CRF models394, Demon (CNN-based)395,
MVSNet (CNN-based)396, CNN-based disparity
estimation through feature constancy397,
Segstereo398, EdgeStereo399, stereomatching with
explicit cost aggregation architecture400,
HyperDepth401, practical deep stereo (PDS)402,
RNN-based stereomatching403,404, and
unsupervised learning405–409. For DIC, Boukhtache
et al.410 presented an enhanced FlowNet (so-called
StrainNet) to predict displacement and strain fields
from pairs of deformed and reference images of a
flat speckled surface. Their experimental results
demonstrated the feasibility of the deep-learning
approach for accurate pixel-wise subpixel
measurement over full displacement fields. Min
et al.411 proposed a 3D CNN-based strain
measurement method, which allowed simultaneous
characterization in spatial and temporal domains
from the surface images obtained during a tensile
test of BeCu thin film. Rezaie et al.412 compared the
performance of conventional DIC method and their
deep-learning method based on U-Net for detecting
cracks on stone masonry wall images, showing that
the learning-based method could detect most visible
cracks and better preserve the crack geometry.

It should be mentioned that, not just limited to phase
or correlation measurement techniques, deep learning
has also been widely adopted in many other fields of
optical metrology. However, due to space limitations, it
is not possible to describe or discuss all of them.
Examples include but are not limited to the time of flight
(ToF)413–418, photometric stereo419–425, wavefront sen-
sing426–429, aberrations characterization430, and fiber
optic imaging431–435, etc.
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After reviewing hundreds of recent works leveraging
deep learning for different optical metrology tasks, read-
ers may still be interested to know to apply these new
data-driven approaches to their own problems or pro-
jects. To help the reader, we present a step-by-step guide
to applying deep learning to optical metrology in the
Supplementary Information, taking phase demodulation
from a single-fringe pattern as an example. We explain
how to build a DNN with fully convolutional network
architectures and train it with the experimentally col-
lected training dataset. We also distribute the source code
and the corresponding datasets for this example. Based on
this example, we demonstrate that a well-trained DNN
can accomplish the phase-demodulation task in an
accurate and efficient manner, using only a single-fringe
pattern as input. Thus, it is capable of combining the
single-frame strength of the spatial phase demodulation
methods with the high-measurement accuracy of the
temporal phase-demodulation methods. The interested
reader may refer to the Supplementary Information for
the step-by-step tutorial.

Deep learning in optical metrology: challenges
Our review in the last section shows that the deep-

learning solutions in optical metrology are straightfor-
ward, but have led to improved performance compared
with the state-of-the-art. In this session, we will shift our
attention to reveal some challenges of the use of deep
learning in optical metrology, which require further
attention and careful consideration:

● High cost of collecting and labeling experimental
training data: Most of the deep-learning
techniques reviewed belong to supervised
learning, which requires a large amount of
labeled data to train the network. To account for
real experimental conditions, deep-learning
approaches can benefit from large amounts of
experimental training data. Since these data serve
as ground truth with sufficiently high accuracy,
they are usually expensive to collect436. In
addition, since the optical metrology system is
highly customized, training data collected by one
system may not be suitable for another system of
the same type. This may explain why there were
far fewer publicly available datasets in the field of
optical metrology (especially compared with the
computer vision community). Without such
public benchmark datasets, it is difficult to make
a fair and standardized comparison between
different algorithms. Although some emerging
machine learning approaches, such as transfer
learning437, few-shot learning438, unsupervised
learning244, and weak-supervised learning439),
can decrease the reliance on the amount of data

to some extent, their performance is not
comparable to that of supervised learning with
large data numbers so far.

● Ground truth inaccessible for experimental
data: In many areas of optical metrology, e.g.,
fringe or phase denoising, it is infeasible or even
impossible to get the actual ground truth of the
experimental data. As discussed in previous
sections, generating a training dataset by
simulating the forward image formation process
can bypass this difficulty362,385, often at the price of
compromised actual performance when the
knowledge of the forward image formation model
A is imprecise or simulated dataset fails to reflect
the real experimental system realistically and
comprehensively. An alternative approach to this
issue is to create a “quasi-experimental” dataset by
collecting experimental raw data and then using
the conventional state-of-the-art solutions to
get the corresponding labels308–310. Essentially,
the network is trained to “duplicate” the
approximate inverse operator ~A�1 corresponding
to the conventional algorithm that is used to
generate the labels. After training, the network is
able to emulate the conventional reconstruction
algorithm cRθ Ið Þ � ~A�1 Ið Þ, but the improvement in
performance over conventional approaches
becomes an unreasonable expectation.

● Empiricism in network design and training: So
far, there is no standard paradigm for selecting
appropriate DNN architectures because it requires
a comprehensive understanding of the topology,
training methods, and other parameters. In
practice, we usually determine our network
structure by evaluating different available
candidate models, or comparing similar task-
specific models by training them with different
hyperparameters settings (network layers, neural
units, and activation functions) on a specific
validation dataset440. However, the overwhelming
number of deep-learning models often limits one
to evaluating only a few of the most trustworthy
models, which may lead to suboptimal results.
Therefore, one should learn how to quickly and
efficiently narrow down the range of available
models to find those most likely to be best
performing on a specific type of problem. In
addition, training a DNN is generally laborious
and time-consuming, and becomes even worse
with repetitive adjustments in the network
architecture or hyperparameters to prevent
overfitting and convergence issues.

● Lack of generalization ability after specific
sample training: The generalization ability of

Zuo et al. Light: Science & Applications           (2022) 11:39 Page 40 of 54

40



deep-learning approaches is closely related to the
size and diversity of training samples. Generally,
deep-learning architectures used in optical
metrology are highly specialized to a specific
domain, and they should be implemented with
extreme care and caution when solving issues that
do not pertain to the same domain. Thus, we
cannot ignore the risk that when a never-before-
experienced input differs even slightly from what
they encountered at the training stage, the mappingcRθ established by deep networks may quickly stop
making sense441. This is quite different from the
traditional optical metrology solutions in which
the reliability of the reconstruction can be secured
for diverse types of samples as long as
“the forward model A is accurate” and “the
corresponding reconstruction algorithm ~A�1 is
effective”.

● “Deep learning in computer vision” ≠ “Deep
learning in optical metrology”: Deep learning is
essentially the process of using computers to help
us find the underlying patterns within the training
dataset. Since the information cannot be “born out
of nothing”, DNNs cannot always produce a
provably correct solution. Compared with many
computer vision tasks, optical metrology concerns
more on accuracy, reliability, repeatability, and
traceability442. For example, surface defect
inspection is an indispensable quality-control
procedure in manufacturing processes443. When
using deep learning for optical metrological
inspection, one may face the risk that a defect in
an industrial component is “smoothed out” and
undetected by an overfitted DNN in the inspection
stage, which will make the entire production run
defective. Since the success of deep learning
depends on the “common” features learned and
extracted from the training samples, which may
lead to unsatisfactory results when facing “rare
samples”.

● “Deep learning” lacks the ability of “deep
understanding”: The “black box” nature of
DNNs, which is arguably one of their most well-
known disadvantages, prevents us from knowing
how the neural network generates expected results
from specific inputs by learning a large amount of
training data. For example, when we send a fringe
pattern into a neural network, and it outputs a poor
phase image, it is not easy to comprehend what
makes it arrive at such a prediction. Interpretability
is critical in optical metrology because it ensures
the traceability of the mistake. Consequently, most
researchers in optical metrology community use
deep-learning approaches in a pragmatic fashion

without the possibility to explain why it provides
good results or without the ability to explain the
logical bases and apply modifications in the case of
underperformance.

Deep learning in optical metrology: future
directions
Although the above challenges have not been adequately

addressed, optical metrology is now surfing the wave of
deep learning, following a trend similarly being experi-
enced in many other fields. This field is still young, but is
expected to play an increasingly prominent role in the
future development of optical metrology, especially with
the evolution of computer science and AI technology.

● Hybrid, composite, and automated learning: It
must be admitted that at this stage, deep-learning
methods for optical metrology are still limited to
some elementary techniques. There is further
untapped potential as a number of latest
innovations in deep learning can be directly
introduced into the context of optical metrology.
(1) Hybrid learning methods, such as semi-
supervised242, unsupervised244, and self-supervised
learning444, are capable of extracting valuable
insights from unlabeled data, which is extremely
attractive as the availability of ground-truth or
labeled data in optical metrology is very limited.
For example, GANs utilize two networks in a
competitive manner, generator and discriminator,
to deceive each other during the training process to
generate the final prediction without specific
labels266. In stereovision, the network models
trained by unsupervised methods have been shown
to produce better disparity prediction results in real
scenes345. (2) Composite learning approaches
attempt to combine different models pretrained on
a similar task to produce a composite model with
improved performance437 or search for the optimal
network architecture in the reinforcement learning
environment for a certain dataset445. They are
premised on the idea that a singular model, even
very large, cannot outperform a compositional
model with several small models/components, each
being delegated to specialize in part of the task. As
optical metrology tasks are getting more and more
complicated, composite learning can deconstruct
one huge task into several simpler, or single-function
components and make them work together, or
against each other, producing a more compressive
and powerful model. (3) Automated machine
learning (AutoML) approaches, such as Google
AutoML446 and Azure AutoML447, is developed to
execute tedious modeling tasks that once performed
by professional scientists440,448. It burns through an
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enormous number of models and the associated
hyperparameters on the raw input data to decide
what model is best applied to it. Consequently,
AutoML is expected to permit even “citizen” AI
scientists with their background in optical metrology
to make streamlined use cases by only utilizing their
domain expertise, offering practitioners a
competitive advantage with minimum investments.

● Physics-informed deep learning: Unlike traditional
physics-model-based optical metrology methods for
which the domain knowledge is carefully engineered
into solutions, most of the current deep-learning-
based optical metrology methods do not benefit so
much from such prior knowledge but rather learn
the solution from scratch by making use of massive
training data. In contrast, if the physics laws
governing the image formation (the knowledge
about the forward image formation model A) are
known—even partially, they should be naturally
incorporated into the DNN model so that the
training data and network parameters are not
wasted on “learning the physics”. For example, in
fringe analysis, inspired by the conventional phase-
shifting techniques, Feng et al.50 proposed to learn
the sine and cosine components of the fringe
pattern, based on which the wrapped phase can be
calculated by the arctangent function (Fig. 28c, d).

This method shows a significant gain in performance
than directly using an end-to-end network
structure50 (Fig. 28a, b). Goy et al.302 suggested a
method for low-photon count phase retrieval where
the noisy input image was converted into an
approximant. As the approximant obtained by
prior knowledge is much closer to the final
prediction than the raw low-photon image, the
phase reconstruction accuracy by using deep
learning can be improved significantly. Wang
et al.449 incorporated the diffraction model of
numerical propagation into a DNN for phase
retrieval. By minimizing the difference between the
actual input image and the predicted input image,
DNN learns how to reconstruct the phase that best
matches the measurements without any ground-
truth data.

● Interpretable deep learning: As we have already
highlighted in the previous sections, most
researchers in optical metrology use deep-learning
approaches intuitively without the possibility to
explain why it produces such “good” results. This
can be very problematic in high-stakes settings such
as industrial inspection, quality control, and medical
diagnose where the decisions of algorithms must be
explainable, or where accountability is required.
Academics in deep learning are acutely aware of
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this interpretability problem, and there have been
several developments in recent years for visualizing
the features and representations they have learned by
DNNs284. On the other hand, often applied to high-
risk scenarios, optical metrology is among the most
significant deep-learning challenges—we are dealing
with unknown, uncertain, ambiguous, incomplete,
noisy, inaccurate, and missing datasets in high-
dimensional spaces. The unexplainability and
incomprehensibility of deep learning also imply the
predictions are at risk of failure. Figure 29 illustrates
one such example, where a well-trained deep-
learning model for stereophase unwrapping fails
when there exists depth ambiguity in a certain
perspective332. Therefore, explainability will become
a key strength in deep-learning techniques to
interpret and explain models, which would
significantly expand the usefulness of deep-learning
methods in optical metrology.

● Uncertainty quantification: Characterizing
uncertainty in deep-learning solutions can help
make better decisions and take precautions against
erroneous predictions, which is essential for many
optical metrology tasks450. However, most deep-
learning methods reviewed in this work cannot
provide uncertainty estimates. In recent years,
Bayesian deep learning has emerged as a unified
probabilistic framework that tightly integrates deep

learning with Bayesian models451. By using a GAN
training framework to estimate a posterior
distribution of images fitting a given measurement
dataset (or estimation statistics derived from the
posterior), Bayesian convolutional neural networks
(BNNs) can quantify the reliability of predictions
through two predictive uncertainties, including
model uncertainty and data uncertainty, akin to
epistemic and revelation uncertainty in Bayesian
analysis, respectively452. It is expected to be adopted
in optical metrology applications, e.g., fringe pattern
analysis, to give pixel-wise variance estimates and
data uncertainty evaluation (Fig. 30)453. The latter
further allows assessment of the randomness of
predictions stemming from data imperfections,
including noise, incompleteness of the training data,
and other experimental perturbations. Incorporating
similar uncertainty quantification into other deep-
learning-based optical metrology methods, especially
when the ground truth is unavailable, is an
interesting direction for future research.

● Guiding the metrology system design: Most of the
current work using deep learning in optical
metrology only considers how to reconstruct the
measured data as a postprocessing algorithm
while ignoring the way how the image data should
be formed. However, an important feature of optical
metrology methods is their active nature, especially
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with respect to the way of manipulating the
illumination. For example, in FPP, the structure of
the illumination is modulated systematically
throughout the object surface to deliver high
accuracy and robustness in establishing the
triangulation. The design of the illumination coding
strategy is curial to improving the measurement
accuracy removing the ambiguity of the depth
reconstruction with a minimum number of image
acquisitions. However, this problem has long been
tackled using heuristics like composite coding,
frequency multiplexing, and color multiplexing,
which does not guarantee optimality (in terms of
facilitating the recovery of desired information).
Deep learning provides a mechanism to optimize
the system design in a more principled way. By
integrating the image formation model (with
trainable parameters controlling the image
acquisition) into the reconstruction network, the
system design and the reconstruction algorithm (i.e.,
both A and the corresponding cRθ) can be jointly
optimized with the training data454. It allows us to
determine which type of system design can yield the
best results for a particular deep-learning-driven task.
Such an idea has been successfully demonstrated in
designing optimal illumination patterns for
computational microscopes455–457. We hope that
this “joint optimization” network can effectively
bridge the gap between how images should be
acquired and how these images should be post-
processed by deep learning, and can be widely
adopted in designing the optical metrology systems,
such as the fringe pattern design in FPP (Fig. 31), and
the speckle pattern design in DIC, etc.

● Both “deep” and “in-depth”: Should we use deep
learning or traditional optical metrology algorithms?

It is a tough question to answer because it depends
heavily on the problem to be solved. Considering the
“no free lunch theorem”, the selection between deep-
learning and traditional algorithms should be
considered rationally. For several problems where
traditional methods based on physics models, if
implemented properly, can deliver straightforward
and more than satisfying solutions, there is no need
to use deep learning. However, sometimes this kind
of “unnecessary” may not be recognized easily. While
being functionally effective, we should keep in mind
that “how best deep learning can do” generally
depends on “how reliable the training data we can
provide.” For example, though the popular “learning
from simulation” scheme used in optical metrology
eliminates the dependence on huge labeled
experimental data, the inconsistency between the
image formation model and actual experimental
condition leads to additional challenges of “domain
adaptation”. Therefore, our personal view is that deep
learning does not (at least at the current stage) make
our research easier. On the contrary, it raises the
threshold for optical metrology research because it
requires researchers not only need to use and
understand deep learning deeply but also need to
take “in-depth” research in traditional algorithms so
as to make an impartial and objective assessment
between deep learning and traditional optical
metrology algorithms (Fig. 32).

Conclusions
A brief summary of this review indicates that there has

been significant interest in the advancement of optical
metrology technologies using deep-learning archi-
tectures. The rapid development of deep-learning tech-
nology has led to a paradigm shift from physics- and
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knowledge-based modeling to data-driven learning for
solving a wide range of optical metrology tasks. In gen-
eral, deep learning is particularly advantageous for many
problems in optical metrology whose physical models are
complicated and acquired information is limited, e.g., in
harsh environments and many challenging applications.

Strong empirical and experimental evidence suggests that
using problem-specific deep-learning models outper-
forms conventional knowledge or physical model-based
approaches.
Despite the promising—in many cases pretty impressive

—results that have been reported in the literature,
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potential problems and challenges remain. For model
training, we need to acquire large amounts of experi-
mental data with labels, which, even if available, is
laborious and requires professional experts. We have been
looking for the theoretical groundwork that would clearly
explain the mechanisms and ways to the optimal selection
of network structure and training algorithm for a specific
task, or to profoundly comprehend why a particular net-
work structure or algorithm is effective in a given task or
not. Furthermore, deep-learning approaches have often
been regarded as “black boxes”, and in optical metrology,
accountability is essential and can cause severe con-
sequences. Combining Bayesian statistics with deep neu-
ron networks to obtain quantitative uncertainty estimates
allows us to assess when the network yields unreliable
predictions. A synergy of the physics-based models that
describe the a priori knowledge of the image formation
and data-driven models that learn a regularizer from the
experimental data can bring our domain expertise into
deep learning to provide more physically plausible solu-
tions to specific optical metrology problems. Leveraging
these emerging technologies in the application of deep-
learning methods to optical metrology could promote and
accelerate the recognition and acceptance of deep learn-
ing in more application areas. These are among the most
critical issues that will continue to attract the interest of
deep-learning research in the optical metrology commu-
nity in the years to come.
In summary, although for different optical metrology

tasks, deep-learning techniques can bring substantial
improvements compared to traditional methods, the field
is still at the early stage of development. Many researchers
are still skeptical and maintain a wait-and-see attitude
towards its applications involving industrial inspection
and medical care, etc. Shall we accept deep learning as the
key problem-solving tool? Or should we reject such a
black-box solution? These are controversial issues in the
optical metrology community today. Looking on the
bright side, it has promoted an exciting trend and fostered
expectations of the transformative potential it may bring
to the optical metrology society. However, we should not
overestimate the power of deep learning by considering it
as a silver bullet for every challenge encountered in the
future development of optical metrology. In practice, we
should assess whether the large amount of data and
computational resources required to use deep learning for
a particular task is worthwhile, especially when other
conventional algorithms may yield comparable perfor-
mance with lower complexity and higher interpretability.
We envisage that deep learning will not replace the role of
traditional technologies within the field of optical
metrology for the years to come, but will form a coop-
erative and complementary relationship, which may
eventually become a symbiotic relationship in the future.
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深度学习下的计算成像:现状、挑战与未来

左超１,２,冯世杰１,２,张翔宇１,２,韩静２,陈钱２∗
１南京理工大学电子工程与光电技术学院,智能计算成像实验室(SCILab),江苏 南京２１００９４;

２南京理工大学江苏省光谱成像与智能感知重点实验室,江苏 南京２１００９４

摘要　近年来,光学成像技术已经由传统的强度、彩色成像发展进入计算光学成像时代.计算光学成像基于几何

光学、波动光学等理论对场景目标经光学系统成像再到探测器采样这一完整图像生成过程建立精确的正向数学模

型,再求解该正向成像模型所对应的“逆问题”,以计算重构的方式来获得场景目标的高质量图像或者传统技术无

法直接获得的相位、光谱、偏振、光场、相干度、折射率、三维形貌等高维度物理信息.然而,计算成像系统的实际成

像性能也同样极大程度地受限于“正向数学模型的准确性”以及“逆向重构算法的可靠性”,实际成像物理过程的不

可预见性与高维病态逆问题求解的复杂性已成为这一领域进一步发展的瓶颈问题.近年来,人工智能与深度学习

技术的飞跃式发展为计算光学成像技术开启了一扇全新的大门.不同于传统计算成像方法所依赖的物理驱动,深
度学习下的计算成像是一类由数据驱动的方法,它不但解决了许多过去计算成像领域难以解决的难题,还在信息

获取能力、成像的功能、核心性能指标(如成像空间分辨率、时间分辨率、灵敏度等)上都获得了显著提升.基于此,

首先概括性介绍深度学习技术在计算光学成像领域的研究进展与最新成果,然后分析了当前深度学习技术在计算

光学成像领域面临的主要问题与挑战,最后展望了该领域未来的发展方向与可能的研究方向.

关键词　成像系统;计算成像;深度学习;光学成像;光信息处理
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DeepLearningBasedComputationalImaging Status 
Challenges andFuture

ZuoChao１ ２ FengShijie１ ２ ZhangXiangyu１ ２ HanJing２ QianChen２∗
１SmartComputationalImagingLaboratory SCILab  SchoolofElectronicandOpticalEngineering 

NanjingUniversityofScienceandTechnology Nanjing Jiangsu２１００９４ China 
２JiangsuKeyLaboratoryofSpectralImaging&IntelligentSense NanjingUniversityofScienceandTechnology 

Nanjing Jiangsu２１００９４ China

Abstract　Inrecentyears opticalimagingtechniqueshaveenteredintotheeraofcomputationalopticalimaging
fromthetraditionalintensityandcolorimaging敭Computationalopticalimaging whichisbasedongeometricoptics 
waveoptics andothertheoreticalfoundations establishesanaccurateforwardmathematicalmodelforthewhole
imageformationprocessofthesceneimagedthroughtheopticalsystemandthensampledbythedigitaldetector敭
Then thehighＧqualityreconstructionoftheimageandotherhighdimensionalinformation suchasphase 
spectrum polarization lightfield coherence refractiveindex andthreeＧdimensionprofile whichcannotbe
directlyaccessedusingtraditional methods canbeobtainedthroughcomputationalreconstruction method敭
However theactualimagingperformanceofthecomputationalimagingsystemisalsolimitedbythe accuracyof
theforward mathematical model and thereliabilityofinversereconstructionalgorithm 敭Besides the
unpredictabilityofrealphysicalimagingprocessandthecomplexityofsolvinghighdimensionalillＧposedinverse
problemshavebecomethebottleneckoffurtherdevelopmentofthisfield敭Inrecentyears therapiddevelopmentof
artificialintelligenceanddeeplearningforthetechnologyopensanewdoorforcomputationalopticalimaging
technology敭Unlike physicaldriven modelthattraditionalcomputationalimaging methodis based on 
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computationalimagingbasedondeeplearningisakindof dataＧdriven method whichnotonlysolvesmany
problemsconsideredquitechallengetobesolvedinthisfield butalsoachievesremarkableimprovementin
informationacquisitionability imagingfunctions andkeyperformanceindexesofimagingsystem suchasspatial
resolution temporalresolution anddetectionsensitivity敭Thisreviewfirstbrieflyintroducesthecurrentstatusand
thelatestprogressofdeeplearningtechnologyinthefieldofcomputationalopticalimaging敭Then themain
problemsandchallengesfacedbythecurrentdeeplearning methodincomputationalopticalimagingfieldare
discussed敭Finally thefuturedevelopmentsandpossibleresearchdirectionsofthisfieldareprospected敭
Keywords　imagingsystems computationalimaging deeplearning opticalimaging opticalinformation
processing
OCIScodes　１１０敭０１８０ １００敭５０７０ １８０敭６９００

１　引　　言

视觉是人类获得客观世界信息的主要途径,而
人眼受限于视觉性能,在时间、空间、灵敏度等方面

均存在局限性.光学成像技术由此应运而生,其利

用各种光学成像系统,如显微镜、望远镜等,实现光

信息的可视化,同时延伸扩展人眼的视觉特性.然

而,一方面,传统光学成像系统因受强度成像机理、
探测器技术水平、光学系统设计、成像衍射极限等因

素制约,在空间分辨、时间分辨、光谱分辨、信息维度

与探测灵敏度等方面仍存在一定局限性,难以满足

人们对成像系统功能与性能的进一步需求,以及军

民领域日益增长的高分辨、高灵敏度和多维高速成

像的应用需求.采用传统光学成像系统的设计思路

想要获得成像性能的少量提升,通常意味着硬件成

本的急剧增加,甚至难以实现工程化应用.另一方

面,光探测器规模尺寸、像元大小、响应灵敏度等均

已接近物理极限,很难满足这些极具挑战性的需求.
随着成像电子学的发展,计算机数据处理能力

的增强,光场调控、孔径编码、压缩感知、全息成像等

光电信息处理技术取得了重大进展;此外,经过成千

上万年的发展自然界已经演化出多类能够满足不同

生存需求的生物视觉系统,从生物视觉系统中获得

灵感无疑可以给新一代光学成像技术的发展带来

有益的启示.在此背景下,２０世纪９０年代中期,
光学成像界和图像处理界的许多研究人员不约而

同地探索出了一种新型成像模式,即图像形成不

再仅仅依赖于光学物理器件,还依赖于前端光学

和后端探测信号处理的联合设计.这种技术就是

现 在 广 为 人 知 的 “计 算 成 像”(Computational
Imaging)技术[１],它将光学调控与信息处理有机结

合,为突破上述传统成像系统中的诸多限制性因素

提供了新手段与新思路.
计算光学成像是一种通过联合优化光学系统和

信号处理来实现特定成像功能与特性的新兴研究领

域.其建立在几何光学、波动光学,甚至光量子模型

的基础上,采用照明与光学系统调制等方式,建立目

标场景与观测图像之间的变换或调制模型,然后利

用逆问题求解等数学手段,通过计算反演来进行成

像.这种计算成像方法实质上就是在场景和图像之

间建立某种特定的联系,这种联系可以是线性的也

可以是非线性的.它突破了传统成像技术点对点一

一对应的强度直接采样形式,采用了更加灵活的非

直接的采样形式,更能充分发挥成像系统中各组件

的特点与性能.这种灵活的设计模式可以改变光学

测量的性质以获得所需的结果,并平衡物理域和计

算域之间图像生成和信息提取所依赖的资源.基于

信息论的概念,计算光学成像设计师不仅可以借助

于传统光学设计的优势,还可以充分利用物理光学

在光信号处理中的潜力来设计成像系统.这种新型

的成像方式将有望改变成像系统获取信息的方式,
提升其获取信息的能力,增强资源利用,赋予其诸多

传统光学成像技术难以获得甚至无法获得的革命性

的优势:例如,突破探测器制造工艺、工作条件、功耗

成本等因素的限制,有效提高成像质量(信噪比、对
比度、动态范围),简化系统(无透镜、小体积、低成

本),突破光学系统与图像采集设备的分辨率限制

(超像素分辨、超衍射极限),并使其功能(相位、光
谱、偏振、光场、相干度、折射率、三维形貌、景深严

拓、模糊复原、数字重聚焦、改变观测视角)、性能(空
间分辨、时间分辨、光谱分辨、信息维度与探测灵敏

度)、可靠性、可维护性等获得显著提高,有助于实现

成像设备的高性能、微型化、智能化.
现如今,计算光学成像已发展为一门集几何光

学、信息光学、计算光学、计算机视觉、现代信号处理

等理论于一体的新兴交叉技术研究领域,成为光学

成像领域的一大国际研究重点和热点.然而,隐藏

在计算成像华丽外衣之下的是其所必须付出的额外

成本与代价:用于进行非传统测量的物理实体器件

相关的成本、多次测量产生的时间成本、数据量以及

０１１１００３Ｇ２
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物理模型和校准对处理性能的影响.更重要的是,
计算成像技术的实际成像性能极大程度地受限于

“正向数学模型的准确性”以及“逆向重构算法的可

靠性”,实际物理成像过程中的不可预见性与高维病

态逆问题求解的复杂性已成为这一领域进一步发展

亟需解决的瓶颈问题.
近几年,DeepMind公司研制的人工智能机器

人AlphaGo战胜顶尖围棋棋手李世石[２]、先进图像

分类算法在具有挑战性的数据集ImageNet上的正

确率超过人类[３]等令人振奋消息一个接一个地传

来,人工智能已经成为我们身边一个耳熟能详的词

汇,国际上也开始迎来这一技术的研究热潮.当下

谈到人工智能,“机器学习”、“深度学习”和“神经网

络”便是经常浮现在人们脑海里的高频词汇.借助

于数学中集合的概念,它们之间的关系可以理解为

一种包含关系,也就是“机器学习”包含“深度学习”,
“深度学习”包含“神经网络”.深度学习已经成为目

前最为热门的一种机器学习方案.深度学习这一名

称中的“深度”一词表示其使用的神经网络结构多于

四层.一般而言,随着神经网络层数的增加,神经网

络的性能会更强,学习的效果也会更佳.
互联网技术的蓬勃发展指引着大数据时代的来

临,以数据推动的深度学习技术无疑是大数据时代

的算法利器.相比于传统的机器学习技术:首先,深
度学习技术可利用不断增多的数据不断提升其性

能,而传统机器学习技术无法做到这一点;其次,有
别于传统方法需要手动提取特征,深度学习技术是

一项全自动的技术,它可以从海量数据中直接抽取

特征,并且,对于不同的任务,不再需要设计独特的

特征提取器,所有工作都可由深度学习自动完成.
这是智能机器逐渐代替人工操作的一个显著体现,
因此深度学习技术已成为大数据时代的一项热点技

术,无论学术界还是工业界都对这项技术产生了浓

厚的兴趣.特别是在计算机视觉领域,深度学习作

为近年来兴起的一种“数据驱动”的技术,在图像分

类、物体检测及识别等诸多应用上均取得了巨大

成功.
自２０１７年初,深度学习技术逐渐走入计算成像

领域研究者的视野,并在短短的两三年内已在数字

全息成像[４Ｇ９]、傅里叶叠层成像技术[１０Ｇ１３]、鬼成像/单

像素成像[１４Ｇ１６]、超分辨显微成像技术[１７Ｇ２２]、光学相

干层析成像(OCT)[２３Ｇ２７]、散射介质成像[２８Ｇ３２]、极弱

光成 像[３３Ｇ３４]、跨 模 态 染 色 成 像[３５Ｇ３６]、光 栅 条 纹 分

析[３７Ｇ３９]与快速三维成像[４０Ｇ４２]等成像体制上得以成

功应用,取得了一系列令人瞩目的开创性研究成果.
令人欣喜的是,对比传统物理模型驱动的计算成像

技术,样本数据驱动的深度学习下的计算成像技术

发生了思想观念上的根本变革,它不但解决了许多

过去计算成像领域难以解决的难题,还在信息获取

能力、成像的功能、核心性能指标(如成像空间分辨

率、时间分辨率、灵敏度等)上获得了显著提升.如

今,以深度学习为主题的计算成像相关方面的论文

喷井而出,呈指数式增长趋势.
在此背景下,本文概括性地介绍深度学习技术

在计算光学成像领域的研究现状与最新进展.简要

讨论计算成像技术与深度学习技术的基本概念,并
按照深度学习技术的“目的与动机”或者说“深度学

习技术为传统计算成像技术带来了哪些新的要素”
进行细分,对现有深度学习计算成像技术的研究现状

及其典型应用进行概述.值得注意的是,深度学习是

一把“双刃剑”,它给计算成像领域研究带来了惊喜的

同时也引入了一系列亟待解决的问题.本文分析了

当前深度学习技术在计算光学成像领域面临的主要

问题与挑战,这亦是本文重要的组成部分.最后,对
深度学习在计算成像领域未来的发展方向与可能的

研究方向进行讨论并展望,并给出了总结性评论.

２　深度学习下的计算成像:现状

一个典型的光学成像系统主要由光源、光学镜

头组、光探测器三部分组成.其通过将三维场景中

目标发出的光线聚焦在光探测器上进行“点对点”成
像.然而这种“所见即所得”的成像方式因其单视

角、平面投影等因素的限制,导致高维度场景信息

存在缺失.除此之外,日益复杂庞大的光学成像

系统也限制着其应用场景.为了解决传统光学成

像系统所面临的问题,计算成像技术应运而生,其
采用“先调制,再拍摄,最后解调”的成像方式.将

光学系统(照明、光学器件、光探测器)与数字图像

处理算法作为一个整体考虑,并在设计时一同进

行综合优化,前端成像元件与后端数据处理二者

相辅相成,构成一种“混合光学Ｇ数字计算成像系

统”,如图１所示.不同于传统光学成像的“所见

即所得”,计算成像建立在几何光学、波动光学,甚
至光量子模型的基础上,采用照明与光学系统调

制等方式,建立目标场景与观测图像之间的变换

或调制模型,然后利用逆问题求解等数学手段,通
过计算反演来进行成像,以获得场景目标的高质

量图像与高维度物理信息.

０１１１００３Ｇ３
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图１ 计算光学成像系统的成像过程

Fig．１ Imagingprocessofcomputationalopticalimagingsystem

　　俗话说“天下没有免费的午餐”,任何事物的存

在都具有两面性,计算成像技术亦是如此.当设计

计算成像系统时,必须权衡计算成像和传统成像相

关的成本代价与预期的改进效用.计算成像技术所

能带来的功能与性能上的提升往往是以复杂昂贵的

系统硬件、大量额外的数据采集、复杂耗时的算法处

理等为代价而换取的.更重要的是,计算光学成像

华丽的外衣下还掩盖了其所依赖的两大关键问题:
第一,如何准确地建立场景与图像之间的正向

模型,并使得采样数据包含场景中所感兴趣的物理

信息,这是最关键的问题;
第二,如何利用逆问题优化求解来重构图像,这

也是个核心问题.它既要与非直接采样的自身特点

相匹配以建立优化模型,又要在重构过程中保证重

构图像的准确度.
然而通过已有的实验结果可以发现,在某些领

域(特别是间接成像),目前通过计算成像算法重构

的图像和基于传统透镜直接拍摄到的图像在成像质

量和保真度上仍然有一些差距.其根本原因在于计

算成像要求算法中采用的光学系统的数学模型能够

真实全面地反映实际的物理成像过程,如果该模型

不能真实地反映光学系统的复杂性,计算成像将有

可能得不到理想的成像结果,其优势也可能会完全

丧失.例如,如果数学模型对光学成像过程中的光

的波动性质、像差或系统对温度变化的敏感度的客

观参数进行忽略或者简化,则很可能会出现这种情

况.此外在数据采集的过程中还会受到各种环境不

确定因素的影响(噪声、振动等),从而会导致所建立

的成像模型并不准确.即使完全知道这些影响因素

的存在,设计人员仍然会面临着这样一个难题:简单

化的模型可能无法产生精确有效的结果,而更加真

实的模型可能需要大量的系统参量、很高的处理负

载和很长的处理时间.实际考虑因素包括正向模型

成立的条件和逆向重构算法的复杂程度、测量过程

对噪声及环境扰动的敏感性,以及算法后处理引入

的伪影(Artifacts)水平等.
深度学习作为近年来兴起的一种“数据驱动”的

技术,其在图像分类、物体检测及识别乃至“看图作

文(ImageCaptioning)”等诸多计算机视觉任务上

均取得了巨大成功.并且由于其在“黑盒子般的盲

建模”与“高维非线性特征拟合”方面的卓越表现,深
度学习自２０１７年初也逐渐得到计算成像领域研究

者们的广泛关注,并在短短的两三年内取得了一系

列令人瞩目的开创性研究成果.深度学习的成功不

仅仅带来了人工智能相关技术的快速进步,还解决

了计算成像领域许多过去被认为是难以解决甚至无

法解决的难题,更重要的是它给该领域带来了思想

观念上的根本变革:

１)从“物理模型驱动”到“样本数据驱动”
在深度学习兴起之前,成像物理模型和经验驱

动主宰了计算成像领域多年.一个典型的计算光学

显微成像系统由照明、样品、成像系统、探测器四部

分构成.照明光与样品发生作用后,成为其本质信

息(如吸收、相位、光谱、三维、折射率等)的载体,通
过对照明与成像系统进行光学调控使物体的本质信

息转化为光强信号并由探测器离散采集,最后通过

相应的重构算法对样品本质信息进行反演,获得样

品的图像或其他所感兴趣的高维物理信息.为了对

整个成像过程进行数学建模,通常需要基于标量衍

射理论或部分相干理论对照明光产生与自由传播以

０１１１００３Ｇ４
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及与被测物体相互作用进行建模.例如:部分相干

光场需要利用交叉谱密度/互强度或者相空间光学

理论中的维格纳函数来对其进行表征;在空域利用

交叉谱密度/互强度/维格纳函数所满足的传输方

程,或在频域引入衍射的角谱理论去描述待测物体

对照明光波的散射作用;利用vanCittertＧZernike
定理、部分相干光学传递函数理论等去描述光学系

统对成像过程的影响;最终完成从产生照明光到传

感器上产生低维耦合离散光强信号的整体过程的正

向数学建模.模型初步建立后,通常还需要利用

VirtualLab、Comsol等光学仿真软件基于严格的麦

克斯韦方程求解算法对成像过程进行模拟计算,并
在现有成像系统上利用已知物体实测加以比对,对
成像的正向模型进行进一步修正与优化.整个正向

物理建模过程依赖于大量的专家知识和经验驱动,
严重影响了计算成像技术的通用性和可重用性.

深度学习彻底颠覆了这种“物理模型驱动”的范

式,开启了“样本数据驱动”的学习范式.具体体现

在两点:第一,所谓的经验和知识也在样本数据中,
在数据量足够大时无需显式的经验或知识的嵌入,
直接从数据中可以学到;第二,基于深度神经网络特

有的“高维特征自动提取”能力,可以直接从原始信

号进行学习,而无需借助人为的特征变换或提取.
数据驱动的表示学习范式使得科研人员无需根据经

验和知识针对不同的成像问题设计不同的处理流

程,从而大大提高了算法的通用性,也大大降低了解

决新问题的难度.

２)从“分步/分治”到“端到端学习”
分治或分步法,即将复杂的问题分解为若干简

单子问题或子步骤,这曾经是解决复杂问题的常用

思路.分步法在计算成像领域,也是被广泛采用的

方法论.比如,为了解决数字全息图重构问题,过去

经常将其分为预处理、相位解调、衍射计算(数值传

播)、焦面判断等若干步骤.再如,为了解决非线性

优化问题,可以采用分段线性方式来逼近全局的非

线性.这样做的动机虽然很清晰,即子问题或子步

骤变得简单、可控、更易解决,但从深度学习的视角

来看,其劣势也同样明显:子问题最优未必意味着全

局的最优.相反,深度学习更强调端到端的学习,即
不去人为地分步骤或者划分子问题,而是完全交给

神经网络直接学习从原始输入到期望输出的映射.
相比分治策略,端到端的学习有协同增效的优势,有
更大的可能获得全局上更优的解.当然,如果一定

要把分层看作是“子步骤或者子问题”也是可以的,

但这些分层各自完成什么功能并不是预先设置好

的,而是通过基于数据的全局优化来自动学习的.

３)从“病态非线性逆问题”到“直接(伪)正向非

线性建模”
计算成像中所涉及的众多复杂逆问题本质上是

高度病态且非线性的,而深度学习实现了从输入到

输出的非线性变换,这是深度学习在众多复杂问题

上取得突破的原因之一.在深度学习出现之前,众
多线性模型求解或非线性迭代优化算法是计算成像

图像重构的主流技术.对于可通过近似手段线性化

的逆问题(如傍轴近似下的相位恢复问题可通过光

强传输方程线性化直接求解,Born或Rytvo近似下

的某些逆散射问题也可以实现线性化求解),相应的

病态方程组求逆、反卷积与偏微分方程求解等是求

解这类问题的核心算法;对于无法线性化的逆问题

(如非傍轴条件或复杂照明情况下相位重构问题),
可基于凸集投影与梯度搜索的优化算法进行迭代求

解(尽管解空间往往是非凸的,但事实证明这些优化

算法往往是奏效的).一般而言,基于某些限制性假

设的线性化求解方法所得的解可以作为更为一般条

件下非线性问题求解的初值,以提高迭代算法的收

敛速度与求解的稳定性.针对逆问题的病态性,通
常通过引入被测物体的先验作为正则化手段限定解

空间以使其良态化.这里值得一提的是压缩感知技

术,它由于在解决病态逆问题方面的突出表现成为

了计算成像领域中一个耳熟能详的专业词汇.压缩

感知的核心假设在于已知解具有稀疏性(Sparsity),
因此可以使用少量的数据来接近完美地恢复原始信

号.稀疏性可以作为约束或者正则项,提供额外的

先验信息.而大部分信号本身并不是稀疏的(即在

自然基下的表达不是稀疏的),但是经过适当的线性

变换后是稀疏的(即在另一组基下是稀疏的),如离

散余弦变换与小波变换等.该领域曾经非常热门的

一个研究课题是字典学习(DictionaryLearning)和
变换学习(TransformLearning),通过大量的信号

实例,自适应地学习最优的稀疏性表达(自组建完备

字典).为了求解稀疏约束下的最小化问题(最常用

的是总变分最小化),需要进一步确定最小化能量泛

函的数值求解算法(最陡下降法、非线性共轭梯度

法、迭代阈值收缩法等),以及相应的自适应正则化

参数的选取方法(对噪声进行统计建模,并对其局部

方差进行准确估计),以获得稳定且有意义的解.
而深度学习则利用复杂的网络结构与非线性激

活函数,在提取样本高维特征的同时,不断去除与目
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标特征无关的信息,最终获得了足以适配足够复杂

系统的非线性变换能力.实际上,深度学习同样隐

含了稀疏性先验,但它认为问题本身就是稀疏的,可
以不断将输入数据进行“降维”,把高维的数据空间

投影到抽象但低维的认知空间.相比于传统方法

“先正向建模,再求解该模型下的逆问题”的思路,深
度学习技术不需要这种数据表达过程的可逆性.它

直接建 立 了 从 图 像 到 待 恢 复 信 息 的“伪 正 向 模

型”———将光学系统拍摄到的图像作为“网络输入”,
将待恢复的期望信息作为“网络输出”,巧妙越过“非
线性病态逆问题”求解这一大障碍,直接通过高维度

特征拟合实现图像与信息的提取与重建.
正是由于深度学习为计算成像技术从思想观念

上带来了重大变革,且其研究内容也是极其多样与

发散的,目前还没有一个比较明确的分类方法.如

果按研究的问题或者成像的体制来分的话可能会较

为琐碎.因此,在本节中我们将按照采用深度学习

技术的“目的与动机”或者说“深度学习技术为传统

计算成像技术带来了哪些新的要素”进行细分.一

般而言,引入深度学习均是为了从不同的角度、采用

不同的方法来解决传统计算光学成像三方面的问

题:

１)提升传统计算成像技术的信息获取能力:突
破传统计算成像技术的 “信息量守恒”准则,从极少

量原始图像数据中解耦并挖掘出更多场景的本质信

息.

２)降低传统计算成像技术对“正向物理模型”
或“逆向重构算法”的过度依赖:绕过精确物理建模

与病态非线性逆问题求解的障碍,使计算成像技术

实施起来更加简单智能.

３)突破传统计算成像技术所能够达到的功能/
性能疆界:实现传统计算成像技术因物理模型所限

而无法实现的功能与无法达到的性能指标.
按此方式分类的整个框架如图２所示.下面我

们就依据此分类方式,对现有深度学习计算成像技

术以及典型应用进行概述.

图２ 基于“目的与动机”对典型深度学习计算成像技术所作的分类

Fig．２ Classificationoftypicaldeeplearningbasedcomputationalimagingtechniquesaccordingtotheir
objectivesandmotivations

２．１　提升传统计算成像技术的信息获取能力

从信息论的角度而言,数据不会凭空产生,但计

算成像技术将光学系统的信息获取能力与计算机的

信息处理能力相结合,通过光学调控与相应的信息

处理技术从原始图像数据中解耦并挖掘出更多场景

的本质信息.然而,对于传统的计算成像技术而言,

研究者们都会或多或少地在直觉上遵守着“信息量

守恒”准则,而深度学习技术的出现为突破这一准则

的约束提供了可能性.
实例１———相位恢复(无透镜显微/同轴全息)
在Gerchberg等[４３Ｇ４４]所提出的迭代相位恢复算

法(GＧS算法,GerchbergＧSaxton算法)中,为了确保
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解的存在性与唯一性(排除孪生像)[４５Ｇ４７],避免因迭

代算法陷于局部极小值造成的收敛停滞[４８Ｇ５０]等问

题,往往需要采集两幅甚至多幅不同离焦距离上的

衍射图像(同轴全息图),从而利用更多测量值的约

束来提高算法的收敛性和可靠性[５１].然而,代价是

需要额外获取大量的原始数据,且成像系统依赖于

高精度的轴向位移装置.仅仅依靠单幅衍射图虽然

也可以实现图像重构,但一般仅限于尺寸较小且分

布稀疏的样本(采用空域支持域约束),对于一般的较

大尺度的样品而言,由相位缺失造成的“孪生像”会在

物体成像周围产生自干涉“伪影”,极大地影响成像质

量.为了解决这一问题,２０１８年Rivenson等[４]基于

深度学习提出了单帧相位恢复技术,该方法的思想在

于仅使用一幅相机拍摄到的离焦强度图像进行相位

恢复.将拍摄到的离焦图像直接反向传播至焦平面,
即将传播得到的复振幅作为网络输入,以使用８幅离

焦图像通过传统GＧS迭代算法得到的样品清晰相位

为目标,利用深度神经网络来模拟相位提取算法的过

程,成功地在孪生像与物体伪影的干扰中从单幅同轴

全息图提取并分离出了待测样品的真实信息,获得了

准确的振幅与相位信息(图３).相比于传统的GＧS
迭代算法,不仅避免了复杂的迭代优化过程,还大大

降低了成像所需的图像数目,单幅重建也使得该系

统不再需要复杂的轴向机械位移装置.

图３ 使用深度学习进行单帧无透镜相位恢复[４]

Fig．３ SingleＧframelenslessphaserecoveryusingdeeplearning ４ 

　　实例２———傅里叶叠层显微成像

２０１３年,Zheng等[５２]提出了一种基于相位恢复

与合成孔径的计算显微成像技术———傅里叶叠层显

微成像(FPM).在该技术中,样品被不同角度的照

明光束(通常是一个LED阵列)依次照射后,由低数

值孔径物镜拍摄一系列低分辨率图像.由于成像系

统有限孔径效应对于频域的低通滤波,改变了照明

光束角度,实现了物体频谱在频域子孔径的交叠扫

描.傅里叶叠层成像的核心优势在于其不仅仅能获

得待测样品的相位信息,还能在基于最优化的交叠

更新过程中实现频域内的合成孔径,有效促进了成

像分辨率的提高[５３Ｇ５５].与传统的频域合成孔径超分

辨率算法不同,傅里叶叠层成像交叠更新算法的相

位恢复与频域合成孔径是同时完成的,这也正是傅

里叶叠层成像技术本身的优美之处.通常情况下,
低数值孔径的低倍率物镜本身具有很大的观察视

场,再加之利用大角度照明光束依次照射样品,并在

频域进行合成孔径,最终将成像的等效数值孔径提

升到物镜与照明数值孔径之和,即保持低倍率物镜

的大视场的同时,又达到很大的成像空间带宽积.
然而,傅里叶叠层显微成像中空间带宽积的提升往

往是以大量(数百幅)低分辨率图像数据采集与高度

复杂的频域变换与空域约束反复迭代为代价的.为

了解决这一问题,２０１８年,Nguyen等[１０]提出将深

度学习技术应用于FPM 领域.该方法思想在于将

使用传统FPM 技术获得的相位作为目标真值,将
在自行设计的照明模式下拍摄到的５幅图像作为输

入图像,利用深度神经网络模拟FPM 中图像信息

的提取与合成,从输入图像中提取物体的相位信息,
整个过程如图４所示.经过训练的网络在保证重构

成像质量的前提下,将FPM 成像所需的图像数目

大大降低,并在减少数据量的需求的同时,避免了传

统重构算法繁琐的迭代优化过程.
实例３———条纹相位分析(相位测量)
在条纹相位分析领域:光学相位测量技术已被

广泛应用于光学干涉测量、数字全息、电子散斑干

涉、莫尔轮廓术及条纹投影轮廓术等.这些方法的

一大共性在于通过干涉或者投影的方式在物体表面

形成周期性的结构条纹,从而使所测量物体的相关

物理量直接或间接地反映在条纹的相位信息中.所

以,从根本上而言,这些光学技术的测量精度直接取

决于条纹图案的相位解调精度.因此,条纹图案分析

是光学相位测量技术中最核心的步骤,也通常是最困

难的部分.经典的条纹分析技术大致可分为两类:

１)时域相移解调法:采用多幅具有相对相位差

的条纹图像进行相位提取.该方法能够实现像素级

０１１１００３Ｇ７

61



光　　　学　　　学　　　报

图４ 使用深度学习技术进行少图快速FPM成像[１０]

Fig．４ FastFPMimagingwithfewimagesusingdeeplearningtechnology １０ 

的高分辨率相位测量,但需要采集多幅条纹图像,容
易受到物体运动/环境振动等外界干扰的影响,通常

难以应用于动态测量.

２)空域相位解调法:仅采用单幅条纹图像(通
常是包含载频的高频条纹)实现相位信息的提取,如
傅里叶变换法(FT)、加窗傅里叶变换法(WFT)等.
但对条纹陡变、不连续以及物体细节丰富的区域较

为敏感,难以实现高精度、高分辨率的相位测量.且

算法一般具有较多的参数(如滤波窗尺寸等)需手动

调节,难以实现全自动化操作.
针对这一问题,本课题组首次将深度学习技术

应用在条纹分析中,并有效提高了条纹投影轮廓术

的三维测量精度[３７].该方法的思想在于仅采用一

幅条纹图像作为输入,利用深度神经网络来模拟相

移法的相位解调过程.如图５所示,构建两个卷积

神经网络(CNN１和CNN２).CNN１负责从输入条

纹图像(I)中提取背景信息(A);随后,CNN２利用

提取的背景图像和原始输入图像生成所需相位的正

弦部分(M)与余弦部分(D);最后,将该输出的正余

弦结果代入反正切函数计算得到最终的相位分布.
相比于傅里叶变换法与加窗傅里叶变换法,该方法

能够更为准确地提取相位信息,特别是针对具有丰

富细节的物体表面,相位精度可提升５０％以上,仅
采用一幅输入条纹图像但总体测量效果接近于１２
步相移法[如图５(a)~(d)所示].该技术目前已被

成 功 应 用 于 高 速 三 维 成 像,实 现 了 速 度 高 达

２００００frame/s的高精度三维面型测量[４０].

图５ 基于深度学习的条纹分析方法原理与相位重构结果对比[３７].(a)基于深度学习的条纹分析方法原理图;
(b)傅里叶变换法重构结果;(c)加窗傅里叶变换法重构结果;(d)深度学习法重构结果;(e)１２步相移法重构结果

Fig．５Principleoffringeanalysismethodbasedondeeplearningandcomparisonofphasereconstructionresults ３７ 敭 a 
Principleoffringeanalysismethodbasedondeeplearning  b reconstructionresultofFT  c reconstructionresult
ofWFT  d reconstructionresultofproposeddeepＧlearningmethod  e reconstructionresultof１２ＧstepphaseＧ
　　　　　　　　　　　　　　　　　　　　shiftingprofilometry
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　　实例４———单像素成像(计算“鬼”成像/“对偶

摄影”)
在很多重要的成像领域,如极弱光成像、远红外

成像、深紫外成像等,很难制造出具有高空间采样率

并且成本低廉的阵列探测器.而制造满足相同技术

指标的单像素探测器,尤其是制作非可见光波段的

单像素探测器,要容易且成本低廉得多.因此,单像

素成像成为了简化成像系统、降低成本的一个良好

选择.单像素成像最早起源于双光子纠缠鬼成

像[５６],利用纠缠态光子对的空间信息相关性来探测

目标物体的空间信息,从而实现对物体图像的重建,
随后该 项 技 术 被 拓 展 到 了 热 光 源[５７]与 赝 热 光

源[５８].而“计算鬼成像”技术通过空间光调制器

(SLM)产生随机散斑以模拟光子的随机性,因此无

需再使用面阵探测器来探测散斑图案,即仅需要使

用一个单像素探测器(作为唯一的探测器),就可以

实现真正意义上的“单像素成像”技术.２００５年,

Sen等[５９]提出了“对偶摄影”(dualphotography),
利用投影仪与摄像机的互换性实现了一系列新奇的

成像功能,如场景渲染与绕墙成像.或许很多光学

成像领域的研究人员现在还不知道:当下十分热门

的单像素成像技术[６０Ｇ６１](起源于２００６年)与计算鬼

成像技术[６２](起源于２０１２年)其实就是对偶摄影的

一种特殊形式.不论是单像素成像、计算“鬼”成像

还是“对偶摄影”,都需要对场景进行多次图案投影

并用单像素探测器收集散射光场,故往往需要上

万次甚至数十万次的原始数据测量,十分繁琐耗

时,难以实现动态成像.压缩感知技术[６１]利用“先
压缩,后采样”的压缩感知思想来得到物体信息在

空间域的欠采样数据,并以稀疏性先验为约束,以
较少的测量数据重建出物体的图像(实验中仅使

用１５００次测量,就重建出像素数为原图像像素数

的２％的图像).该方法虽然大大降低了采样数据

量,运算却极其复杂耗时,并且很难准确恢复出图

像细节部分.针对此问题,Lyu等[１４]于２０１７年首

次提出了一种基于深度学习的单像素技术(如图６
所示).该方法利用空间光调制器显示图像数据

集,并获取了相机拍摄得到的原始图像.之后以

空间光调制器上显示的图像作为训练目标,分别

在以原始图像和传统鬼成像法得到的相位图为输

入的情况下对深度神经网络进行训练,从而在５％
的信息采样率下获得了显著超过传统压缩感知鬼

成像的重构结果,并且该方法在噪声鲁棒性方面

也得到了明显提升.

图６ 使用深度神经网络的单像素技术框架[１４]

Fig．６ FrameworkofsingleＧpixeltechniqueusingdeepneuralnetwork １４ 

２．２　降低传统计算成像技术对“正向物理模型”或
“逆向重构算法”的过度依赖

正如前文所言,计算成像的两大核心内容之一

正是如何准确地建立场景与图像之间的正向模型,
并精确地设计成像系统,使得采样数据能够包含全

部的场景信息.这就要求所涉及的正向物理模型能

够真实地反映真实世界成像的物理过程.然而,由
于实际成像过程的复杂性与不可预知性,精确的正

向物理模型通常难以获得,从而就会使得我们使用

计算成像技术获得的图像信息与真实情况相差甚

远.而深度学习则利用复杂的网络结构与非线性激

活函数,直接建立了从原始图像到待恢复信息的“伪

正向模型”,打破了传统计算成像技术中“正向物理

模型精确可知”这一限制性条件.作为一个强大的

高维特征提取工具,深度神经网络是直接从大量样

本数据中学习输入与输出之间的复杂高维关联,难
以预知的不确定因素(如噪声、像差等)也自然而然

地被纳入其中,最终获得足以适配足够复杂的真实

成像系统的非线性变换能力.
除了如何设计精确可知的正向物理模型外,计

算成像技术另一大核心内容便是如何利用逆问题优

化求解来重构图像.这要求在重构过程中保证重构

图像的准确度.然而,传统的数值优化算法与物理

模型中大量的“中间参数”往往需要相关从业人员进
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行手动调节选取,最终的图像重构质量很大程度上

依赖于参数的人为选取,难以实现无人工干预下的

全自动处理.而深度学习技术具有“端到端”的特殊

映射机制及高维特征“自行提取”的特点,模型一旦

训练完成后就没有任何自由参数需要调节,从而可

完全实现“无参数”与“全自动”.
实例１———(穿透)散射介质成像

光在均匀介质中是沿直线传播的.然而当经过

浑浊媒介、生物组织等介质时,光会在这些介质内发

生多重散射,出射后的光场将变为散斑场.这是一

种不可逆的扩散过程,严重影响了目标的可见性.
在传统计算光学成像范畴,实现(穿透)散射介质成

像的方法包括反馈波前调制[６３]、传输矩阵[６４]、相位

共轭技术[６５Ｇ６６]、散斑相关[６７Ｇ６８]等.然而这些方法的

有效性往往被限制在光学记忆效应区,即介质的散

射作用不可过强并在一定入射角内可以被视为一个

线性移不变系统.而复杂强散射介质形成的散斑空

间分布是散射体微观排列和入射光场波前的复杂函

数,难以对其建立全面精确的物理模型并给出简单

直接的逆散射解决方案,且算法对于不同类型的散

射介质的可迁移性较差.
深度学习技术为解决这些问题提供了很多新的

思路.Li等[２８]提出了一种具有统计特征的“一对

多”深度学习技术(如图７),该技术从大型数据集中

识别出隐藏的统计不变性,其封装了多个微观结构

不同的散射介质系统的一系列统计变化,使神经网

络模型能够适应散斑的去相关(decorrelation).卷

积神经网络能够学习在具有相同宏观参数的散射体

上捕获的散斑强度图案中包含的统计信息(如图７
所示).经过训练后,该网络能够迁移至未经训练的

散射介质环境中进行成像,且可对不同类型物体生

成高质量的目标预测,在数据类型、系统结构等方面

表现出了良好的泛化性.Lü等[６９]构建了混合神经

网络(HNN)模型,在强散射情形下实现了隐藏物体

的恢复.实验中使用的散射介质是３mm厚的白色

聚苯乙烯平板,其记忆效应范围小于０．０１°,光学厚

度为１３．４,远超记忆效应区.说明了基于深度学习

的散射成像方法可以不受“正向物理模型精确可知”
的约束,突破传统技术中依赖的记忆效应视场角的

限制.

图７ 基于深度学习进行散射介质成像的网络原理图[２８]

Fig．７ Networkofdeeplearningbasedimagingthroughscatteringmedium ２８ 

　　实例２———三维衍射层析成像

在讨论相位成像技术时,通常都会假设大部分

待测物体属于二维(薄)物体,可以将其表示为由吸

收与相位构成的二维的复透射率分布,透射光场的

复振幅分布即为入射光场复振幅与物体复透射率的

乘积.然而,相位延迟其实是样品三维折射率在一

个二维平面上的投影(俗称２．５D成像),这是一个沿

光传播方向的从入射表面到出射表面各个平面的相

位延迟的积分变化量,并不是“真三维”的立体信

息[７０Ｇ７３].三维衍射层析技术[７０,７２,７４Ｇ７５]可以有效解决

这一问题,其可以对三维样品内部各点的折射率实

现全方位(横向＋轴向)高分辨率成像,从而获取样

品三维折射率分布.该项技术通常需将相位测量技

术(数字全息或相位恢复技术)与计算机断层扫描技

术相结合,通过旋转物体[７６Ｇ７７]或改变照明方向[７８Ｇ８１]

等方式得到多组定量相位信息,然后结合反投影滤

波[８２]、逆 Radon变换(忽 略 衍 射 效 应)[７８,８３]或 是

Wolf的衍射层析理论(考虑衍射效应)[７０,７９Ｇ８０],重建

出物体的空间三维折射率分布.图８给出基于深度

学习进行三维衍射层析重建的基本框图.近年来,
“强度衍射层析技术”———一种基于非干涉强度测量

原理的衍射层析技术逐渐崭露头角.相比于传统光

学衍射层析技术,该方法只需要直接拍摄物体不同

焦面或者不同照明角度的强度图像,再利用图像重

构算法就可以反演出物体的三维折射率分布,这有

效避免了传统衍射层析技术干涉测量与光束机械扫

描的难题.强度衍射层析成像技术主要分为两类:
基于轴向扫描的三维光强传输技术[８４Ｇ８６]与基于角度

扫描的三维傅里叶叠层成像技术[８７Ｇ８９].不管是哪种

技术都依赖对光与三维物体相互作用最终形成图像
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的物理过程的准确数学模型:这通常需要假设样品

满足纯/弱/缓变相位近似、Born或Rytvo近似的弱

散射近似、多层叠加近似(multiＧslice)或非负折射率

近似等.然而,不论哪种近似都存在一定的局限性,
特别地,在强散射、多次散射、后向散射、大数值孔径

照明情况下的普适性普遍较差,因此目前文献中大

多数衍射层析成像的实验结果并不十分理想.另一

方面,三维层析成像往往还需要巨量的原始数据,这
也对其后续算法的高效重建(速度与存储上)提出了

巨大挑战.

图８ 基于深度学习进行三维衍射层析重建的基本框图[２６]

Fig．８ Basicframeworkof３Ddiffractiontomographyreconstructionbasedondeeplearning ２６ 

　　借助于机器学习算法则有望巧妙地“规避”上述

问题.Kamilov等[９０]将人工神经网络应用于衍射

层析成像,他们利用神经网络构建了一个类似于

multiＧslice的三维衍射传播模型,将目标对象按一

组薄层切片建模:每个切片由一个网络层表示,三维

对象的每个像素由网络节点表示.因为入射光与三

维物体的散射过程及其复杂,难以通过理论推导得

到完善的数学模型,所以通过神经网络强大的高阶

拟合特性去“学习”是一种巧妙且有效的替代方案

(注意,由于采用的网络结构较为简单、层数较少,他
们的工作严格来说并不算深度学习,但其实核心思

想别无二致).神经网络的训练数据由一组从不同

角度捕获的三维物体的二维全息图组成,使用“反向

传播”最小化训练数据和模型解之间的差异来预测

物体的三维折射率.他们根据实验获得的数据直接

通过该方法训练后的神经网络成功恢复出了 HeLa
细胞的三维折射率结构.２０１８年,Nguyen等[２７]利

用深度学习技术和衍射强度分布直接对样品三维折

射率进行重建.为了获取相应的训练数据集,他们

首先仿真了一个具有不同空间折射率分布的物体,
并生成了一系列不同角度投影的二维的相位图像.
再将二维图像显示在空间光调制器上并通过相机拍

摄到了一组原始的强度图,利用这种“仿真与实验结

合”的方式完成了数据集的构建.然后将相机拍摄到

的一组原始光强信息经过逆Radon变换后作为网络

输入,通过深度学习网络使其直接匹配至样品的三维

折射率分布(图９).尽管这种处理方式的合理性与

最终实验结果的准确性仍然有待商榷,但这的确为三

维衍射层析数据重建提供了一种新颖的思路.
实例３———数字全息成像自动聚焦

在数字全息图的重建过程中,具体样品位置具有

不可预知性,一种通常的做法是分步处理并循环搜

索:如首先对全息图进行预处理去除噪声提升信噪比

与对比度(可选),然后通过相位求解算法获取衍射场

的相位分布,再经过衍射计算(数值传播)实现不同焦

面图像的重建,最后经过经典的清晰度判据(如梯度、

图９ 基于深度学习进行光学衍射层析的网络原理图[２７]

Fig．９ Schematicofnetworkofopticaldiffractiontomographybasedondeeplearning ２７ 
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图像熵等)判断当前面是否是真实物体所在的平面,
对上述过程反复进行迭代搜索以获取焦面的最优估

计.然而这一过程不仅繁琐费事,且依据传统聚焦判

据得到的结果还有可能不够准确.为了简化这一复

杂过程,２０１８年Ren等[６]提出利用深度学习网络对

数字全息图的离焦距离进行预测.该方法主要思想

在于利用高精度位移台控制物体位置以在多个不同

离焦距离下拍摄到相应的数字全息图,从而构建了数

字全息图与其相应离焦距离的数据集,并利用深度神

经网络进行训练,直接建立离焦距离和衍射图之间的

对应关系,输出参数只有一个数字,即对应了样品的

离焦距离.如图１０所示,经过训练的深度神经网络

无需迭代搜索,可以直接根据输入的数字全息图输出

相应的离焦距离.更进一步,Zhang等[９]利用深度学

习技术从离焦的离轴干涉全息图中直接恢复得到聚

焦状态下的相位与振幅,极大简化了传统数字全息技

术重建过程中对于物理模型参数的调整及获取过程.
实例４———光学相干层析成像图像分割

光学相干层析成像因可以获得微米级分辨率的

人体组织三维截面图像,被广泛应用于医学与工业

图１０ 使用深度神经网络的数字全息离焦距离计算框架[６]

Fig．１０ Frameworkofdefocusingdistancecalculationin

digitalholographybasedondeepneuralnetwork ６ 

成像领域中.在许多视网膜疾病的研究中,光学相

干层析成像的图像信息的准确量化(如视网膜图像

的边界分割)对于提高病灶识别及致病过程等因素

的分析至关重要.然而,光学相干断层图像中视网

膜的边界分割往往依赖于医生的经验,难以实现全

自动处理.Fang等[２３]提出了一种结合卷积神经网

络和图形搜索方法的视网膜光学相干断层图像边界

自动分割框架,原理如图１１所示.得益于深度神经

网络对特殊视网膜层特征的准确提取,该方法可对

九层视网膜边界进行准确分割,有效避免了人工分

割时的主观性和时间成本.

图１１ 针对视网膜光学相干断层图像的边界自动分割原理图[２３]

Fig．１１ SchematicofautomaticboundarysegmentationframeworkforretinalOCTimage ２３ 

２．３　突破传统计算成像技术所能够达到的功能/
性能疆界

计算成像技术通过将光学系统的信息获取能力

与计算机的信息处理能力相结合,突破了传统光学

成像系统对于成像器件硬件的过度依赖.然而“物
理模型驱动”的计算成像技术不可避免地受到物理

模型的制约,这些制约既包括光学系统与成像条件

的制约,如衍射极限、空间带宽积、成像光子数、器件

灵敏度等“先天不足”,也包括重构物体信息与光信

息为载体之间的关联性制约,如相位、光谱、三维等

与所获取的强度信息间需要具有“显式”关联.由于

信息不会凭空产生,因此当所获取的图像数据因受

这些制约而无法直接与目标信息相关联时,传统计

算成像技术是无能为力的.而在深度学习技术中,
由于最终的输出不仅仅取决于输入数据,还和神经

网络从大量训练数据中学习到的成百上千万个权值

参数紧密相关,这些参数不仅为图像重建提供了强

大而完备的“先验数据库”,还建立了输入与输出间

难以通过简单公式表示的“隐性高维”关联,从而有

望实现数据“无中生有”与“点石成金”,为突破传统

计算成像技术的物理模型限制和拓宽其功能/性能

疆界提供了可能.
实例１———超分辨成像(突破衍射极限)
由于成像系统具有有限孔径效应,一个理想
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物点发出的光在图像平面并不会形成一个理想的

几何点,而是会形成一个弥散斑(艾里斑).对于

非相干 的 衍 射 受 限 系 统 而 言,艾 里 斑 的 半 径 为

１．２２λ/NA,其中λ为成像光波的波长,NA 为成像

系统的数值孔径,这被称为“阿贝衍射极限”[９１].
为了提升光学显微镜的分辨率,往往需要采用高

数值孔径的油浸物镜,使用起来非常不便.为了

解决这一问题,Rivenson等[２０]于２０１７年提出了基

于深度学习的显微成像超分辨算法.该方法首先

利用４０倍物镜(干)和１００倍物镜(油)下拍摄的

相同样品图像生成数据集,而后利用深度神经网

络学习低分辨率图像到高分辨率图像之间的“映
射”关系.从傅里叶光学理论上看,这种映射关系

是没有科学依据的.因为低分辨率图像在频域是

没有高频细节信息的,不论如何处理,数据也不会

“无中生有”.但深度学习的能力的确让人惊叹,
经过大量样本训练后的神经网络的确仅需输入一

幅低分辨率图像(图１２左图)即可成功地突破像

素分辨率及衍射极限的限制,生成相应的高倍物镜

下的高分辨图像(图１２右图).即利用４０倍干镜获

得了１００倍油镜的成像效果,省去复杂油浸物镜观

测时的诸多不便.

图１２ 基于深度学习进行超分辨率成像的网络框架示意图[２０]

Fig．１２ NetworkframeworkofsuperＧresolutionimagingbasedondeeplearning ２０ 

　　高数值孔径油浸物镜虽然能够提升成像分辨率,
但受阿贝衍射极限所限,最终能达到的分辨率也不会

超过光波波长的一半.随着人类对微观世界的探索

逐步深入,需要观测的微观尺度越来越小,传统光学

显微镜的分辨率已无法满足科学研究的需要,人们迫

切需要分辨率更高的显微技术.２０１４年,诺贝尔化

学奖的三位得主使用荧光分子和特殊的光物理原理,
巧妙地突破了普通光学显微镜无法突破的“阿贝极

限”,其开创性的成就使得人们能够窥探纳米世界,这
些技术包括受激发射损耗(STED)技术[９２]、光激活定

位显微技术(PALM)[９３]、随机光学重建显微技术

(STORM)[９４]等.但这些技术依赖于复杂昂贵的硬

件系统,且实际操作和使用起来非常复杂不便,STED
技术逐点扫描的成像机理使其对环境扰动非常敏感,
难以实现动态成像,PALM和STORM还依赖于特

殊荧光分子标记,成像过程需要成千上万次的图像采

集,复杂耗时.针对这一问题,Wang等[１７]直接通过

深度神经网络实现了传统聚焦显微镜图像的超分

辨,不借助于任何额外的物理硬件获得了与STED
技术相当的成像分辨率,结果如图１３所示.

图１３ 基于深度学习进行STED超分辨率成像的实验结果[１７]

Fig．１３ ExperimentalresultsofSTEDsuperＧresolutionimagingbasedondeeplearning １７ 
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　　实例２———高灵敏度(低照度、低光子数)成像

随着电子设备的快速发展和专业摄像器材应用

的普及,人们能拍摄到质量越来越高的图片.但是

在实际摄影过程中,总会存在各种不可控因素,致使

获得的图片存在各种缺陷.尤其是拍摄环境较暗或

光照条件不足等会导致图像信噪比较差,随后的转

换、传输、存储等操作进一步降低了低照度图像的质

量.然而,低照度图像被广泛存在于诸如地质勘测、
水下探测与生物医学等领域中,如何提高低照度条

件下的成像质量就成为了当前一大研究热点.当

前,主要从两方面着手:提升探测器元件的响应灵

敏度;对探测器获得的信号进行图像增强.然而,
目前光探测器响应灵敏度指标正逐渐逼近物理极限

(已实现单光子探测),难以进一步满足低照度成像

的要求.而简单的低照度图像增强处理算法(如直

方图均衡化等)仅能简单提升视觉效果,难以应用于

图像保真度要求较高的医疗或科研领域.２０１８年,

Chen等[３４]将深度学习技术应用于极弱光成像领

域.其主要思想为在使用相同相机的情况下,先在

极低照度下拍摄到短曝光(约１/３０s)图像,而后将

在长曝光时间下拍摄到的图像作为深度神经网络的

匹配目标.经过训练的深度学习网络可以在照度低

于０．１lx的情况下,仅根据一幅极弱光条件下拍摄

到的短曝光时间(约１/３０s)图像[如图１４(a)所示]
恢复得到一张细节清晰的正常图像[如图１４(c)所
示],相比于图１４(b)所示的使用高感光灵敏度CCD

拍摄到的图像,深度学习所得结果无论是色彩、细节

还是阴影中的背景均得到了更好的还原.
实例３———跨模态成像

对组织标本进行显微成像观察是对临床上多种

疾病进行诊断的基本工具,也是组织病理学与生物

科学的必备工具.通过临床手段获得组织切片的标

准染色图像通常需要一系列复杂工序:福尔马林固

定和石蜡包埋(FFPE)、切片(通常为２~１０μm)、标
记染色、风干封片等多个步骤,整个过程极其繁琐耗

时.为 了 简 化 切 片 染 色 流 程、降 低 染 色 成 本,

Rivenson等[３５Ｇ３６]于２０１８年利用深度学习技术对虚

拟组织染色技术进行了研究.该方法的主要思想在

于利用组织切片染色前后的图像构建训练数据集,
利用对抗神经网络学习未染色切片与染色切片之间

的映射关系.虽然,从现有认知范畴而言,这种映射

关系是没有科学依据的,因为未染色样品本身不具

备化学染料所存在的生化反应过程,更不会具备组

织样本各组分的特异性.但深度学习却似乎能够从

大量测试样本数据中发现这些看似无关的数据集的

隐性复杂关联,而这种关联是无法利用我们现有知

识体系来建立甚至理解的.实验发现,经过训练的

神经网络可以根据一张未染色的切片图像的“自发

荧光图像”或者“定量相位图像”直接生成其染色后

的结果(如图１５所示),使得组织学切片分析“绕开”
了切片染色这一复杂繁琐的过程,有望为“即时病理

诊断”打开一扇新的大门.

图１４ 基于深度学习进行极弱光成像的结果[３４].(a)摄像机输出(ISO８０００);(b)摄像机输出(ISO４０９６００);
(c)由原始数据(a)恢复得到的结果

Fig．１４ Resultsofimagingusingveryweaklightbasedondeeplearning ３４ 敭 a CameraoutputwithISO８０００ 

 b CameraoutputwithISO４０９６００  c recoveredresultfromrawdataofFig敭１４ a 

图１５ 基于深度学习进行虚拟染色成像的网络框架示意图[３５]

Fig．１５ Networkframeworkofvirtualstainingimagingbasedondeeplearning ３５ 
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３　深度学习下的计算成像:挑战

第二章从提升信息获取能力、降低对“正向物理

模型”与“逆向重构算法”的依赖,以及突破传统计算

成像技术的性能极限这三个方面简述了深度学习下

计算成像的研究现状与最新进展.由于篇幅限制,
仅列举了一些该领域内的代表性案例,但从这些典

型案例中已经可以看出,深度学习下的计算成像领

域取得了许多令人振奋的进展,这些定将为计算成

像领域的进一步发展注入新的活力.本章中,将把

注意力进一步向前转移,探讨深度学习在计算成像

领域所面临的诸多挑战,这将有助于为我们未来的

下一步研究制定大胆的战略性构想.

３．１　(实测)训练数据的获取与标注成本高

近年来,深度学习技术的发展及其相关应用呈

现爆炸式增长.值得注意的是,神经网络的想法并

非是最近几年才提出,它已有几十年的历史.但是

直到最近它才受到如此广泛的关注.这其中一个重

要的因素在于神经网络是一种以数据为导向的算

法,卓越的网络输出取决于大量/巨量的数据训练.
正是近年来互联网时代积累的大量数据和算力,释
放了深度学习神经网络的潜力,也为人工智能应用

的飞跃式发展打下了坚实基础.但就目前而言,大
部分在计算成像领域中取得成功应用的深度学习技

术的案例中,往往需要借助实际成像系统,通过实验

获得大量的实测训练数据来进行标注(获取所期待

的真值).这里就存在两个关键问题:

１)耗时费力:大部分光学成像实验的数据采集

过程都是极其复杂且耗时的,而深度学习所依赖的

大规模训练数据的获取与正确标注无疑让这一问题

雪上加霜,因此需要耗费大量的人力和物力成本.
加之光学成像领域的公开数据集稀少,这又增加了

深度学习计算成像技术的实施难度.虽然有一些方

法可以减少其对数据的依赖,比如迁移学习、少样本

学习、无监督学习和弱监督学习,但是到目前为止,
它们的性能还没法与大样本的监督学习相比.

２)真值难知:数据采集后无法获得目标准确可

靠的理想真实值,是数据集构建的另一大限制性因

素.例如,进行物体相位信息的获取时,往往需要使

用传统算法进行信息提取.然而这不仅制约了深度

神经网络的表现,即网络的输出质量很难超越用于

训练的数据,还使得多种类、大数据量的信息获取十

分困难、繁琐.因此,在进行深度网络训练时,如何

获取真实、有效并且具有良好代表性的数据集仍是

计算成像领域面临的一大问题.
值得注意的是,对于某些正向物理模型精确可

知的光学成像应用而言,一种可能的做法是直接通

过物理建模并在计算机中进行仿真来获取网络训练

所需的大量训练数据.这种方式虽然规避了上述两

个问题,但也丧失了深度学习技术的最大优势:深度

学习能够从大量实验样本数据中学习实际成像系统

输入与输出之间的复杂高维关联,获得足以适配足

够复杂的真实成像系统的非线性变换能力.而计算

机仿真是无法准确还原实际系统中难以预知的不确

定因素(如噪声、像差等),所以所学习到的模型也不

一定能够真实全面地反映实际的物理成像过程,从
而将有可能得不到理想中的成像结果.

３．２　目标合作度与环境稳定性要求高

在计算成像领域,为了能够获得足以适配足够

复杂的真实成像系统的映射能力,深度学习训练数

据往往通过实际的成像系统获取.这往往需要复杂

耗时的数据采集过程,不仅使得训练集构建繁杂耗

时,更为深度学习在一些特定领域的实际应用,如穿

透散射介质成像(军事、生物成像等),带来了一定的

困难.这主要是由以下两方面问题导致的:

１)目标合作度要求高:传统的监督学习方法往

往需要由大量具备不同特征目标的样本组成的数据

集进行训练.然而方法本身隐含着目标侧灵活可控

的假设,只有满足这一假设才能稳定地获得对应样

本的真值信息.然而,在某些实际情况下,满足这一

条件是十分困难的.例如,穿透散射介质成像中通

常需获得大量已知标准样本的散斑场图像,这就需

要在物体侧频繁替换目标物.而在实际军事(如穿

透雾霾、遮障等)成像环境中,很难直接对目标侧进

行自由操控.生物医学成像(深层穿透成像)应用也

存在类似的问题,在人体皮下或者脏器内置放(大
量)合作目标通常也是不切实际的.

２)环境稳定性要求高:在构建深度神经网络训

练所需的数据集时,往往需要假设成像系统的物理

模型是趋于稳定甚至不随时间变化的,这样所采集

到的大量实验样本数据才能够集中体现成像系统真

实复杂的物理成像过程.然而样本采集过程往往十

分繁杂耗时(可能长达数小时甚至数天),这就必须

保证数据采集过程中的系统环境要尽可能地保持稳

定一致.然而,在许多实际应用中,该条件往往难以

满足.还以穿透散射介质成像为例:雾霾、遮障、大
气湍流、水下浑浊等外界环境往往都会随时间而改

变,从而使得获取的数据难以真实有效地反映实际
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成像时散射介质对成像系统的影响.生物医学成像

应用中也存在类似的问题:人体的呼吸、血流及新陈

代谢活动都是永不停息的,这也意味着散射介质并

不会在较长的时间内保持一成不变,这种系统与环

境的不稳定性给深度学习技术的实际应用带来了相

当大的挑战.

３．３　网络结构的选取趋于经验主义

针对特定的成像需求,到底选择什么样结构的

神经网络合适? 这是初次尝试深度学习的研究人员

经常面对的一个问题.尽管从前人的相同或者相似

工作中能找到网络结构设计的灵感,但是在神经网

络后 期 的 调 试 与 优 化 过 程 中,如 何 调 整 超 参 数

(HyperParameters,如神经网络的层数、CNN中滤

波器的大小、特征的数量等)使得该网络能够在既定

的应用中表现出色仍是一个难以回答的问题.通过

试错法进行超参的调整尽管有一定效果,但这一手

段依赖于从业者本身对深度学习调参的理解,且试

错过程中时间成本过高.
此外,深度神经网络的规模同样也是研究人员

在进行网络设计时需要考量的因素.随着神经网络

层数的增多,其非线性拟合能力也就越强,往往训练

结果的精度也会得到提升,但是当网络层数、参数数

量达到一定规模时,不仅训练过程会变得复杂,还会

给网络能否快速输出结果提出了硬件性能上的挑

战.快速输出神经网络的运算对于算力强大的服务

器与工作站而言可能算不上太大的负担,但对于移

动终端或穿戴设备(如手机、平板等)而言,其往往难

以承担规模过大的神经网络的部署,这时需要在设

计阶段考虑对网络结构、尺寸进行合理限制,合理权

衡成像性能与运算资源.

３．４　“调参好比炼丹”式的试错法训练机制

对于尝试使用深度学习技术的许多人来说,深
度学习方法预测最终结果的过程往往是难以理解

的.虽然深度神经网络所基于的基本运算过程,如
卷积运算、激活函数运算、梯度求解等,十分简单易

懂,但是随着深度神经网络规模的扩大与参数的增

加,大量乃至巨量的参数迭代过程、梯度优化过程互

相耦合,使得整个训练过程难以理解,导致研究人员

在很多情况下只能通过最终的测试结果来对神经网

络性能的优劣进行判断,使得优化和提升神经网络

性能这一目标充斥着大量的试错过程.但是类似

“试错式”的研究方法往往意味着大量的计算资源与

时间成本.尤其是对于大规模的深度神经网络,巨
量的参数使得完成一次训练甚至可能需要占用数十

乃至上百块高性能TPU、耗费数个昼夜甚至更久的

时间,这种多次且无明确目标方向的试错极易带来

时间与算力的大量浪费.
近年来,越来越多的研究人员也逐步意识到这

个问题的重要性与严重性.为了解释神经网络的学

习过程,Zeiler等[９５]提出了一种针对卷积神经网络

的可视化方法.该方法对神经网络学习的特征进行

了可视化,为优化网络结构、提升预测的准确性提供

了思路.而ShwartzＧZiv等[９６]于２０１７年也尝试使

用“信息瓶颈理论”解释深度学习的训练过程,其发

现了深度学习训练过程存在的“特征拟合”和“特征

压缩”两个阶段,并进行了相应的可视化分析.

３．５　特定样本训练后的网络缺乏泛化能力

泛化能力评价的是一个神经网络完成训练后,
在处理“从未遇见过”的输入数据时的表现.虽然传

统计算成像技术的实际成像性能受限于“正向数学

模型的准确性”以及“逆向重构算法的可靠性”,但只

要“模型全面准确”且“算法稳定可靠”,对于不同的

观测对象都可获得较为理想的成像结果.但对于基

于数据驱动的深度学习计算成像,神经网络输入与

输出之间关系的建立主要依赖于对大量样本数据的

反复训练过程.显而易见,对于训练数据中常见的

图像特征,神经网络更容易学习到从该特征到输

出结果的映射.而对于训练过程中出现较少的图

像特征或者实际成像中遇到的一个区别于训练集

的全新样本,神经网络一般难以给出正确的输出.
因此泛化能力通常与训练数据样本的规模和多样

性密切相关.而正如前文所说,在计算光学成像

领域,深度学习技术所依赖的数据集通常获取起

来较为困难,仿真得到的数据集与真实的成像过

程总是存在偏差,而多类样本的大量实验数据又

难以获取,这一困难成为了制约深度神经网络泛

化能力的一大因素.
值得注意的是,对于神经网络泛化能力本身需

要一分为二来看待.这好比是关于“通才”与“专才”
的思考.通才的知识面广,但深度较为欠缺.而专

才尽管知识面相对较窄,但能精通一到两项专业特

长.对于社会的发展而言,通才和专才都是不可或

缺的.回到光学成像的范畴,由于不少应用面向的

对象本身就较为单一,因此不断增加同类型的训练

数据,可对面向特定应用的成像系统性能提升起到

积极的作用.因此,从实际成像需求出发,辩证地看

待深度学习辅助下光学成像方法的泛化能力,在某

些场合缺乏泛化能力反倒不是一件坏事.
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３．６　“深度学习下的计算机视觉”≠“深度学习下的

计算成像”
在过去的７年中,深度学习技术以其特有的“高

维特征自动提取”的功能避免了传统机器学习极其

依赖的人工“特征工程”选取工作,迅速成为了机器

学习领域的主流.而在这其中,最为令人瞩目的便

是其在计算机视觉领域的重大进展:目标识别、三维

视频渲染、图像去模糊、图像超分辨等技术都因为深

度学习技术的出现彻底改头换面.然而,当关注到

其在计算机视觉领域的成功并为之欣喜时,也同样

要认识到其潜在的缺陷:深度学习并不是魔术,数据

也并不会 “无中生有”,由大量训练数据中学习到

“先验数据”并不能与某个待测样品所获取“真实信

息”画上等号.对于“深度学习所获得的结果是真实

有效且准确可靠的”,相信目前谁也没有办法拍胸脯

保证,至少现在还无法做到.
可能有人会提出质疑,这真的那么重要吗? 不

管白猫黑猫,能抓到老鼠的就是好猫.的确在某些

领域,这并不算是个问题.计算机视觉所面向的很

大一部分应用就是满足人类观测的需要(如消费电

子、影视娱乐),人眼是最终的受体也是评价者,“看
起来”好看、“看起来”清楚、“看起来”真实足矣(一个

更为恰当的英文单词叫photorealistic)! 而“它归根

到底是不是真的”,其实(似乎)并不是那么重要.例

如,深度学习技术可基于单张图像实现图像(像素)
超分辨率重建,这种数据的无中生有显然是违背经

典的信息论的.换言之,无法保证经过深度神经网

络所“长出来的”图像细节与真实高分辨率场景中的

完全一致.但是“whocares”? 只要知道图像的确变

清楚了,马赛克的确消失不见了,这就足矣!
然而,在光学范畴的计算成像领域,上述深度学

习技术的潜在缺陷或许是“致命的”.不仅仅是为了

满足视觉观测的需要,计算成像技术往往还和工业

测量、医疗诊断、科学发现等领域密不可分,这就意

味着不仅需要得到一个“看起来还不错”的结果,更
需要确保它们的“准确、可靠、可重复、可溯源”.而

这些要素都很不幸的是深度学习技术的“软肋”.
“如果我都不能保证结果是真的,我还要它有什么意

义?”这要求看似有些苛刻,但在某些特定领域的确

也是必须的.因为谁都不希望自己的产品在质检阶

段被深度学习算法的“存在某个瑕疵”而打上不合格

的标签,更不希望自己的体检报告中由于深度学习

算法的“长出了某个病灶”而被诊断为得了不治之

症.更进一步说,深度学习技术的成功所依赖的是

从大量训练样本中学习并提取的“共性”信息(特
征),这恰恰导致其在面对“罕见样本”(与训练数据

集差异较显著)时,所得结果的准确性往往并不理

想.而对这类“罕见样本”的正确检测与可靠识别往

往也是工业检测与医学诊断领域最有意义且最具挑

战性的一部分.毫不夸张地说,“异常”更是一切科

学新发现的起源.因此,在当前深度学习技术所获

得的巨大成功面前,还是应当对其在计算成像领域

的应用保持清醒且理性的态度.

３．７　“深度学习”缺乏“深入理解”的能力

目前,深度学习技术仍然在很大程度上依赖大

量数据进行特征信息提取,换言之,当深度神经网络

面对一项截然不同的任务时,需要使用新的数据进

行相应训练.正如图灵奖得主、贝叶斯网络之父

JudeaPearl所说,当前的深度学习不过只是“曲线

拟合”,清华大学的张钹院士也曾指出现在的人工智

能基本方法有缺陷,而我们必须走向具有理解能力

的AI,这才是真正的人工智能.需要明确的是,现
有的深度学习缺乏理解和推理能力的原因在于它缺

乏常识信息.举例来说,利用深度学习来进行条纹

分析以计算条纹图中蕴含的包裹相位信息,目前的

方法是两步走:先利用深度学习技术求解条纹的正

弦和余弦部分,然后将它们带入反正切函数计算包

裹相位.由于缺乏推理能力,深度学习技术无法预

知包裹相位具有不连续的空间跳变这一常识(而陡

变区域的高精度拟合往往对于卷积神经网络是非常

具有挑战性的),使得难以训练出准确可靠的端对端

(条纹到相位的直接映射)的神经网络.为了改善这

一问题,需要建立常识库,将常识信息引入到深度学

习,使神经网络在预测时既考虑已看到的样本又与

有关真实世界的常识相联系.

４　深度学习下的计算成像:未来

４．１　搭上深度学习技术发展的顺风车

当了解到计算成像系统的性能、功能与成像能

力因物理模型(如衍射极限、逆问题模型)等受限时,
深度学习技术为计算成像所带来的性能优势就显而

易见了.毫无疑问,深度学习技术与深度神经网络

模型仍会在接下来的若干年不停地向前发展,而计

算光学成像技术也必定将搭着这列顺风车继续快速

前行.

４．１．１　对抗学习(GAN)

GAN是从 Goodfellow等[９７]的研究工作里演

化出来的一个深度学习分支.图灵奖获得者Yann
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LeCun曾评价对抗学习为 “Adversarialtrainingis
thecoolestthingsinceslicedbread(对抗训练是自

切片面包以来最酷的事情)”.这个由博弈论启发而

产生的技术包含两个算法,一个是生成器算法,一个

是鉴别器算法,它们的目标是在训练的过程中欺骗

对方.当这两者的博弈达到平衡时,模型训练结束.
此时利用生成器即可输出最终的结果.

GAN的优势在于它是一种以半监督方式训练

的方法,适合标签较少的训练数据.而且GAN模

型只用到了反向传播,不需要复杂的马尔可夫链.
此外,GAN不仅可用作图像生成,还可以用于图像

分类.从计算机视觉顶会CVPR２０１８年的论文统

计数据来看,以GAN为关键词的论文数量占比已

接近 论 文 总 量 的 １０％.且 纵 观 CVPR２０１４ 至

CVPR２０１８,与GAN有关的论文数量呈现逐年翻

倍的情况.这足以说明GAN这项技术正不断地影

响着深度学习技术未来的发展.

４．１．２　迁移学习与少样本学习

迁移学习专注于利用已有问题的解决模型求解

其他不同但相关问题.比如说,用辨识轿车的模型

来提升识别卡车的能力.迁移学习的初衷是节省人

工标注样本的时间,让模型可以通过已有的标记数

据向未标记数据迁移,从而训练出适用于未标记数

据的运算模型.具体来说,迁移学习算法先在一个

拥有更大的数据集的任务(源任务)上训练,然后再

被迁移为学习另一个只有较少数据集的任务(目标

任务).如果存在一个与目标任务有相关性的任务,
且该任务具有丰富的数据,那么可先训练一个针对

该任务的模型,然后在我们的目标任务中重用这个

模型,或者将这个模型作为我们目标任务模型的训

练起始点.这将有利于加速训练的过程,提升神经

网络性能.
少样本学习是迁移学习的一个分支,它的产生

依赖于人类非常擅长通过少量的样本识别一个新物

体.比如,小孩只需要学习几幅图片就能辨别“狗”、
“猫”、“牛”等动物.受人类这种快速学习能力的启

发,少样本学习在机器学习一定类别的大量数据后,
对于新的物体,只需要少量的样本就能迅速完成

学习.

４．１．３　自动化机器学习(AutoML)
深度学习算法的性能受许多决策的影响.对于

没有丰富计算机技术背景的研究人员,深度学习神

经网络的设计总是给他们带来不小的困扰.研究人

员需要选择相应的神经网络架构、正则化方法、超参

数等.所有的这些操作对神经网络的性能都有很大

的影响.自动机器学习的目标就是使用自动化的方

式做出上述的决策.使用者只需提供训练数据,自
动机器学习系统就能自动地决定最佳的训练方案.
让不同领域的研究人员不必苦恼于学习各种机器学

习的算法.
目前,自动化机器学习的实现方式包括:超参数

优 化 (HyperＧparameter Optimization)、元 学 习

(MetaLearning)、神 经 网 络 架 构 搜 索 (Neural
ArchitectureSearch)等.对于超参数优化,常用的

方法有网格搜索(GridSearch)、随机搜索(Random
Search)和贝叶斯优化.对于元学习,它的主要任务

是让机器学习“如何学习”.通过对现有的学习任务

之间的性能差异进行系统观测,然后让机器学习已

有的经验和元数据,用于更好地执行新的学习任务.
从某种意义上来说,元学习的过程蕴含了超参数优

化.因为它学习了超参数、流水线构成、神经网络架

构、模型构成与元特征等.对于神经网络架构搜索,
伴随着深度学习的流行,神经网络的架构变得越来

越复杂.利用主观经验来确定合适的神经网络架构

难度也越来越大,神经网络架构搜索就是为了解决

这个问题.通过定义搜索空间(SearchSpace)、确
定 搜 索 策 略 (Search Strategy)、性 能 评 价

(PerformanceEstimationStrategy)这三个阶段,机
器可根据反馈进行每一轮的架构搜索.自动化机器

学习将大幅降低机器学习技术的使用门槛,进一步

推动其在光学成像领域中的应用.

４．２　物理模型驱动数据与数据驱动物理模型

４．２．１　物理模型驱动数据

物理模型驱动是当前深度学习发展的一个重要

方向,即在深度学习中嵌入或内蕴特征规则先验,代
替单一的纯数据驱动式学习.众所周知,深度学习

是一种标准的数据驱动型方法,它将深度网络作为

黑箱,依赖于大量数据解决现实问题;而模型驱动方

法则是从目标、机理、先验出发,首先形成学习的一

个代价函数,然后通过极小化代价函数来解决问题.
模型驱动方法的最大优点是只要模型足够精确,解
的质量可预期甚至能达到最优,而且求解方法是确

定的;模型驱动方法的缺陷是在应用中难以精确建

模.模型驱动深度学习方法有效结合了模型驱动和

数据驱动方法的优势.

２０１８年,Xu等[９８]提出一种模型驱动与数据驱

动相结合的深度学习方法(图１６),给出了模型驱动

深度学习的标准流程:１)根据问题,建立模型族
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(FamilyofModels);２)根据模型族,设计算法族

(FamilyofAlgorithms)并建立算法族的收敛性理

论;３)将算法族展开(unfold)成深度网络并实施深

度学习.这种方法将物理模型、逻辑规则作为先验

引入到深层神经网络中,利用人类意图和领域知识

对神经网络模型进行引导,包括特征规则约束、网络

架构设计等,可有效提升网络大样本学习效率、小样

本/零样本学习能力、数据泛化能力.

图１６ 模型驱动的深度学习方法[９８]

Fig．１６ ModelＧdrivendeepＧlearningapproach ９８ 

４．２．２　数据驱动物理模型

深度学习方法一般来说只能学习到数据集中已

有的知识,比较擅长于归纳,而不擅长演绎,也就是

说网络难以推演物理定律,但是可以在一定约束/条

件下拟合物理定律.例如,概率生成模型[９７]可用于

自然图像的生成,训练１０００万张图片后生成的模型

可以自动学习到其内部分布,能够解释给定的训练

图片并同时生成新的图片.与庞大的真实数据相

比,概率生成模型的参数量远远小于数据量,在训练

过程中生成模型会被迫去发现数据背后更为简单的

统计规律,从而能够生成这些数据.２０１７年,Lin
等[９９]给出深度学习定性的物理解释(图１７):１)基本

的物理学定律都是２到４阶,而且拥有对称性等,这
些约束使得解空间变小,因此DNN可以近似得到

这个解;２)所有物质由简单的基本单元构成,这个分

层结构与DNN相似,DNN的层数越多,生成的结

果越复杂.
然而未知定律必定隐含在数据中,既然深度学

习能够对已知分布/规律进行可靠判别筛选,那么可

以只利用深度学习分析数据并试图找到突出/奇异

点,而不一定要找到特定规则或者新规律.在检测

器物理学中,NOvA中微子实验的研究人员将CNN
用于粒子识别和分类、粒子轨迹重建、粒子的相互作

用分析等[１００];在天体物理学方面,CNN被用来发现

图１７ 物理(左)和图像分类(右)关联的因果层次结构[９９]

Fig．１７ Causalhierarchystructurerelevanttophysics left andimageclassification right  ９９ 
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引力透镜(引力透镜是指可以扭曲来自它们后面的

遥远星系的光的大型天体),加速对望远镜数据扫描

以寻找引力透镜扭曲现象的过程[１０１];在机器视觉

应用中也提出了诸多新奇检测方法,采用深度学习

对数据中新奇的或未观测到的数据进行检测识

别[１０２Ｇ１０３].

４．３　深度学习的可解释性有待进一步探究

所谓可解释性是指在我们需要了解或解决一件

事情的时候,可以获得所需要的足够的可以理解的

信息.反过来说,如果在一些情境中我们无法得到

相应的足够的信息,那么这些事情对人们来说都是

不可解释的.正如前文所述其依赖于多层简单的

线形运算的组合,最终实现了高度非线性化的高

维特征提取功能并获得了极高的模型表现能力.
但是,虽然人们创造了准确度极高的网络模型,但
最后只得到了一堆看起来“毫无意义”的模型参数

与匹配度非常高的判定结果.尽管如此,但模型

本身也意味着知识,我们希望知道模型究竟从数

据中“学”到了哪些知识从而支撑该模型进行了最

终的决策.
当准备将深度神经网络应用于某些特定成像领

域时,除了获得最终的理想的成像结果,还希望能够

了解到神经网络究竟提取了原始输入中的哪些信

息,是基于什么形式的运算得到了这个结果.除此

之外,不可解释同样意味着模型的“危险性”,图１８
所示为一个非常经典的关于对抗样本的例子,对于

一个CNN模型,在图片中添加了轻微随机噪声之

后熊猫却被判定为长臂猿[１０４].因此,如何进一步

推动深度学习的数据解释性,如何进一步提高深度

神经网络结果的可溯性、稳定性,都是目前迫切需要

解决的问题,这些问题的解决也将为深度学习在计

算成像领域打开更广阔的应用空间.

图１８ 在熊猫图片中加入轻微随机噪声,CNN模型将图片识别为长臂猿[１０４]

Fig．１８ AfteraddingslightnoiseintoPandaimage CNNmodelrecognizesimageasGibbon １０４ 

４．４　脑神经科学启发的思路值得更多的重视

作为多层神经网络,深度学习是受脑神经科学

启发而发展起来的.特别是卷积神经网络,其根源

为Fukushima在１９８０年提出的认知机模型,而该

模型的提出动机就是模拟哺乳动物视觉神经系统,
通过逐层提取由简及繁的特征,实现语义逐级抽象

的视觉神经通路.在诺贝尔奖获得者 Hubel和

Wiesel的共同努力下,该通路从２０世纪６０年代起

逐渐清晰,为CNN的诞生提供了良好的参考.但

值得注意的是,生物视觉神经通路极其复杂,神经科

学家对初级视觉皮层中简单神经细胞的边缘提取功

能是清晰的,对通路后面部分越来越复杂的神经细

胞的功能也有一些探索,但对更高层级上的超复杂

细胞的功能及其作用机制尚不清晰.这意味着

CNN等深度模型是否真的能够模拟生物视觉通路

还是不得而知的.但可以确定的是,生物神经系统

的链接极为复杂,不仅仅有自下而上的前馈和同层

递归,更有大量的自上而下的反馈,以及来自其他神

经子系统的外部链接,这些都是目前的深度模型尚

未建模的.但无论如何,脑神经科学的进步可以为

深度模型的发展提供更多的可能性,这是非常值得

关注的.例如,最近越来越多的神经科学研究表明,
曾一度被认为功能极为特异化的神经细胞其实具有

良好的可塑性,例如,视觉皮层的大量神经细胞在失

去视觉处理需求后不久即被重塑,转而处理触觉或

其他模态的数据.神经系统的这种可塑性使其面向

不同的智能处理任务时具有良好的通用性,这为通

用人工智能的发展提供了参照.因此我们可以大胆

展望,未来很有可能会出现更加智能的可塑化模型

来代替现在的固定结构的深度学习模型.

４．５　既要“深度”又要“深入”
深度学习的出现似乎一度改变了计算机视觉与

光学成像领域,有计算机视觉领域的研究者曾开玩

笑地说道:“深度学习让我感觉到之前一切的所学似

乎都白学了.”大家似乎再也不用绞尽脑汁自己去研

究背后的数学物理机理、推导模型并进行求解预测.
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只要统一地甩给计算机一张网络就可以让它自己去

学习具体的模型了,这大大降低了知识学习的成本,
减少了手动建模的工作量.理论研究的最终目的不

就是建立真实物理世界的数学模型,然后利用模型

再去造福世界的吗? 现在不需要研究理论也可以建

立一个近乎准确的模型了,为什么还要费尽力气深

入研究理论?
这看似很有道理,但我们不妨换一个思路去思

考一下? 一项工作是选择由深度学习去完成还是经

典理论算法去完成,归根到底还是在于二者谁能够

完成得“更出色”.如果深度学习真的能够“保证”预
测出一个近乎准确的模型,输出最为理想的重建结

果,我们定能够安心地把这件事交给它而不必再劳

神费力.但谁能保证做到这一点? 即使你是这么认

为,但你是否真的深入了解并实现过那些经典的物

理模型驱动方法,并保证能对此结果做出一个不偏

不倚的公正评价? 你会为让经典算法得到一个最优

的结果而通宵调参吗? 你是否真的保证你所实现的

深度学习算法在训练时没有因数据有意无意的泄露

而得到一个过度美化的结果? 你会客观而随机地选

择测试数据并以此去评价最终的实验结果吗? 因此,
个人之见是“真正的”深度学习其实并没有(至少现阶

段)把科学研究变得更简单,反而拉高了科学研究的

门槛,因为他要求研究者不但既要公正且有效地利用

“深度”学习这一工具,又要对此领域的研究足够“深
入”,以保证真正得到客观而准确的结论(图１９).

图１９ 深度学习与经典理论算法之间的客观公证对比

Fig．１９ Comparisonbetweendeeplearningandclassicaltheoreticalalgorithmshouldbeobjective

４．６　既要“有所为”又要“有所不为”
现阶段深度学习技术在很多领域(包括计算成

像)已经步入了一个爆炸式增长的时代,它似乎成为

了该领域研究的未来潮流.一个不能用经典模型解

释的现象,只要套上“深度学习”似乎就变得“高大

上”起来.这真的让人细思恐极! 很多初出茅庐的

研究者们似乎发现其实不用扎实的基础理论也可以

发表一篇高档次的论文,他们当然会很快地成为该

领域的拥护者,并幻想着似乎自己已经走在了该领

域研究的最前沿.但熟不知,这大量各色各样的披

着深度学习华丽外衣的研究论文背后只不过是一套

“模板化”的菜谱,自己学着去做其实未必能做出真

正漂亮且有营养的一道美食.
深度学习终究不过是一种基于大量样本数据的

统计类方法,统计类方法在推理性的任务面前是不

可靠的.在物理学中,想要建立一个模型通常需要

三个步骤:１)学习数学物理理论;２)观测真实实验数

据;３)基于数学物理理论对观测数据进行建模.看

似最重要的建模只是三道工序中的最后一环,实际

上大多数困难费事且重要的工作都花在前两步(这
也就是为什么大部分人不喜欢花了那么多年时间才

读到博士,即使读到了博士还要继续花大量时间读

文章做实验).深度学习的优势是省去了第一步,简
化了第二步,直接到了第三步,这听上去似乎有些难

以置信.因为神经网络的参数选择没有理论基础,
仅用数据驱动.显然只通过有限(局部的)数据得到

的符合这些数据的函数可能是不唯一的,但真实的

函数却只有一个,这就注定了仅依赖局部数据驱动

预测的模型类似于一种赌博.诚然在计算成像领域

某些很难公式化建模的任务上,神经网络取得了巨

大的成功,但想要使用神经网络从大量衍射图样中

学出菲涅耳衍射定律这样的通用的数学公式却不太

现实.
最后值得一提的是,如果你真的对深度学习那

么情有独钟,非深度学习不可,那请你在最后的时刻

冷静下来思考一下这个问题:“这到底值不值得、适
不适合用深度学习去做?”深度学习切记不可乱用.
在某些问题前面,传统基于物理模型的方法已经能

够给出足够简单而精确的解决方案,并不需要深度

学习.这就好比一个矩形的面积明明通过长乘宽就

可以得到,却非要拿微积分算一遍一样.在有的时

候,这种“不必要”有时候其实并不是那么容易被“意
识到”.去年一篇来自哈佛和谷歌的用深度学习预

测余震位置的Nature论文[１０５]遭受了地震一般地猛

０１１１００３Ｇ２１
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烈质疑,被封为“深度学习的错误用法”(图２０).这

其实并不是单单因为利用深度学习预测地震从常识

上讲多么不靠谱,而是有人质疑如果采用文中(具有

泄露嫌疑)的训练数据,传统任意一个简单模型,如
支持向量机 (SVM)、广义相加模型 (GAM)等,只
需要１５００行数据都可以得出和原本４７０万行数据

的深度神经网络相当的结果[１０６].另一方面,你必

须清楚地认清深度学习技术“它最好能做到多好”很
大程度上取决于“你给它的数据有多可靠”.例如,
在某些场合下,采集到的真实数据对应的真值无从

得知.此时你若想偷个懒,直接用经典算法处理的

结果去标注并让网络去建立关联,那么就算再理想

再强大的神经网络也至多能和经典算法打个平手,
那还为何去劳驾深度学习呢? 恰恰是因为这个原

因,很多问题并不适合直接用深度学习去解决.例

如:干涉测量中低质量包裹相位图的空间解包裹(对
应实测数据的正确绝对相位信息难以甚至无法获

得),条纹投影中直接从相位到深度的端到端映射(真
实世界物体的绝对三维坐标难以通过仪器量测)等.

图２０ 深度学习被用于预测地震遭到了质疑

Fig．２０ Forecastingearthquakeusingdeeplearninghitwith
rebuttalshasbeenquestioned

５　结束语

当下快速发展的深度学习技术为计算光学成像

的发展打开了一扇新的窗户,它有效提升了传统计

算成像技术的信息获取能力,降低了传统计算成像

技术对“正向物理模型”或“逆向重构算法”的过度依

赖,突破了传统计算成像技术所能够达到的功能/性

能疆界,并为这个领域带来很多令人瞩目的开创性

研究成果.但同样,深度学习技术在光学成像领域

的应用还面临着巨大的挑战.这不仅需要依赖深度

学习的专家们进一步去完善这一工具,还需要光学

成像的专家们更加理性地去借鉴与使用.相信大家

都期望看到今后越来越多的文章不再是各类网络结

构与各类计算成像体制简单排列组合般的堆砌,而
能够真正大胆地把深度学习下的计算成像所面临的

这些挑战毫不避讳地拿到台面上去讨论,甚至有勇

气去挑战它们! 只有这样,“深度学习下的计算成

像”这一研究领域才不会“昙花一现”,而是能够真正

地走得更远
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Abstract. In many optical metrology techniques, fringe pattern analysis is the central algorithm for recovering
the underlying phase distribution from the recorded fringe patterns. Despite extensive research efforts for
decades, how to extract the desired phase information, with the highest possible accuracy, from the
minimum number of fringe patterns remains one of the most challenging open problems. Inspired by
recent successes of deep learning techniques for computer vision and other applications, we demonstrate
for the first time, to our knowledge, that the deep neural networks can be trained to perform fringe
analysis, which substantially enhances the accuracy of phase demodulation from a single fringe pattern.
The effectiveness of the proposed method is experimentally verified using carrier fringe patterns under the
scenario of fringe projection profilometry. Experimental results demonstrate its superior performance, in
terms of high accuracy and edge-preserving, over two representative single-frame techniques: Fourier
transform profilometry and windowed Fourier transform profilometry.
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Optical measurement techniques such as holographic interfer-
ometry,1 electronic speckle pattern interferometry,2 and fringe
projection profilometry3 are quite popular for noncontact mea-
surements in many areas of science and engineering, and have
been extensively applied for measuring various physical
quantities, such as displacement, strain, surface profile, and
refractive index. In all these techniques, the information about
the measured physical quantity is stored in the phase of a two-
dimensional fringe pattern. The accuracy of measurements
carried out by these optical techniques is thus fundamentally
dependent on the accuracy with which the underlying phase
distribution of the recorded fringe patterns is demodulated.

Over the past few decades, tremendous efforts have been
devoted to developing various techniques for fringe analysis.
The techniques can be broadly classified into two categories:
(1) phase-shifting (PS) methods that require multiple fringe
patterns to extract phase information,4 and (2) spatial phase-
demodulation methods that allow phase retrieval from a single

fringe pattern, such as the Fourier transform (FT),5 windowed
Fourier transform (WFT),6 and wavelet transform (WT)
methods.7 Compared with spatial phase demodulation methods,
multiple-shot PS techniques are generally more robust and can
achieve pixel-wise phase measurement with higher resolution
and accuracy. Furthermore, the PS measurements are quite
insensitive to nonuniform background intensity and fringe
modulation. Nevertheless, due to their multishot nature, these
methods are difficult to apply to dynamic measurements and
are more susceptible to external disturbance and vibration.
Thus, for many applications, phase extraction from a single
fringe pattern is desired, which falls under the purview of
spatial fringe analysis. In contrast to PS techniques where the
phase map is demodulated on a pixel-by-pixel basis, phase
estimation at a pixel according to spatial methods is influenced
by the pixel’s neighborhood, or even all pixels in the fringe pat-
tern, which provides better tolerance to noise, yet at the expense
of poor performance around discontinuities and isolated regions
in the phase map.8,9

Deep learning is a powerful machine learning technique
that employs artificial neural networks with multiple layers of
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increasingly richer functionality and has shown great success in
numerous applications for which data are abundant.10,11 In this
letter, we demonstrate experimentally for the first time, to our
knowledge, that the use of a deep neural network can substan-
tially enhance the accuracy of phase demodulation from a single
fringe pattern. To be concrete, the networks are trained to predict
several intermediate results that are useful for the calculation of
the phase of an input fringe pattern. During the training of the
networks, we capture PS fringe images of various scenes to gen-
erate the training data. The training label (ground truth) of each
training datum is a pair of intermediate results calculated from
the PS algorithm. After appropriate training, the neural network
can blindly take only one input fringe pattern and output the
corresponding estimates of these intermediate results with high
fidelity. Finally, a high-accuracy phase map can be retrieved
through the arctangent function with the intermediate results
estimated through deep learning. Experimental results on fringe
projection profilometry confirm that this deep-learning-based
method is able to substantially improve the quality of the
retrieved phase from only a single fringe pattern, compared
to state-of-the-art methods.

Here, the network configuration is inspired by the basic pro-
cess of most phase demodulation techniques, which is briefly
recalled as follows. The mathematical form of a typical fringe
pattern can be represented as

Iðx; yÞ ¼ Aðx; yÞ þ Bðx; yÞ cos ϕðx; yÞ; (1)

where Iðx; yÞ is the intensity of the fringe pattern, Aðx; yÞ is
the background intensity, Bðx; yÞ is the fringe amplitude, and
ϕðx; yÞ is the desired phase distribution. Here, x and y refer
to the pixel coordinates. In most phase demodulation tech-
niques, the background intensity Aðx; yÞ is regarded as a disturb-
ance term and should be removed from the total intensity. Then
a wrapped phase map is recovered from an inverse trigonometric
function whose argument is a ratio for which the numerator
characterizes the phase sine [sin ϕðx; yÞ] and the denominator
characterizes the phase cosine [cos ϕðx; yÞ]:

ϕðx; yÞ ¼ arctan
Mðx; yÞ
Dðx; yÞ ¼ arctan

cBðx; yÞ sin ϕðx; yÞ
cBðx; yÞ cos ϕðx; yÞ ; (2)

where c is a constant dependent on the phase demodulation
algorithm (e.g., in FT c ¼ 0.5, in N-step PS c ¼ N∕2), and
Mðx; yÞ and Dðx; yÞ represent the shorthand for the numerator
and denominator terms, respectively. Note that the signs of
Mðx; yÞ and Dðx; yÞ can be further used to uniquely define a
quadrant for each calculation of ϕðx; yÞ. With the four-quadrant
phasor space, the phase values at each point can be determined
modulo 2π.

In order to emulate the process above, two different convolu-
tional neural networks (CNN) are constructed, which are con-
nected cascadedly according to Fig. 1. The first convolutional
neural network (CNN1) uses the raw fringe pattern Iðx; yÞ as
input and estimates the background intensity Aðx; yÞ of the
fringe pattern. With the estimated background image Aðx; yÞ
and the original fringe image Iðx; yÞ, the second convolutional
neural network (CNN2) is trained to predict the numerator
Mðx; yÞ and the denominator Dðx; yÞ of the arctangent function,
which are fed into the subsequent arctangent function [Eq. (2)]
to obtain the final phase distribution ϕðx; yÞ.

To generate the ground truth data used as the label to train
the two convolutional neural networks, the phase retrieval is
achieved by using the N-step PS method. The corresponding
N PS fringe patterns acquired can be represented as

Inðx; yÞ ¼ Aðx; yÞ þ Bðx; yÞ cos½ϕðx; yÞ − δn�; (3)

where the index n ¼ 0; 1;…; N − 1, and δn is the phase shift
that equals 2πn

N . With the orthogonality of trigonometric func-
tions, the background intensity can be obtained as

Aðx; yÞ ¼ 1

N

XN−1

n¼0

Inðx; yÞ: (4)

With the least square method, the phase can be calculated as

ϕðx; yÞ ¼ arctan

P
N−1
n¼0 Inðx; yÞ sin δnP
N−1
n¼0 Inðx; yÞ cos δn

: (5)

Thus, the numerator and the denominator of the arctangent
function in Eq. (2) can be expressed as

Fig. 1 Flowchart of the proposed method where two convolutional networks (CNN1 and CNN2)
and the arctangent function are used together to determine the phase distribution. For CNN1 (in
red), the input is the fringe image Iðx ; yÞ, and the output is the estimated background image
Aðx ; yÞ. For CNN2 (in green), the inputs are the fringe image Iðx ; yÞ and the background image
Aðx ; yÞ predicted by CNN1, and the outputs are the numerator Mðx ; yÞ and the denominator
Dðx ; yÞ. The numerator and denominator are then fed into the arctangent function to calculate
the phase ϕðx ; yÞ.
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Mðx; yÞ ¼
XN−1

n¼1

Inðx; yÞ sin δn ¼
N
2
Bðx; yÞ sin ϕðx; yÞ; (6)

Dðx; yÞ ¼
XN−1

n¼0

Inðx; yÞ cos δn ¼
N
2
Bðx; yÞ cos ϕðx; yÞ: (7)

The expressions above show that the numerator Mðx; yÞ and
the denominatorDðx; yÞ are closely related to the original fringe
pattern in Eq. (1) through a quasilinear relationship with the
background image Aðx; yÞ. Thus, Mðx; yÞ and Dðx; yÞ can be
learned by deep neural networks with ease given the knowledge
of Aðx; yÞ, which justifies our network. It should be noted that
the simple input–output network structure [linking fringe pat-
tern Iðx; yÞ to phase ϕðx; yÞ directly] performs poorly in our
case since it is difficult to follow the phase wraps (2π jumps)
in the phase map precisely. Therefore, instead of estimating
the phase directly, our deep neural networks are trained to pre-
dict the intermediate results, i.e., the numerator and the denom-
inator of the arctangent function in Eq. (2), to obtain a better
phase estimate. To further validate the superiority of the pro-
posed method, an ablation analysis is presented in Sec. 6 of
the Supplementary Material, in which three methods that (1) es-
timate the phase ϕðx; yÞ directly; (2) predictDðx; yÞ andMðx; yÞ
without Aðx; yÞ; and (3) calculate Aðx; yÞ, Dðx; yÞ, and Mðx; yÞ
simultaneously are compared experimentally. The comparative

results indicate that our method is more advantageous in phase
reconstruction accuracy than others.

To further reveal the internal structure of the two networks,
the diagrams of the two convolutional neural networks are
shown in Figs. 2 and 3. The labeled dimensions of the layers
or the blocks show the size of their output data. The input of
CNN1 is a raw fringe pattern with W ×H pixels. It is then suc-
cessively processed by a convolutional layer, a group of residual
blocks (containing four residual blocks) and two convolutional
layers. The last layer estimates the gray values of the back-
ground image. With the predicted background intensity and
the raw fringe pattern, as shown in Fig. 3, CNN2 calculates
the numerator and denominator terms. In CNN2, the input data
having two channels are downsampled by ×1 and ×2 in two
different paths. In the second path, the data are first down-
sampled for a high-level perception and then upsampled to match
the original dimensions. With the two-scale data flow paths, the
network can perceive more surface details for both the numer-
ator and the denominator. We provide additional details about
the architectures of our networks in Supplementary Sec. 3.

The performance of the proposed approach was demon-
strated under the scenario of fringe projection profilometry.
The experiment consisted of two steps: training and testing.
In order to obtain the ground truth of training data, 12-step
PS patterns with spatial frequency f ¼ 160 were created and
projected by our projector (DLP 4100, Texas Instruments) onto
various objects. The fringe images were captured simultane-
ously by a CMOS camera (V611, Vision Research Phantom)
of 8-bit pixel depth and of resolution 1280 × 800. Training ob-
jects with different materials, colors, and reflectivity are prefer-
able to enhance the generalization capability of the proposed
method. Also, analogous to traditional approaches of fringe
analysis that require fringes with enough signal-to-noise ratio
or without saturated pixels, the proposed method prefers objects
without very dark or shiny surfaces. Our training dataset is col-
lected from 80 scenes. It consists of 960 fringe patterns and the
corresponding ground truth data that are obtained by a 12-step
PS method (see Supplementary Secs. 1 and 2 for details about
the optical setup and the collection of training data). Since
one of the inputs of CNN2 is the output of CNN1, CNN1 was
trained first and CNN2 was trained with the predicted back-
ground intensities and captured fringe patterns. These two
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Fig. 2 Schematic of CNN1, which is composed of convolutional
layers and several residual blocks.
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Fig. 3 Schematic of CNN2, which is more sophisticated than CNN1 and further includes two
pooling layers, an upsampling layer, a concatenation block, and a linearly activated convolutional
layer.
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neural networks were implemented using the TensorFlow
framework (Google) and were computed on a GTX Titan graph-
ics card (NVIDIA). To monitor during training the accuracy of
the neural networks on data that they have never seen before,
we created a validation set including 144 fringe images from
12 scenes that are separate from the training scenarios.
Additional details on the training of our networks are provided
in Supplementary Sec. 3.

To test the trained neural networks versus classic single-
frame approaches (i.e., FT5 and WFT6), we measured a scene
containing two isolated plaster models, as shown in Fig. 4(a).
Compared with the right model, the left one has a more complex
surface, e.g., the curly hair and the high-bridged nose. Note that
this scenario was never seen by our neural networks during the
training stage. The trained CNN1 using Fig. 4(a) as an input
predicted a background intensity as shown in Fig. 4(b). From
the enlarged views, we can see that the fringes have been
removed completely through the deep neural network. Then,
the trained CNN2 took the fringe pattern and the predicted back-
ground intensity as inputs and estimated the numerator Mðx; yÞ
and the denominator Dðx; yÞ; results are shown in Figs. 4(c)
and 4(d), respectively. The phase was calculated by Eq. (2)
and is shown in Fig. 4(e). In order to evaluate the quality of
the estimated phase more easily, we unwrapped it by multifre-
quency temporal phase unwrapping,12 in which additional phase
maps of fringe patterns of different frequencies were computed
with PS algorithm and were then used to unwrap the phase
obtained through deep learning. To demonstrate the accuracy
of the unwrapped phase, the phase error was calculated against
a reference phase map, which was obtained by the 12-step PS
method and was unwrapped with the same strategy.

Figures 5(a)–5(c) show the overall absolute phase errors of
these approaches, and the calculated mean absolute error (MAE)
of each method is listed in Table 1. Note that the adjustable
parameters (e.g., the window size) in FT and WFT have been
carefully tuned in order to get the best results possible. The re-
sult of FT shows the most prominent phase distortion as well as
the largest MAE of 0.20 rad. WFT performed better than FT,
with fewer errors for both models (MAE 0.19 rad). Among these
approaches, the proposed deep-learning-based method demon-
strates the least error, which is 0.087 rad. Furthermore, after the
training stage, our method becomes fully automatic and does not
require a manual parameter search to optimize its performance.
To compare the error maps in detail, the phase errors of two
complex areas are presented in Fig. 5(d): the hair of the left
model and the skirt of the right one. From Fig. 5(d), obvious
errors can be observed in the results of FT and WFT, which
are mainly concentrated in the boundaries or abrupt depth-
changing regions. By contrast, our approach greatly reduced
the phase distortion, demonstrating its significantly improved
performance in measuring objects with discontinuities and
isolated complex surfaces. To further test and compare the
performance of our technique with FT and WFT, Sec. 7 of
the Supplementary Material details the measurements of more
kinds of objects, which also shows that our method is superior
to FT and WFT in terms of phase reconstruction accuracy.

For a more intuitive comparison, we converted the un-
wrapped phase into 3-D rendered geometries through stereo
triangulation,13 as shown in Fig. 6. Figure 6(a) shows that the
reconstructed result from FT features many grainy distortions,
which are mainly due to the inevitable spectral leakage and
overlapping in the frequency domain. Compared with FT, the

326 326 309 308

(d) (e)(c)

(a) (b)

Fig. 4 Testing using the trained networks on a scene that is not present in the training phase.
(a) Input fringe image Iðx ; yÞ, (b) background image Aðx ; yÞ predicted by CNN1, (c) and (d) nu-
merator Mðx ; yÞ and denominator Dðx ; yÞ estimated by CNN2, (e) phase ϕðx ; yÞ calculated with
(c) and (d).

Feng et al.: Fringe pattern analysis using deep learning

Advanced Photonics 025001-4 Mar∕Apr 2019 • Vol. 1(2)
Downloaded From: https://www.spiedigitallibrary.org/journals/Advanced-Photonics on 2/28/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

84

https://doi.org/10.1117/1.AP.1.2.025001.1
https://doi.org/10.1117/1.AP.1.2.025001.1
https://doi.org/10.1117/1.AP.1.2.025001.1


WFT reconstructed the objects with more smooth surfaces but
failed to preserve the surface details, e.g., the eyes of the left
model and the wrinkles of the skirt of the right model,
as can be seen in Fig. 6(b). Among these reconstructions, the
deep-learning-based approach yielded the highest-quality 3-D
reconstruction [Fig. 6(c)], which almost visually reproduced

the ground truth data [Fig. 6(d)] where 12-step PS fringe pat-
terns were used.

It should be further mentioned that, in the above experiment,
the carrier frequency of the fringe pattern is an essential
factor affecting the performance of FT and WFT, which was
set sufficiently high (f ¼ 160) in order to yield results with
reasonable accuracy and spatial resolution. However, it can be
troublesome for them to analyze the fringe patterns where
the carrier frequency is relatively low. As shown in Sec. 4 of
the Supplementary Material, the reconstruction quality of FT
and WFT degraded to 0.28 and 0.26 rad when the carrier fre-
quency was reduced to 60. By contrast, our method produced a
consistently more accurate phase reconstruction with the phase
error of 0.10 rad. In addition, to find appropriate patterns, we
suggest choosing a fringe with high frequency and adequate
density, but which will not affect the contrast of captured
patterns. Section 5 of the Supplementary Material provides
detailed information on the selection of the optimal frequency
for the network training.

Finally, to quantitatively determine the accuracy of the
learned phase after converting to the desired physical quantity,
i.e., 3-D shape of the object, we measured a pair of standard
ceramic spheres whose shapes have been calibrated based on
a coordinate measurement machine. Figure 7(a) shows the
tested ceramic spheres. Their radii are 25.398 and 25.403 mm,
respectively, and their center-to-center distance is 100.069 mm.
We calculated the 3-D point cloud from the phase obtained by
the proposed method and then fitted the 3-D points into the
sphere model. The reconstructed result is shown in Fig. 7(b),
where the “jet” colormap is used to represent the data values
of reconstruction errors. The radii of reconstructed spheres
are 25.413 and 25.420 mm, with deviations of 15 and 17 μm,
respectively. The measured center-to-center distance is
100.048 mm, with an error of −21 μm. As the measured dimen-
sions are very close to the ground truth, this experiment

0.3

0
FT WFT Our

(c)(b)(a)

(d)
0.3

0

Fig 5 Comparison of the phase error of different methods: (a) FT, (b) WFT, (c) our method, and
(d) magnified views of the phase error for two selected complex regions.

Table 1 Phase error of FT, WFT, and our method.

Method FT WFT Our

MAE (rad) 0.20 0.19 0.087

(b)(a)

(d)(c)

Fig 6 Comparison of the 3-D reconstruction results for different
methods: (a) FT, (b) WFT, (c) our method, and (d) ground truth
obtained by the 12-step PS profilometry.
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demonstrates that our method not only provides reliable phase
information using only a single fringe pattern but also facilitates
high-accuracy single-shot 3-D measurements.

In this letter, we have demonstrated how deep learning sig-
nificantly improves the accuracy of phase demodulation from a
single fringe pattern. Compared with existing single-frame ap-
proaches, this deep-learning-based technique provides a frame-
work in fringe analysis by rapidly predicting the background
image and estimating the numerator and the denominator for
the arctangent function, resulting in high-accuracy edge-pre-
serving phase reconstruction without any human intervention.
The effectiveness of the proposed method has been verified us-
ing carrier fringe patterns under the scenario of fringe projection
profilometry. We believe that, after appropriate training with
different types of data, the proposed network framework or
its derivation should also be applicable to other forms of fringe
patterns (e.g., exponential phase fringe patterns or closed
fringe patterns) and other phase measurement techniques for
immensely promising applications.
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Deep learning has gained increasing attention in the field of
optical metrology and demonstrated great potential in solving
a variety of optical metrology tasks, such as fringe analysis and
phase unwrapping. However, deep neural networks cannot
always produce a provably correct solution, and the predic-
tion error cannot be easily detected and evaluated unless the
ground-truth is available. This issue is critical for optical
metrology, as the reliability and repeatability of the measure-
ment are of major importance for high-stakes scenarios. In this
paper, for the first time to our knowledge, we demonstrate that
a Bayesian convolutional neural network (BNN) can be trained
to not only retrieve the phase from a single fringe pattern but
also produce uncertainty maps depicting the pixel-wise con-
fidence measure of the estimated phase. Experimental results
show that the proposed BNN can quantify the reliability of
phase predictions under conditions of various training dataset
sizes and never-before-experienced inputs. Our work allows
for making better decisions in deep learning solutions, paving
a new way to reliable and practical learning-based optical
metrology. © 2021 Optical Society of America under the terms of

theOSAOpen Access Publishing Agreement

https://doi.org/10.1364/OPTICA.434311

Fringe-pattern analysis is key to many optical metrology appli-
cations [1], such as optical interferometry, fringe projection
profilometry, digital holography, moiré interferometry, shearog-
raphy, and corneal topography. The purpose of the fringe-pattern
analysis is to extract the underlying phase information of test
objects from one or several fringe pattern(s). Normally, a fringe
pattern I can be expressed as

I (x , y )= A(x , y )+ B(x , y ) cos ϕ(x , y ), (1)

where (x , y ) is the pixel coordinate, A is the background signal, B
is the modulation, andϕ is the phase of test objects. As A and B are
unknown, it is an ill-posed problem to extract ϕ if only one fringe
image is at hand. Single-shot phase demodulation approaches,
e.g., Fourier transform profilometry (FTP) [2], resort to the assis-
tance of a spatial carrier to handle the ill-posed issue. Although they
are of high efficiency, they are susceptible to complex surfaces that

can easily cause spectral aliasing during the phase demodulation.
On the contrary, multi-shot phase demodulation approaches,
such as phase-shifting (PS) algorithms [3], can carry out pixel-wise
phase measurements with high accuracy. However, they are frag-
ile for disturbances and vibrations due to the limited efficiency
resulting from the multi-frame nature.

Recently, the deep learning technique has been introduced
to the fringe-pattern analysis [4]. It is reported that the phase
information can be extracted from a single fringe pattern with sub-
stantially enhanced phase accuracy for complex objects by a trained
deep neural network (DNN). Therefore, the learning-based fringe
analysis has great potential in realizing high-efficiency and high-
accuracy phase demodulation. However, as most DNNs are driven
by data completely, the reasoning process is quite different from
that of a traditional physical model. Actually, when the training
data are insufficient or the testing data are rare, the output of DNN
may not be reliable enough. A recent example in computer vision
has shown a disastrous prediction where an image classification
network mistakenly identified two African Americans as gorillas,
giving rise to concerns of racial discrimination [5]. Therefore, how
to trust the prediction of a DNN is still a big challenge.

For the task of single-shot fringe-pattern analysis, the uncer-
tainty estimation of the predicted phase is indispensable as it is an
ill-posed problem to retrieve the phase from Eq. (1) with a single
image. Inspired by recent successful applications of Bayesian deep
learning approaches [6], we demonstrate for the first time, to
the best of our knowledge, that a Bayesian convolutional neural
network (BNN) can be trained to not only demodulate the phase
from a single fringe pattern, but also evaluate two uncertainties
of the prediction. They are the data uncertainty and the model
uncertainty. The data uncertainty is also referred to as the aleatoric
uncertainty that can quantify the randomness of the prediction
due to the noise and data imperfection. The model uncertainty
can be referred to as the epistemic uncertainty, which captures
the robustness and the uncertainty of the model. The proposed
BNN is easy to construct and can be extended to traditional DNNs
readily. Experimental results on fringe projection profilometry
show that the uncertainty maps predicted by BNN can indicate
the actual error distribution faithfully in the absence of standard
reference data.
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According to Eq. (1), the phase can be retrieved by

ϕ(x , y )= arctan
M(x , y )
D(x , y )

= arctan
c B(x , y ) sin ϕ(x , y )
c B(x , y ) cos ϕ(x , y )

,

(2)
where the numerator M(x , y ) characterizes the phase sine
[sin ϕ(x , y )] and the denominator D(x , y ) characterizes the
phase cosine [cos ϕ(x , y )]. c is a constant parameter that depends
on the used phase demodulation approach [2,3]. To emulate this
process, a DNN can be trained to learn M(x , y ) and D(x , y ),
which are then fed into the arctangent function for retrieving the
phase.

Here, we present a BNN that uses the Concrete dropout [7]
to approximate Bayesian inference in deep Gaussian processes for
learning the numerator M(x , y ) and the denominator D(x , y )
statistically. We assume that X is a set of input fringe images,
which can be represented as X= {xk

}
K
k=1, where xk is the kth input

fringe pattern and K is the size of the set. Y is a set of ground-truth
labels corresponding to the training data, which can be written
as Y= {yk

}
K
k=1, where yk consists of the ground-truth numerator

and denominator (Mk, Dk). w represents the weight matrix of the
BNN. To investigate the distribution of the output of BNN, we
model the predictive distribution p(y*|x*,X, Y) as

p
(
y*|x*,X, Y

)
=

∫
p
(
y*|x*,w

)
p(w|X, Y)dw, (3)

where p(y*|x*,w) is the probability of the output y* given the
input x*, the weights w, and p(w|X, Y) the probability of
the weights w given the training data (X, Y). The distribution
p(y*|x*,w) describes the data uncertainty, and the distribution
p(w|X, Y) characterizes the model uncertainty.

To measure the data uncertainty, we assume that yk has N pixels,
and p(yk

|xk,w) can then be written as

p
(
yk
|xk,w

)
=

N
5
i=1

p
(
yk

i |x
k,w

)
. (4)

Assuming that the distribution of yk is Gaussian for each pixel,
the data uncertainty can be captured by minimizing the negative
log-likelihood function at the training stage,

−
1

K

∑
k

log p
(
yk
|xk,w

)

=
1

K

K∑
k=1

[
1

2(σ k)2

∥∥∥yk
− ŷk

∥∥∥2
+

1

2
log (σ k)

2
]
, (5)

where y is the ground-truth label, ŷ is the result predicted by BNN,
andσ 2 is the predicted variance.

To measure the model uncertainty, the Concrete dropout net-
work is applied. By placing the Concrete dropout before every
weight layer, we can use a simple variational distribution q(w) to
approximate p(w|X, Y), which is usually hard to calculate analyti-
cally. By using the Monte Carlo (MC) integration over T samples
satisfying w(t)

∼ q(w), Eq. (3) can be approximated as

p(y∗|x∗,X, Y)≈
∫

p(y∗|x∗,w)q(w)dw≈
1

T

T∑
t=1

p(y∗|x∗,w(t)).

(6)
At the prediction stage, the dropout layers in our BNN ran-

domly set input neurons to zero with a learned dropout rate.

By collecting the results of stochastric forward propagation
through the trained model, the predictive mean can be computed
and be used as the prediction of the BNN,

µ̂= E (y∗|x∗,X, Y)≈
1

T

T∑
t=1

E (y∗|x∗,w(t))=
1

T

T∑
t=1

y∗(t),

(7)
where E is the expectation. The model uncertainty is measured by
the variance of the predicted results:

σ̂model
=

√
E
[
Var

(
y*
∣∣w, x*,X, Y

)]
≈

√√√√ 1

T

T∑
t=1

(
y∗(t) − µ̂

)2
.

(8)
Then, the data uncertainty is quantified by the average of the

estimated variance:

σ̂ data
=

√
V ar

(
E
[
y*
∣∣w, x*,X, Y

])
≈

√√√√ 1

T

T∑
t=1

(σ 2)
(t). (9)

Our BNN follows the architecture of the U-Net. In the train-
ing stage, the dropout rate of each layer is not fixed and can be
learned automatically by BNN. More details about the theory, the
structure, and the learned dropout rates of BNN are provided in
Supplement 1.

The diagram of the testing process of our method is shown in
Fig. 1. With an input fringe pattern, the trained BNN outputs T
different sets of data including the numerator, the denominator,
and their variance maps. The mean numerator and the mean
denominator are obtained for calculating the final wrapped phase
µ̂ϕ by Eq. (2). To obtain the data/model uncertainty of the phase,
we calculate the data/model uncertainty of the numerator and
the denominator using Eqs. (9) and (8) first, and then apply the
propagation of uncertainty:

σ̂model/data
ϕ =

√(
∂ϕ

∂M
σ̂

model/data
M

)2

+

(
∂ϕ

∂D
σ̂

model/data
D

)2

. (10)

More details on the calculation of the phase and its uncertainties
are provided in Supplement 1.

We tested the proposed method under the scenario of fringe
projection profilometry. Our system consisted of a projector
(DLP 4100, Texas Instruments) and a camera (V611, Vision
Research Phantom). The projector illuminated test objects with
pre-designed fringe patterns and the camera captured 8-bit gray-
scale images simultaneously from a different perspective. The
spatial frequency of the projected fringes was f = 160. To collect
training data, we captured many fringe images of different kinds
of objects and generated the ground-truth labels by a 12-step PS
algorithm. The BNN was implemented by using the Keras and
computing on a graphic card (GTX Titan, NVIDIA). Further
details about the optical setup, implementation of BNN, and tests
with fringe patterns of different spatial frequencies are provided in
Supplement 1.

The test scene shown in Fig. 2(a) contains two plaster statues
that are not present in the training stage. The trained BNN used
the fringe image as an input and made T = 50 predictions. The
mean of the numerator and the denominator, and the wrapped
phase, are shown in Figs. 2(b)–2(d), respectively. The correspond-
ing uncertainties are demonstrated in Figs. 2(e)–2(h), respectively.
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Fig. 1. Schematic of the proposed method. With the Monte Carlo dropout sampling, T samples of the BNN’s prediction are obtained for an input fringe
pattern. Each prediction outputs a set of data including M∗(t), (σ 2

M)
(t), D∗(t), and (σ 2

D)
(t). The wrapped phase µ̂ϕ is obtained by feeding the mean µ̂M and

the mean µ̂D into the arctangent function. To obtain the phase uncertainties, we first calculate the uncertainties of the numerator and the denominator and
then apply the propagation of uncertainty (PU).

Fig. 2. Test of the trained BNN. (a) The input fringe pattern.
(b)–(d) Mean numerator, mean denominator, and wrapped phase,
respectively. (e) and (f ) Data uncertainty and the model uncertainty
of the estimated numerator, respectively. (g) and (h) Corresponding
uncertainties of the denominator.

Our BNN is well-calibrated, and the evaluation of the predicted
uncertainties is provided in Supplement 1. To investigate the phase
accuracy, we unwrapped the phase by using the temporal phase
unwrapping approach [8] and calculated the phase error against a
ground-truth phase map, which was obtained by the 12-PS algo-
rithm. In Supplement 1, the unwrapped phase has been converted
into the 3D reconstruction for better investigation of recovered
surface details.

To demonstrate the efficacy of the uncertainties, we also trained
the BNN with only half of the training data. For comparison, a
convolutional U-Net (termed as “CNN”) that had no dropout
layers was trained as well. Figures 3(a) and 3(b) show the absolute
phase error when both models were trained with all of the data.
The two networks demonstrated similar performance on the phase
measurement as the BNN followed the main structure of the U-
Net. Two regions of interest (ROIs) were selected, and their error
distributions are shown in Figs. 3(i) and 3(j). For both the CNN
and BNN, the phase errors are small for smooth areas, such as the
statues’ faces. But, the error begins to increase rapidly for the sharp
regions, e.g., the hairs of the statues. From Figs. 3(c) and 3(d), we
can see that the distribution of uncertainties faithfully indicate
the error distribution, where the areas with large errors have been
labeled with large uncertainties. We find the model uncertainty is

Fig. 3. Analysis of the phase error and uncertainties of the BNN in
two differenct cases. For the first case where the full training dataset was
used for training: (a) bsolute phase error of CNN; (b) absolute phase
error of BNN; (c) and (d) BNN’s data uncertainty and model uncertainty
of the phase. (e)–(h) Corresponding results for the second case where
only half of the dataset was used for training. (i) and (j) show the errors
and uncertainties of the two ROIs in the first case and the second case,
respectively.

small, implying that the phase prediction can be performed consis-
tently by the BNN. The data uncertainty is more significant, which
is the result of the image noise in the captured images. In fringe pro-
jection, dense fringe patterns (e.g., f = 160) are usually captured
with compromised fringe contrast. Next, the errors of both CNN
and BNN increase when only half of the data were used, as can be
seen in Figs. 3(e) and 3(f ). We can see the data uncertainty almost
does not change as the data reduction did not affect the data noise.
However, the model uncertainty rises significantly. Its mean value
surges from 0.029 rad to 0.062 rad, as can be seen from Figs. 3(d)
and 3(h). The reduction of training data has an adverse effect on
the robustness of the model, thus increasing its doubt about the
prediction.

Further, we tested the BNN by using a tough sample that is a
complex industrial part with screw thread shown in Fig. 4(a). The
absolute phase error of the BNN is shown in Fig. 4(b). It can be
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seen that the error of the smooth cylindrical area is small but that of
the screw thread region is quite large. The data uncertainty and the
model uncertainty are demonstrated in Figs. 4(c) and 4(d). We can
see the BNN has faithfully indicated the overall error distribution.
For detailed investigations, we have a magnified view of the screw
thread region as shown in Fig. 4(e), where A represents the inter-
nal area and B represents the screw thread. A background image
without fringes was also captured, and the selected area is shown
in Fig. 4(f ), which demonstrates that the internal area A is smooth
without any screw structure. As the smooth surface is common and
has been seen by the BNN during training, the uncertainty maps
indicated high credibility, and the error is small, as can be seen in
Fig. 4(g). For region B, however, the error shown in Fig. 4(h) is very
serious. By comparing Figs. 4(e) and 4(f ), we can see the projected
fringe patterns happened to couple with the structure of the screw
thread at region B, forming an approximate low-frequency moiré
pattern. As a result, it is difficult for the neural network to handle
this rare case, thus resulting in the significant model uncertainty.
We also find that the moiré pattern has also been captured by the
data uncertainty, which implies that it may also be treated as a kind
of image noise by BNN. Moreover, an out-of-distribution (OOD)
fringe image that has a different spatial frequency ( f = 80) was
also tested. The corresponding results are shown in Figs. 4(i)–4(p),
where the phase error and the predictive uncertainties are more
severe for the whole scene. For region A, the mean data uncertainty
and model uncertainty rise to 0.14 rad and 0.12 rad from 0.074 rad
and 0.025 rad, respectively. For region B, they increase to 0.55 rad
and 0.48 rad from 0.45 rad and 0.31 rad, respectively. We can see
that the model is very suspicious of its prediction for the OOD
data. Further, if considered in a quality control setting, this exper-
iment would provide a typical example of how the BNN allows
for making better decisions. When using deep learning methods
for detecting surface defects, one may face the risk of incorrectly
classifying an industrial part as a defective product due to a failure
of the DNN. By converting the phase results into 3D reconstruc-
tions [Figs. 4(q)–4(s)], we can see that the 12-step PS method
successfully measured the profile of the complex threaded region B,
while the network produced inconsistent and distorted reconstruc-
tions. In this case, the “defect” is caused by the network rather than
the object itself. It is worth noting that the estimated uncertainty
maps have captured this problem by showing high uncertainties
for this region. Consequently, instead of blindly believing that
the product is defective, we should resort to alternative (prefer-
ably more reliable) methods to further check this dubious result.
More experimental results of the BNN’s performance in handling
never-experienced input data are provided in Supplement 1.

In this work, we have presented a fringe-pattern analysis
framework using a BNN that can not only demodulate the phase
information from a single fringe image but also output pixel-
wise uncertainty maps describing the confidence of the neural
network on its prediction. The BNN is developed by using the
MC Concrete dropout approximation. This strategy is easy to
implement and can be extended to other existing neural networks
by simply adding extra Concrete dropout layers. To validate the
proposed method, we tested the performance of the BNN in the
conditions of varying training dataset size, rare test inputs, and
OOD data, respectively. Experimental results have shown that the
predicted uncertainty maps can successfully indicate the distri-
bution of real phase errors without using any ground-truth data.
In the future, error-reduction methods based on the estimated
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Fig. 4. Uncertainty analysis of a measured complex industrial part with
screw thread. (a) A captured fringe image ( f = 160). (b) Absolute phase
error of BNN. (c) Data uncertainty of BNN. (d) Model uncertainty of
BNN. (e) Magnified view of the fringe image for the selected area, where A
indicates the internal area and B the area with screw thread. (f ) Magnified
view of a background image (without projected fringes) for the same
selected area. (g) and (h) phase errors and uncertainty maps of region
A and region B, respectively. (i)–(p) Corresponding results when the
frequency of the projected fringes is f = 80. (q)–(s) 3D reconstructions
obtained by the 12-PS method (ground-truth method, GT) and the
BNNs.

uncertainty maps will be further investigated. We believe that a
DNN that can provide confidence measure of the estimated phase
is crucial to fringe-pattern analysis and that it has great potential
for inspiring novel and reliable learning-based optical metrology
approaches.
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Physics-informed deep learning for fringe
pattern analysis
Wei Yin1,2,3†, Yuxuan Che1,2,3†, Xinsheng Li1,2,3, Mingyu Li1,2,3, Yan Hu1,2,3,
Shijie Feng1,2,3*, Edmund Y. Lam4*, Qian Chen3* and Chao Zuo1,2,3*

Recently, deep learning has yielded transformative success across optics and photonics, especially in optical metrology.
Deep neural  networks (DNNs) with a fully  convolutional  architecture (e.g.,  U-Net and its derivatives) have been widely
implemented in  an end-to-end manner  to  accomplish various optical  metrology tasks,  such as fringe denoising,  phase
unwrapping, and fringe analysis. However, the task of training a DNN to accurately identify an image-to-image transform
from massive input and output data pairs seems at  best naïve, as the physical  laws governing the image formation or
other domain expertise pertaining to the measurement have not yet been fully exploited in current deep learning practice.
To this end, we introduce a physics-informed deep learning method for fringe pattern analysis (PI-FPA) to overcome this
limit by integrating a lightweight DNN with a learning-enhanced Fourier transform profilometry (LeFTP) module. By para-
meterizing conventional phase retrieval methods, the LeFTP module embeds the prior knowledge in the network struc-
ture and the loss function to directly provide reliable phase results for new types of samples, while circumventing the re-
quirement of collecting a large amount of high-quality data in supervised learning methods. Guided by the initial phase
from LeFTP, the phase recovery ability of the lightweight DNN is enhanced to further improve the phase accuracy at a
low computational cost compared with existing end-to-end networks. Experimental results demonstrate that PI-FPA en-
ables  more  accurate  and  computationally  efficient  single-shot  phase  retrieval,  exhibiting  its  excellent  generalization  to
various unseen objects during training. The proposed PI-FPA presents that challenging issues in optical metrology can
be potentially  overcome  through  the  synergy  of  physics-priors-based  traditional  tools  and  data-driven  learning  ap-
proaches, opening new avenues to achieve fast and accurate single-shot 3D imaging.

Keywords: optical metrology; deep learning; physics-informed neural networks; fringe analysis; phase retrieval
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 Introduction
Optical metrology, as a general-purpose metrology tech-
nique that uses light as information carriers for non-con-
tact  and  non-destructive  measurement1,  is  fundamental
to manufacturing,  basic  research,  and  engineering  ap-

plications.  With  the  invention  of  the  laser2 and  charge-
coupled  device  (CCD)3, many  optical  metrology  meth-
ods  and  instruments  are  employed  in  state-of-the-art
manufacturing  processes,  precision  positioning,  and
quality  assessment  because  of  their  advantages  in  terms 
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of accuracy, sensitivity, repeatability, and speed. In optic-
al  metrology,  based  on  physical  models  of  the  image
formation,  the  observed  measurements  (e.g.,  deformed
fringe/speckle images)  can  be  transformed  into  the  de-
sired physical  properties  of  the  objects  (the  profile,  dis-
tance, strain,  etc.).  For many optical  measurement tech-
niques  such  as  interferometry4,  digital  holography5,  and
fringe projection profilometry (FPP)6,7, the accuracy and
efficiency of phase retrieval from the recorded fringe im-
ages  are  essential  to  reconstruct  various  underlying
quantities  dynamically.  The  most  efficient  method  for
phase  measurement  is  recovering the  phase  distribution
from a single fringe image, but as a typical case in optical
metrology, it is an ill-posed inverse problem. The spatial
phase-demodulation (SPD) methods  can achieve  single-
frame fringe  analysis  by  imposing  some  prior  assump-
tions  on  the  recovered  phase  (spatially  smooth,  limited
spectral extension, piecewise constant, etc.)8−10, but at the
cost  of  accuracy and resolution.  Since optical  metrology
experiments are  generally  carried  out  in  highly  custom-
ized systems and stringent environments,  phase-shifting
(PS) methods  can  provide  a  deterministic  and  straight-
forward solution to the phase retrieval problem by addi-
tionally capturing multiple fringe patterns11. PS methods
have obvious advantages in terms of speed, accuracy, and
repeatability, which have brought up many high-end op-
tical  metrology  instruments.  However,  when  the  optical
system  is  under  harsh  measurement  conditions  or  the
state of the object changes dynamically, PS methods will
be  severely  limited  and  cannot  provide  accurate  phase
recovery results for dynamic measurements.  Despite ex-
tensive research efforts for decades, how to achieve phase
measurement  with  the  highest  possible  accuracy  from
the  minimum  number  (preferably  single  shot)  of  fringe
patterns  remains  one  of  the  most  challenging  problems
in optical metrology.

With the explosive growth of available data and com-
puting resources,  deep learning,  as  a  “data-driven”  ma-
chine learning  technique,  has  achieved  impressive  suc-
cess  in  numerous  fields,  such  as  computer  vision  and
computational  imaging12. Deep  learning  pervades  al-
most  all  aspects  of  optical  metrology13,  and  provides
solutions  to  many  challenging  problems,  such  as  fringe
denoising14,15,  fringe  analysis16,  and  digital  holographic
reconstruction17−19.  Feng  et  al.16 proposed a  deep  learn-
ing method for fringe pattern analysis that establishes an
inverse mapping between single-frame fringe and the la-
bel phase obtained using 12-step PS method. The trained

network can  directly  estimate  the  sine  and  cosine  com-
ponents of  fringes,  enabling  single-shot  phase  recon-
struction with  higher  accuracy  than  SPD  methods.  Re-
cently,  phase  retrieval  methods  based  on  deep  learning
have  been  applied  to  ultrafast  3D  imaging  (speed  up  to
20  kHz)20,  phase  measuring  deflectometry21,  and  single-
frame  absolute  3D  measurement22 by  adopting  diverse
deep neural networks (DNNs) with a fully convolutional
architecture23,24 or combining the predictions of multiple
networks with ensemble learning25. However, these deep
learning approaches focus mainly on training a DNN to
accurately  identify  an  image-to-image  transform  from
massive input and output data pairs  of  training datasets
without considering the physical laws governing the im-
age  formation  or  other  domain  expertise  pertaining  to
the  measurement.  Consequently,  the  performance  of
deep  learning  approaches  in  solving  complex  physical
problems relies heavily on the underlying statistical char-
acteristics within  the  dataset.  To  improve  the  perform-
ance of the network under real experimental conditions,
it  is  necessary  to  pay  a  high  price  for  collecting  a  large
amount  of  high-quality  data.  In  addition,  due  to  the
highly  customized  nature  of  optical  metrology  systems,
networks  trained  on  one  system  may  not  be  directly
transferable to another system of the same type. Once the
new  input  is  different  even  slightly  from  the  training
data, data-driven  DNNs  may  exhibit  a  poor  generaliza-
tion under diverse measurement conditions, and cannot
ensure the  interpretability  and  traceability  of  their  out-
put  results.  On the contrary,  based on accurate  physical
models of the image formation and its inverse solutions,
traditional  SPD  methods  can  achieve  reliable  phase
measurements  for  different  types  of  samples26,  but  their
measurement precision is limited. If the forward physic-
al models of the image formation or traditional solvers of
the inverse problem are incorporated into the DNN, it is
expected  to  enhance  the  performance  of  deep  learning
methods  while  utilizing  fewer  network  parameters.  Goy
et al.27 proposed a physics-informed deep learning meth-
od for  phase  retrieval  at  low  photon  counts  that  lever-
ages physical  priors  to  convert  the  raw  intensity  meas-
urement with noise into an initial estimate of the object,
thereby significantly  improving  the  phase  reconstruc-
tion  accuracy  by  using  deep  learning.  Wang  et  al.28

demonstrated an  unsupervised  single-beam  phase  ima-
ging  network  to  reconstruct  the  phase  of  the  measured
diffraction pattern  by  integrating  a  numerically  propag-
ated  diffraction  model.  Saba  et  al.29 proposed  a  physics-
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informed neural  network  for  tomographic  reconstruc-
tions of biological samples, which minimizes the physic-
al  loss  based on the Helmholtz  equation,  accurately and
quickly  retrieving  the  refractive  index  distribution  from
the scattered fields of the sample collected by different il-
lumination directions.

For  the  limited  ability  of  fringe  analysis  networks
without  physics  priors,  we  present  a  physics-informed
deep  learning  method  for  fringe  pattern  analysis  (PI-
FPA). A  learning-enhanced  Fourier  transform  profilo-
metry (LeFTP) module with the prior knowledge of SPD
methods is embedded in the DNN to directly provide ac-
curate  and  reliable  phase  recovery  results  for  new  types
of samples, while circumventing the requirement of col-
lecting a large amount of high-quality data in supervised
learning methods. The phase results are then refined us-
ing  a  lightweight  DNN to  further  improve  the  accuracy
and computational  efficiency  of  single-shot  phase  re-
trieval.  Experimental  results  show that the proposed PI-
FPA exhibits  superior  single-shot  fringe  analysis  per-
formance in speed, accuracy, repeatability, and generaliz-
ation to various unseen objects during training.

 Principle

 Phase retrieval from fringe images

I(x, y)

Phase retrieval from fringe images is a fundamental task
and  a  representative  case  among  many  applications  of
deep  learning  in  optical  metrology.  The  fringe  image

 is expressed as30,31
 

I(x, y) = A(x, y) + B(x, y)cos[ϕ(x, y)] , (1)

A(x, y) B(x, y)
ϕ(x, y)

ϕ(x, y)
I(x, y)

A(x, y) B(x, y)

where  and  are  the  background  intensity
and the fringe amplitude, and  is  the phase of the
tested object. Retrieving the desired  from only one
fringe image  is an ill-posed inverse problem due to
two unknown parts  and . In FPP, PS meth-
ods11 transform  the  original  ill-posed  problem  into  a
well-posed and solvable one by projecting a set of PS pat-
terns to obtain additional observations of the target object: 

In(x, y) = A(x, y) + B(x, y)cos[ϕ(x, y)− 2πn/N] , (2)
 

ϕ(x, y) = arctan

∑N−1

n=0
In(x, y)sin(2πn/N)∑N−1

n=0
In(x, y)cos(2πn/N)

, (3)

In(x, y) N ϕ(x, y)where  represents -step PS images,  can be
obtained by the least-squares algorithm. However, when
the measured object is under harsh measurement condi-
tions, the relative motion between the object and PS pat-

I(x, y)

terns will  introduce non-negligible  errors  into phase re-
trieval results32,33.  Unlike PS methods, SPD methods can
realize  single-shot  phase  retrieval  using  different  spatial
transform  techniques  (such  as  the  Fourier  transform
(FT)9 and the windowed Fourier  transform10)  under  the
local smoothness assumption. In Fourier transform pro-
filometry  (FTP),  the  Fourier  transform  of  in Eq.
(1) gives 

FI(fx, fy) = FA(fx, fy) + FC(fx, fy) + FC∗(fx, fy) , (4)
 

C(x, y) =
1
2

B(x, y)exp{i2πf0x}exp{ϕ0(x, y)} , (5)

FA FC A(x, y)
C(x, y) ϕ(x, y)

ϕ0(x, y)
2πf0x
FA FC FC∗

FC

where  and  are  the  Fourier  transform  of 
and .  is taken as the sum of two independ-
ent  parts:  the  object  component  and  the  carrier
frequency . Based on the Fourier shift theorem, the
zero order  is separated with ±1 orders  and , so

 can be extracted by a band-pass filter and converted
inversely to the retrieved phase, 

ϕ(x, y) = arctan
Im{C(x, y)}
Re{C(x, y)}

. (6)

However,  when  the  measured  surface  contains  sharp
edges  or  discontinuities,  the  support  of  the  zero  order
and  ±1  orders  will  be  extended  to  cause  the  spectrum
overlapping, precluding  high-accuracy  phase  measure-
ment of complex objects.

I(x, y)

Unlike traditional methods that focus on understand-
ing  the  image  formation  and  solving  inverse  problems,
Feng  et  al.16 utilized  DNNs  to  directly  estimate  the  sine
and  cosine  components  of  for  single-shot  fringe
analysis: 

ϕ(x, y) = arctan
M(x, y)
D(x, y)

= arctan
ρB(x, y)sinϕ(x, y)
ρB(x, y)cosϕ(x, y)

,

(7)

ρ
ρ = 0.5 ρ = N/2

N

where  is  a  constant  that  depends  on  phase  retrieval
methods,  e.g.,  for  FT methods  and  for

-step PS methods. However, the performance of phase
retrieval  networks  relies  heavily  on  a  large  amount  of
high-quality  data.  Once  the  new  input  is  different  from
the  training  data,  the  reliability  of  phase  reconstruction
results output by data-driven DNNs cannot be guaranteed.

 Physics-informed deep learning method for fringe
pattern analysis (PI-FPA)
As  shown  in Fig. 1,  different  from  traditional  physics-
driven  methods  (FT  methods)  and  data-driven  deep
learning approaches  (e.g.,  U-Net  and its  derivatives)  for
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fringe pattern analysis, the proposed PI-FPA mainly con-
tains a  LeFTP  module  with  physics  priors  and  a  light-
weight network.  The  LeFTP  module,  which  parameter-
izes  the  phase  retrieval  process  of  FT  methods,  utilizes
the  learnable  filters  operating  in  the  Fourier  transform
domain to directly output initial phases in the manner of
FTP in Fig. 1(a, b). Physics-driven  LeFTP is  highly  gen-
eralizable to provide reliable phase results for various un-
seen objects during training. The lightweight network re-
fines the  initial  phase  to  further  improve  the  phase  ac-
curacy at a low computational cost,  compared with uni-
versal end-to-end image transform networks (U-Net and
its derivatives).

FA

+1 FC

w1 K1 × H1 × W1

Fin

The  schematic  diagram  of  the  proposed  PI-FPA  is
shown in Fig. 2. First, a net head with a simple convolu-
tional structure  is  adopted  to  extract  rich  low-level  fea-
tures of  the input single-frame fringe,  which can reduce
the effect of the zero order  of the fringe after training.
For the LeFTP module in Fig. 2(c), similar to traditional
FT  methods,  the  input  tensor  is  transformed  into  the
Fourier domain  through  Fourier  transform  and  spec-
trum centering. Instead of the simple filtering operation
of  FTP,  two  learnable  filters  with  multiple  channels  are
utilized to adaptively extract the  order  closely re-
lated  to  the  desired  phase.  Specifically,  a  learnable  filter

 with  size is  applied to weaken the zero
order located at the center C1 by weighting each feature
of the input spectrum  pixel by pixel: 

FK1×H×W
1 = wK1×H1×W1

1 ◦ FK1×H×W
in , (8)

◦where  is the  Hadamard  product.  Note  that  the  un-

w2

K2 × H2 × W2

filtered high-frequency component is kept to avoid miss-
ing details,  and  the  redundant  negative  Fourier  spec-
trum  is  removed.  Then,  a  series  of  filtering  operations
are  implemented  to  extract  delicately  the  +1  order  in
various  ways  using  another  learnable  filter  with

 size: 

FK2×H×W
2 = wK2×H2×W2

2 ·
∑K1−1

k=0
F k×H×W

1 , (9)

w2 N

F2

w1

where  the  center  of  is  set  as  C2 estimated  by -step
PS. Due to the asymmetry of the spectrum, a large num-
ber of  reliable  and  initial  phases  can  be  recovered  in-
versely  from  the  filtered  spectrum  according  to Eq.
(6). Further, to optimize the phase retrieval performance
of LeFTP, a priors-based initialization strategy for the fil-
ter  weights  is  adopted  to  facilitate  its  efficient  learning
and avoid anchoring in local minima during the training
phase  by  following  background-normalized  Fourier
transform  profilometry  (BNFTP)34.  The  filter  is ini-
tialized  as  an  inverse  Hanning  window  for  filtering  the
zero-order  component  of  the  input  spectrum  centered
on C1: 

winit
1 (k, fx, fy) = 1− cos

2πfx

W1
. (10)

w2

In addition, the +1 order of the spectrum centered on
C2 is strengthened using another Hanning filter : 

winit
2 (k, fx, fy) = cos

2πfx

H2
cos

2πfy

W2
. (11)

At present, mainstream fringe analysis approaches us-
ing deep learning exploit end-to-end fully convolutional
networks in a naïve manner to build an image-to-image

 

Physics-driven method

Fourier transform profilometry

(high generalization, low accuracy)

Physics-informed deep learning Data-driven deep learning

U-Net and its derivatives

(low generalization, high accuracy)
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Fig. 1 | Diagrams of the physics-driven method, physics-informed deep learning approach, and data-driven deep learning approach for
fringe pattern analysis.
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inverse mapping between single-frame fringe and the la-
bel  phase  using massive  network parameters.  Thanks  to
robust  phase  estimation  of  LeFTP,  it  not  only  helps  PI-
FPA to circumvent the requirement of collecting a large
amount  of  high-quality  data  in  supervised  learning
methods, but  also  relieves  the  burden  of  phase  refine-
ment  for  lightweight  DNNs.  The  lightweight  network,
consisting of the context path and the spatial path inspired
by  BiSeNet35,36 in Fig. 2(a) (see Supplementary  informa-
tion for  detailed analysis),  is  utilized to  further  improve
the phase  accuracy  at  a  low  computational  cost  com-
pared with  universal  end-to-end  image  transform  net-
works (U-Net and its derivatives). Instead of configuring
more channels for higher-level layers as U-Net, the con-
text  path  aims  at  collecting  the  fringe  and  initial  phase
features with  a  large  receptive  field  through  fast  down-
sampling  and  encoding  global  context  information  to
guide  the  refined  high-level  features  for  learning,  while
the  spatial  path  captures  spatial  information  encoding
rich detail information and outputs low-level features. In
the encoder  part  of  the  context  path,  a  fast  down-
sampling  strategy  with  several  ConvX  blocks  and  the
Short-Term Dense Concatenate (STDC) module is  used
to extract the feature information with scalable receptive
field and multi-scale  information.  In the decoder phase,
the  attention-based  feature  refinement  (AFR)  module

M(x, y) D(x, y)

and the fast  upsampling operation based on bilinear in-
terpolation are utilized to improve the feature resolution
progressively. In the spatial path, its encoder part shares
the same parameters with the context path, and captures
the spatial  information  encoding  rich  detailed  informa-
tion  and  outputs  low-level  features.  The  features  from
the context path and the spatial path are concatenated by
Feature Fusion  module  (FFM),  and  upsampled  to  out-
put  final  phases  using the predicted  and 
in Eq.  (7).  The  objective  of  PI-FPA  is  to  minimize  the
joint loss of the phase and its Fourier domain: 

Loss = Lossphase + LossFourier , (12)
 

Lossphase =
α1|Y − YGT|2 + α2|N · YLeFTP − YGT|2

HW
, (13)

 

LossFourier =
β1|FY −FYGT |+ β2|N · FYLeFTP −FYGT |

HW
,

(14)

YGT = (MGT,DGT)

N Y = (M,D)

YLeFTP = (MLeFTP,DLeFTP)

FY FYGT FYLeFTP

Y YGT YLeFTP

where  is the ground truth obtained us-
ing -step  PS,  is  the  network’s  output,

 is  the  LeFTP  module’s  output,
and , ,  and  are  the  2D  Discrete  Fourier
Transform of , , and .

 Experiments
In  order  to  verify  the  proposed  PI-FPA  under  the

 

Fourier spectrum Filtered spectrum Initial phases
Filter1

2D FFT

Learning-enhanced Fourier transform profilometry (LeFTP) module

2D IFFTC1 C2

Input fringe

Lightweight network

ConvX

Conv2d

ReLU

Res-block

ConvX

STDC1

STDC2

STDC3

AFR

AFR

1/2

1/4

1/8

1/16 1/16

1/32

FFM

Input

1/8

Upsampling

1/4

1/2

Res-block

Conv2d

ReLU

Conv2d

Net tailNet head

Output phase

Context path

Spatial path

Upsampling

Upsampling

Upsampling

Conv2d

C1 C2

Filtered spectrum
Filter2

fy

fx

k
1=ω1in 2=ω2· ∑1

y
k

x

(b) Net head (c) LeFTP (b) Net tail

a

b

c

Fig. 2 | Overview of the proposed PI-FPA. (a) PI-FPA including a LeFTP module and a lightweight network. (b) Net head and Net tail. (c) The

phase retrieval process of the LeFTP module.

Yin W et al. Opto-Electron Adv  7, 230034 (2024) https://doi.org/10.29026/oea.2024.230034

230034-5

 

97



scenario  of  FPP,  we  built  a  multi-view  structured  light
system  that  consisted  of  a  projector  (LightCrafter
4500Pro,  Texas  Instruments)  and  three  cameras
(acA640-750um, Basler)  (see  Supplementary  informa-
tion  for  detailed  analysis).  To  collect  fringe  data  for
training,  the  projector  projects  three  sets  of  PS  patterns
with  different  periods  (including  1,  8,  and  64)  onto  the
test  objects.  The  captured  64-period  fringe  image  is  the
input  of  PI-FPA,  and the  label  phase  is  obtained by  12-
step PS.  In  the  experiment,  we  collected  the  dataset  in-
cluding 1200 image pairs, which are divided into 800 im-
age pairs for training, 200 image pairs for validation, and
200 image pairs for testing. The proposed PI-FPA is im-
plemented  using  Pytorch  framework  (Facebook)  and  is
computed on an NVIDIA GeForce RTX2080Ti graphics
card.  The  composite  loss  function  consists  of  mean
square  error  (MSE)  and  mean  absolute  error  (MAE)  in
Eq. (12). The optimizer is Adam, and the training epoch
is set as 300.

First,  a  David  plaster  was  measured  to  reveal  single-
shot phase retrieval process of PI-FPA, and FTP, LeFTP,
Net  head  +  LeFTP,  and  U-Net  were  implemented  for
comparison.  In Fig. 3(a, b),  LeFTP  makes  use  of  two
learnable filters operating in the Fourier domain and re-

duces the MAE of phase errors by about 18% compared
with FTP.  By  visualizing  the  filter  weights,  it  demon-
strates that  LeFTP  facilitates  adaptive  spectrum  extrac-
tion through learning-enhanced filtering, which provides
an interpretable guide for parameter optimization of FTP
to  improve  the  phase  accuracy.  In  addition,  due  to  the
removal of redundant negative Fourier spectra in LeFTP,
the left  half  of  the filter  weights  is  the same as its  initial
state,  which is  not  updated during network training.  To
further speed up the LeFTP module, it is optional to cut
down the size of two learnable filters in half to reduce the
total parameters  of  the  network  and  improve  the  infer-
ence speed of the network. Further, the Net head in Fig.
3(c),  taken  as  the  filtering  operation  in  image  pre-pro-
cessing, is embedded in the front of LeFTP to extract rich
low-level  fringe  features  for  removing  the  zero  order,
further reducing the phase errors by about 40%. It proves
that  LeFTP  is  plug-and-play  to  significantly  boost  the
performance of single-frame fringe pattern analysis.

Different from these methods above,  U-Net automat-
ically  exploits  massive  low-level  and  high-level  features
to optimize the phase accuracy as shown in Fig. 3(d), but
at  the  cost  of  computational  overhead.  Specifically,
U-Net  needs 3.5  GB of  GPU memory to process  single-
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frame fringe and takes a runtime of 65.02 ms on Nvidia
RTX  2080Ti.  Guided  by  reliable  phase  results  provided
by  Net  head  +  LeFTP,  in Fig. 3(e),  PI-FPA  refines  the
phases  through  a  lightweight  DNN,  which  reduces  the
GPU memory to 1.5 GB and improves the speed to 53.23
FPS while decreasing the MAE by about 20%. The mag-
nified  maps  of  phase  errors  in Fig. 3 indicate  that  the
trained PI-FPA is able to reconstruct high-quality phase
information for local fine details of objects with complex
surfaces.  In  addition,  the  results  of  U-Net  and  PI-FPA
using different amounts of training images are presented
in Fig.  S5 (see  Supplementary  information  for  detailed
analysis). Compared  with  U-Net  with  800  training  im-
age  pairs,  PI-FPA  reduces  the  MAE  of  the  phase  errors
by  about  13%  while  requiring  only  400  training  image
pairs, which demonstrates its good generalization.

To  verify  the  generalization  of  PI-FPA  for  complex
surfaces, we tested an industrial part, and fringe analysis
results using  different  methods  show  that  the  phase  er-

rors are smaller in smooth cylindrical regions but larger
in sharp edges, while PI-FPA brings better phase quality
among  these  methods  as  shown  in Fig. 4(a, b).  Further,
we adopted stereo phase unwrapping37 to achieve single-
shot 3D imaging in Fig. 4(c) (see Supplementary inform-
ation  for  detailed  analysis).  As  the  magnified  regions  in
Fig. 4(d), the screw thread of the workpiece, which is rel-
atively rare in the training dataset, causes significant de-
gradation in the performance of U-Net, precluding high-
precision  reconstruction  of  complex  surfaces.  The  line
profiles in Fig. 4(e) prove that the proposed PI-FPA with
physics-driven  LeFTP  can  successfully  recover  the  fine
profiles of the threads and provide accurate and physic-
ally  consistent  3D  imaging  results  to  approach  the
ground  truth  (GT),  even  though  the  network  has  not
seen such experimental data during the training phase.

To quantitatively  analyze  the 3D imaging accuracy of
PI-FPA, our system was applied to measuring a dynamic
scene at the camera speed of 100 Hz: a ceramic plane and
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a  standard  sphere  moving  along  the Z axis, and  3D  re-
construction results at different time points are shown in
Fig. 5(a).  The  error  distributions  of  the  moving  sphere
are obtained by sphere fitting at T = 0 s, 0.81 s, and 1.62
s,  where  major  measured  errors  are  less  than  100  μm
with the  RMS of  52.198 μm,  42.112 μm,  and 53.295 μm
as  shown  in Fig. 5(b).  Similarly, Fig. 5(c) shows  the
measured RMS of the moving plane is 51.425 μm, 38.922
μm,  and  37.183  μm.  In Fig. 5(d, e),  we  further  perform
temporal precision analysis by collecting long-term data
over a 1.62 s period using 3-step PS, FTP, U-Net, and PI-
FPA. In Table 1, quantitative analysis results of the mov-
ing plane and sphere for different methods show that the
measured  results  obtained  by  PI-FPA  exhibited  higher
3D reconstruction accuracy with a lower temporal stand-
ard deviation (STD) of 43 4.1 μm and 47 5.1 μm.

In Fig. 5(f–i), we  additionally  provide  the  measure-
ment results of the moving plane and sphere at T = 0.81 s
using  different  methods.  Different  from FTP for  single-
shot  phase  retrieval,  PS  methods  can  realize  pixel-by-
pixel phase measurements with higher accuracy for com-
plex  shapes,  but  it  needs  to  project  at  least  three  fringe
patterns to obtain a phase map theoretically. As the most
common and efficient case in N-step PS methods, 3-step
PS  is  implemented  for  comparison.  When  dynamic
scenes are measured, the relative motion between the ob-
ject  and  the  phase-shifting  fringe  patterns  sequentially
projected will  cause motion artifacts  and thus introduce
non-negligible  phase  errors  into  the  phase  map.  As  a
consequence,  there  are  severe  measurement  errors  with
the RMS of 196.101 μm and 179.681 μm in the measure-
ment  results  of  3-step  PS  in Fig. 5(f).  In  addition,  for
real-time 3D measurement based on 3-step PS, the whole
procedure of 3D reconstruction is composed of phase re-
trieval,  stereo  phase  unwrapping,  and  phase-to-height
mapping, which  is  implemented  with  a  graphics  pro-
cessing  unit  (GPU)38 and  several  look-up  tables39 to
speed up the 3D reconstruction. The 3D imaging speed is
determined by the maximum between the image acquisi-
tion  time  and  the  runtime  of  3D  reconstruction.  The

640 × 480

×10−3

×10−2

runtime  of  stereo  phase  unwrapping37 and  phase-to-
height mapping for processing the images with the resol-
ution  of  pixels  is  less  than  5  ms  on
RTX2080Ti. Since 3-step PS needs to capture three fringe
images and  its  runtime  of  the  phase  retrieval  is  negli-
gible (5.22  ms) in Table 1, its 3D imaging speed is
limited  to  33.33  FPS.  On  the  contrary,  the  single-frame
fringe analysis  capability  of  FTP  can  significantly  im-
prove the accuracy and repeatability of fast 3D measure-
ment  to  reduce  the  RMS  to  75.417  μm  and  71.715  μm,
while its runtime (2.06  ms) promotes the speed of
3D  measurement  to  100  FPS  in Fig. 5(g).  This  result
proves  that  single-frame  fringe  analysis  methods  are
more suitable for dynamic scene measurement when the
target's movement  speed  is  in  the  same  order  of  mag-
nitude  as  the  3D  imaging  speed.  Then,  in Fig. 5(h),  the
RMS of the measurement error can be further decreased
to 53.361 μm and 60.129 μm thanks to the powerful fea-
ture  extraction  capability  of  U-Net,  but  at  the  cost  of
lower  inference  speed  (65.02  ms),  precluding  real-time
3D measurement.  Finally,  benefiting  from the  proposed
LeFTP module and the lightweight DNN, PI-FPA takes a
runtime of 18.78 ms to achieve fast single-shot phase re-
construction with higher accuracy in Fig. 5(i).  However,
PI-FPA only retrieves the phase of the first in the three-
step  PS  images  and  reduces  the  3D  imaging  speed  to
33.33 FPS. 3D measurement results in Fig. 5 confirm that
PI-FPA, whether measuring the moving plane or sphere,
achieves successfully single-shot 3D shape measurement
with higher accuracy and good repeatability for multiple
moving objects simultaneously.  The whole 3D measure-
ment results can refer to Supplementary Video S1.

Last, to further demonstrate the advantages of PI-FPA,
we applied our single-shot 3D imaging system to 360-de-
gree reconstruction of a workpiece model and non-rigid
dynamic face measurement as  shown in Fig. 6 and Sup-
plementary  Video  S2–S3. Fig. 6(a, b) show  the  captured
fringe images of the rotated workpiece and non-rigid dy-
namic face at different time points and the corresponding
color-coded  3D  reconstruction  results  using  different

 
Table 1 | Quantitative analysis results of the moving plane and sphere for different methods.

 

Method Time (ms)
RMS (μm)

Plane Sphere

3-step PS 5.22×10−3 188±29.8 179±19.9

FTP 2.06×10−2 77±6.8 81±7.4

U-Net 65.02 56±4.9 59±6.6

PI-FPA 18.78 43±4.1 47±5.1
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Fig. 6 | Fast 3D measurement results using different fringe pattern analysis methods. (a) The representative fringe images at different time

points and the corresponding color-coded 3D reconstructions results for the rotated workpiece model using 3-step PS, FTP, U-Net, and PI-FPA.

(b) The representative fringe images at different time points and the corresponding color-coded 3D reconstructions results for non-rigid dynamic

face using 3-step PS, FTP, U-Net,  and PI-FPA. (c)  360-degree 3D reconstruction of  the workpiece model using PI-FPA. (d)  3D measurement

results of non-rigid dynamic face using PI-FPA.
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methods. For  the  rotated  workpiece,  the  highlighted  re-
gions in Fig. 6(a) show that 3-step PS cannot recover the
fine  shapes  of  smooth  surfaces  due  to  the  phase  errors
introduced  by  motion  artifacts.  For  single-frame  fringe
analysis,  FTP  is  suitable  for  dynamic  3D  measurement,
but yields coarse 3D results with low quality in terms of
accuracy and  resolution  due  to  the  spectrum  overlap-
ping. U-Net can further improve the quality of 3D recon-
struction, but it  cannot reliably retrieve the phase of the
object with metal materials which is relatively rare in the
training dataset, precluding the recovery of fine surfaces.
This experiment demonstrates that the proposed PI-FPA
can be  applied  for  high-quality  and  efficient  3D model-
ing of complex structure parts as shown in Fig. 6(c). Sim-
ilarly,  for  non-rigid  dynamic  face,  there  are  inevitably  a
large  amount  of  ripple-like  measurement  errors  in  3D
results  of  3-step  PS  due  to  motion  artifacts.  And  then,
FTP  is  performed  to  significantly  reduce  measurement
errors, but is unable to recover high-quality local details
of the face.  Due to the smooth and diffuse properties of
faces,  both  PI-FPA  and  U-Net  provide  acceptable  3D
face measurement results. Because of the lack of 3D label
data for the tested face, it cannot identify precisely which
of these  two  results  is  better,  but  there  are  slight  differ-
ences in some local details, such as the left cheek and the
tip of the nose in Fig. 6(b). In the whole measuring pro-
cedure, the reconstructed dynamic face at different time
points  verified  the  reliability  of  PI-FPA  to  perform  fast
3D  shape  measurement  with  high  completeness  as  well
as  see  Supplementary  Video  S3.  These  results  suggest
that PI-FPA is a promising tool for fast 3D measurement
and reverse  modeling  with  high  quality  for  objects  with
complex shapes.

 Conclusions and discussion
In  summary,  we  have  demonstrated  a  physics-informed
deep  learning  method  for  fringe  pattern  analysis  (PI-
FPA) that  is  able  to  achieve  accurate  and  computation-
ally efficient single-shot phase reconstruction and exhib-
its  strong  generalization  capability  to  new  types  of
samples. By introducing the LeFTP module with the pri-
or knowledge  of  traditional  phase  demodulation  meth-
ods, PI-FPA circumvents the requirement of collecting a
large amount of high-quality data, while overcoming the
degradation of reconstruction quality for rare samples or
structures in supervised learning methods. Utilizing reli-
able phase results from LeFTP as the network input, PI-
FPA  strengthens  the  ability  of  the  lightweight  DNN  to

further  improve  the  phase  recovery  accuracy  at  a  low
computational  cost  compared  with  existing  end-to-end
networks.  The effectiveness  of  PI-FPA has  been verified
by  several  experiments  for  measuring  various  types  of
static and dynamic scenes. The single-shot phase retriev-
al results of the David plaster confirmed that PI-FPA can
reconstruct  high-quality  phase  information  for  objects
with complex surfaces, while also achieving an improve-
ment  of  3.46× in  its  network  inference  speed  compared
with  U-Net.  By  adopting  stereo  phase  unwrapping,  PI-
FPA  has  the  capability  of  single-frame  3D  imaging  to
successfully recover the fine profiles of the industrial part
with  the  threads,  exhibiting  its  good  generalization  to
rare samples never seen by the network. Temporal preci-
sion analysis results verified the high accuracy and excel-
lent repeatability of PI-FPA for measuring multiple mov-
ing objects  simultaneously.  Finally,  360-degree  recon-
struction  of  a  workpiece  model  and  non-rigid  dynamic
face  measurement  revealed  the  applicability  of  PI-FPA
for  fast  3D  measurement  with  high  quality  for  objects
with complex  shapes  and  different  materials.  In  the  fu-
ture, the performance of PI-FPA for phase retrieval from
various  types  of  fringe  images  will  be  investigated.  We
wish that  PI-FPA can be  applicable  to  other  fringe  ana-
lysis  applications  in  optical  metrology,  further  pushing
the  limits  of  fringe  pattern  analysis  in  speed,  accuracy,
repeatability, and generalization.
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Phase retrieval from fringe images is essential to many optical metrology applications. In the field of fringe pro-
jection profilometry, the phase is often obtained with systematic errors if the fringe pattern is not a perfect sinus-
oid. Several factors can account for non-sinusoidal fringe patterns, such as the non-linear input–output response
(e.g., the gamma effect) of digital projectors, the residual harmonics in binary defocusing projection, and the
image saturation due to intense reflection. Traditionally, these problems are handled separately with different
well-designed methods, which can be seen as “one-to-one” strategies. Inspired by recent successful artificial in-
telligence-based optical imaging applications, we propose a “one-to-many” deep learning technique that can an-
alyze non-sinusoidal fringe images resulting from different non-sinusoidal factors and even the coupling of these
factors. We show for the first time, to the best of our knowledge, a trained deep neural network can effectively
suppress the phase errors due to various kinds of non-sinusoidal patterns. Our work paves the way to robust and
powerful learning-based fringe analysis approaches. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.420944

1. INTRODUCTION

Three-dimensional (3D) measurement plays an essential role in
many fields, e.g., industrial manufacturing [1], medical treat-
ment [2], entertainment [3], and identity recognition [4]. In
convention, coordinate measuring machines provide users with
accurate 3D data by way of point-by-point measurements [5].
However, its measuring speed is limited due to the point-wise
and contact inspection. By contrast, optical 3D measurement
techniques can obtain full-field geometric measurements within
a single or several shots [6,7]. Among current optical 3D
measurement techniques, structured light illumination profil-
ometry has received extensive attention and is becoming one
of the most promising 3D shape measurement techniques [8,9].

In structured light illumination profilometry, one illumi-
nates test objects with patterns of various structures, such as
sinusoidal fringes [10], de Bruijn patterns [11], speckle patterns
[12], and aperiodic fringes [13]. For high-accuracy 3D mea-
surements, sinusoidal fringe patterns are often preferred. Many
fringe analysis methods have been proposed for extracting the
object’s phase from sinusoidal fringes. They can be broadly clas-
sified into two categories: spatial-demodulation methods
[14–18] and temporal-demodulation methods [19–24]. For
spatial-demodulation approaches, one can compute the phase

by using a single fringe image, demonstrating the advantage of
high efficiency. Nevertheless, they tend to compromise for
complex surfaces since high-frequency details are difficult to
retrieve with only a single image. For temporal-demodulation
methods, pixel-wise measurements with higher resolution and
accuracy can be achieved. By representative phase-shifting (PS)
algorithms [10], one captures several sinusoidal fringe images
with a given phase shift and calculates the phase using a least-
square method. As multiple images can provide more informa-
tion about the same measured point, the phase of complex
structures can be recovered with high accuracy. However,
the main limitation of temporal-demodulation approaches is
the reduced efficiency as several images have to be recorded.
It is noteworthy that we need to ensure that the sinusoidal
fringe patterns are captured with high quality for either spa-
tial-demodulation or temporal-demodulation techniques.

Several inherent factors in structured light illumination can
account for the collection of non-sinusoidal patterns. The first
one is the gamma distortion of digital projectors. For visual
quality, digital projectors or displays are often manufactured
with specific gamma distortion, leading to a non-linear relation-
ship between the output intensity and the input intensity that is
I out � I γin. Researchers have proposed many approaches that
can be roughly classified into system-based methods [8,25–27]
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and algorithm-based methods [28–36] to relieve the gamma
distortion. The system-based approaches suggest replacing
commercial projectors with illumination units free from
gamma effect, e.g., coherent light illumination setups [25]
and programmable digital light processing (DLP) modules [8].
Although effective, they may increase the cost or the complexity
of the whole system. To eliminate the gamma distortion with-
out changing the system hardware, one can record the input
and the output light intensity and predict the gamma value us-
ing the non-linear model [28–30]. Then, to counteract the
gamma effect, one can pre-distort the input intensity using
�I in�

1
γ , which can recover the true output intensity I out �

��I in�
1
γ �γ � I in. Also, gamma-induced phase errors can be com-

pensated by lookup tables that depict the relationship between
the phase difference and the actual phase [31,32]. In addition,
the weights of harmonic errors duo to the gamma effect can be
predicted through some iteration algorithms, which can then
be used for error compensation [33].

The second cause for captured non-sinusoidal fringes is the
residual high-order harmonics in binary defocusing projection.
In high-speed fringe projection, binary defocusing techniques
have the advantages of fast image projection [37]. For projec-
tors using digital micromirror devices, 8-bit fringe images are
usually projected at the speed limit of 120 Hz as a relatively
long integration time is required. For 1-bit binary fringes, how-
ever, the integration time of projection can be reduced to the
minimum, allowing the projector to operate at kilohertz to tens
of kilohertz. By defocusing the projector, we can have the
binary stripe patterns transformed into gray-scale sinusoidal
patterns. In practice, users should carefully adjust the defocus-
ing degree of the projector. When the projector is defocused
excessively, the fringe images are captured with a low contrast.
On the opposite, if the defocusing degree is not enough sys-
tematic errors would occur, since harmonics in the binary
fringes have not been filtered completely by the defocusing pro-
cess. In practice, people prefer to defocus the projector slightly
and then try to remove the systematic errors with well-designed
algorithms, such as pulse width modulation [38,39], sinusoidal
pulse width modulation (SPWM) [40], tripolar SPWM [41],
optimal pulse width modulation [42], and dithering methods
[43,44]. The main idea of these methods is to shift harmonics
in the binary fringe from low-frequency areas to high-frequency
sections of its spectrum, facilitating the low-pass filtering effect
induced by the defocusing projection.

The third cause of non-sinusoidal fringes is the image sat-
uration in high dynamic range (HDR) 3D shape measure-
ments. For fringe projection profilometry, it is challenging
to measure objects with a considerable variation in surface re-
flectivity, e.g., a scenario contains both dark and bright objects.
The fringe patterns reflected from the dark regions are often
captured with a low signal-to-noise ratio, whereas the pixels
are usually saturated for the reflective surfaces. When dark ob-
jects are captured with proper fringe patterns, bright areas in
the same scene are often measured with saturated (pure white)
fringes. As object details have been covered up with the satu-
rated fringes, it is hard to retrieve the phase. Various approaches
to HDR fringe projection techniques have been proposed [45].
In general, these techniques can be classified into two groups:

equipment-based techniques [46–56] and algorithm-based
techniques [57–62]. In the group of equipment-based meth-
ods, researchers try to acquire ideal fringe images by adjusting
the imaging system, such as the exposure time [47], the inten-
sity of projected light [50], the polarization states of illumina-
tion [46], and the number of camera views [46]. As to the
algorithm-based methods, researchers concentrate on the de-
sign of phase retrieval algorithms instead of changing the im-
aging system’s hardware, allowing the phase to be measured
directly from saturated fringe images.

Further, the case will be more complicated if some of the
non-sinusoidal factors are coupled together, which is seldom
discussed in the current literature. For example, fringe images
are captured with both the gamma effect and the image satu-
ration, or with both the insufficient defocusing projection and
the image saturation. This paper shows that the causes of these
kinds of individual/coupling non-sinusoidal problems are sim-
ilar, which can boil down to a superposition of the original sine
wave of the fundamental frequency with several unknown sine
waves at high frequencies (high-order harmonics). In practice,
stochastic factors, e.g., the random noise, may also affect the
captured fringe pattern but they are not discussed here as they
will not change the main profile of a sinusoid.

Deep learning is a powerful machine learning technique that
uses artificial neural networks with deep layers to fit complex
mathematical functions. Compared with traditional algorithms
that rely on physical models completely, deep learning ap-
proaches handle problems by searching and establishing sophis-
ticated mapping between the input and the target data owing to
the powerful computation capability. In many applications,
learning-based methods have shown superiority to classic
physical-model-based methods. In the field of image denoising,
denoising autoencoders have been trained to obtain high level
features for robust reconstruction of clean images [63,64]. In
the field of nanophotonics, artificial intelligence has been ap-
plied to knowledge discovery, which shows great potential in
understanding of the physics of electromagnetic nanostructures
[65]. In the field of optical imaging, recent years have witnessed
great successes of deep learning assisted applications. First, the
deep neural network can significantly improve optical micros-
copy and increase its spatial resolution over a large field of view
and depth of field [66]. Then, the deep learning techniques
can be used for phase recovery and holographic image
reconstruction in digital holography [67]. With only one holo-
gram image, the twin-image and self-interference-related
artifacts can be removed. Also, deep-learning-based ghost im-
aging techniques have shown much better performance than
conventional ghost imaging in terms of different noise and
measurement ratio conditions [68]. Furthermore, researchers
have utilized deep learning strategies to build powerful models
that can fit all scattering media within the same class, which
improves the scalability of imaging through scattering [69].
Lastly, in optical coherence tomography (OCT), deep neural
networks can be used to identify clinical features similar to how
clinicians interpret an OCT image, allowing successful auto-
mated segmentations of clinically relevant image features [70].

In recent years, researchers have demonstrated that deep
neural networks can be used to improve the performance of
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fringe projection profilometry effectively. In fringe analysis,
deep convolutional neural networks can be trained to retrieve
the phase information from a single fringe image with favorable
accuracy [71–74]. In phase unwrapping, learning-based tempo-
ral phase unwrapping [75] and stereo phase unwrapping meth-
ods [76] were developed to suppress noise effects and unwrap
dense fringe patterns robustly. To handle complex surfaces, our
previous work has shown that the deep learning technique can
recover the phase from saturated fringe images [57]. Here, we
show that more non-sinusoidal issues can benefit from deep
learning. We demonstrate for the first time, to our knowledge,
a generalized neural network can cope with various kinds of
non-sinusoidal fringes that are caused by either single or multi-
ple non-sinusoidal factors. Experimental results show that com-
pared with traditional three-step phase-shifting algorithms, the
proposed method can substantially improve the reconstruction
accuracy by more than 50% without reducing the measure-
ment efficiency.

2. PRINCIPLE

A. Phase-Shifting Algorithm
In fringe projection profilometry, a projector illuminates test
objects with pre-designed fringe images and a camera captures
the images simultaneously from a different angle. The fringe
patterns are distorted due to the varying height of measured
areas. The phase retrieved from captured patterns serves as tem-
porary textures of test objects and can be converted into the
object’s height. The N -step PS algorithm is widely applied
to phase retrieval as it has the advantages of high accuracy, in-
sensitivity to ambient light, and pixel-wise phase measurement.
The captured N -step PS fringe image can be expressed as

In�x, y� � A�x, y� � B�x, y� cos�ϕ�x, y� − δn�, (1)

where ϕ�x, y� is the phase, A�x, y� is the background intensity,
B�x, y� is the modulation, and δn is the phase shift that is equal
to 2πn∕N , where n � 0, 1, 2, ...,N − 1. When there are at
least three images (N ≥ 3), the phase can be solved by

ϕ�x, y� � arctan

PN−1
n�0 In�x, y� sin

�
2πn
N

�
PN−1

n�0 In�x, y� cos
�
2πn
N

� : (2)

B. Phase-Shifting Algorithm with Non-Sinusoidal
Fringe Images
Non-sinusoidal PS images are often captured as a result of the
projectors’ gamma effect, the binary defocusing illumination,
or the image saturation. A generalized model can be used to
represent the captured images as

IHn �x, y� � AH �x, y� �
Xp
j�1

BH
j �x, y� cosfj�ϕ�x, y� − δn�g,

(3)

where AH �x, y� is the background intensity, BH
j �x, y� is the

modulation of the jth harmonic, and p is the number of harmon-
ics. When p � 1, IHn �x, y� is equal to In�x, y�, which is the case
of perfect sinusoidal patterns. When p > 1, however, the fringe
images become non-sinusoidal. This model has been
proposed to characterize the fringe pattern affected by the
gamma distortion [30].We find that it is also applicable formore
cases including the binary defocusing projection, fringe image
saturation, and the coupling of these non-sinusoidal factors.

We illustrate different kinds of non-sinusoidal fringe im-
ages, as shown in Fig. 1. They are fringe patterns simulated
under the gamma distortion, binary square wave with slight
defocusing, image saturation, and two coupling cases, respec-
tively. In the case of γ � 2.2, the sinusoidal wave’s peaks

Fig. 1. Simulated sinusoidal fringe images and their cross sections. (a) An ideal sinusoidal pattern. (b) A gamma-distorted sinusoidal pattern. (c) A
defocused binary stripe image. (d) A saturated sinusoidal fringe image. (e) A fringe image affected by both the gamma distortion and the image
saturation. (f ) A fringe image affected by both the defocusing and the image saturation.
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become narrow while the valleys wide, giving rise to narrowed
bright stripes compared with the ideal sinusoidal wave. For the
defocused pattern as shown in Fig. 1(c), the intensity distribu-
tion looks like a triangular wave due to the presence of residual
harmonics. For the case of image saturation, the intensity that
exceeds the maximum dynamic range (i.e., 255 in this simu-
lation) is truncated, while the rest keeps unchanged. Last, in
the coupling cases as shown in Figs. 1(e) and 1(f ), the image
saturation further modifies the shape of the original non-
sinusoidal waves by cutting off the intensity that exceeds the
dynamic range, which further increases the non-sinusoidal
characteristic of the wave.

Fourier analysis is then implemented to investigate the har-
monics of these patterns. The results are shown in Figs. 2 and 3.
The fundamental frequency f 0 is three in our simulation. For
the ideal sine wave, only the fundamental frequency f 0 exists.
For the case of γ � 2.2, the frequency components 2f 0 and
3f 0 begin to appear. For the case of the defocused binary pat-
tern, as shown in Fig. 2(f ), we can observe harmonics of 3f 0

and 5f 0 that survive the defocusing. Although their amplitudes
are small, they can still destroy the phase retrieval. In Figs. 3(a)
and 3(d), we can see that there are four additional frequency
components that are from 2f 0 to 5f 0 in the saturated sine
wave except for the fundamental frequency. Last, two coupling
cases are discussed, which are the gamma effect coupled with
the image saturation and the defocused pattern coupled with
the image saturation, respectively. In Figs. 3(e) and 3(f ), we
can find that more harmonics have been introduced into the
coupled gamma distorted pattern and the coupled defocused
pattern due to the influence of image saturation, which has fur-
ther destroyed the shape of the sinusoidal wave.

Next, we analyze the phase errors owing to the non-sinus-
oidal issues. Assume that the intensity difference for each PS
image is

ΔIn�x, y� � In�x, y� − IHn �x, y�: (4)

The phase error caused by additional harmonics can be
written as

Δϕ�x, y� �
XN−1

n�0

∂ϕ�x, y�
∂In�x, y�

ΔIn�x, y�: (5)

By substituting Eqs. (2) and (4) into Eq. (5), we have

Δϕ � −
4

B2N 2

XN−1

n�0

��XN−1

m�0

Im sin
2π�n −m�

N

�

×
�Xp
j�0

Bj cos j
�
ϕ −

2πn
N

��	
: (6)

Equation (6) shows the non-sinusoidal phase error of N -step
PS algorithms. It can be found that the phase error Δϕ can be
reduced by increasing the modulation of fundamental fre-
quency and the number of phase shift N . As it is not easy
to manipulate the former in practice, we study the influence
of changing the number of phase shift.

Figure 4 illustrates the performance of PS algorithms in an-
alyzing different non-sinusoidal fringes. Here, the ground-truth
phase is calculated with ideal sinusoidal fringes. The phase error
is obtained by computing the standard deviation of the phase
difference. In the simulation of gamma distortion, we set
γ � 2.2. As can be seen, the phase error induced by the gamma
effect decreases rapidly with the increase of the number of phase
shift. For the case of defocused binary square pattern, the phase
error reduces but with small fluctuations. The reason is that for
an N -step PS algorithm, it is sensitive to �s � 1�N � 1th har-
monics (where s is an integer) [41]. For example, the four-step
PS algorithm is sensitive to all of the odd harmonics present in
the defocused pattern, showing the largest phase error among
all of the PS algorithms. However, from the whole trend, the
phase error still decreases with a large N . For the case of sat-
uration, we truncated 20% of the maximum light intensity.
Like the defocusing technique, its phase error also shows a
trend that the error decreases with an increasing N . For the
coupling case of image saturation and γ � 2.2, the phase error
is larger than that of the case of pure gamma. For the coupling
of defocusing projection and the image saturation, a more seri-
ous error is also observed than the one of the pure defocusing

(a) (b) (c)

(d) (e) (f)

Fig. 2. Intensity and spectrum of different sinusoidal patterns. (a)–(c) The intensity profile of the ideal sinusoidal fringe, the gamma-distorted
fringe, and the defocused fringe, respectively. (d)–(f ) The corresponding spectra of (a)–(c).

Research Article Vol. 9, No. 6 / June 2021 / Photonics Research 1087

108



case. From the results, although different non-sinusoidal
factors are superimposed in the coupling cases, the phase
can still be robustly computed with a large step PS algorithm.
In practice, however, the phase-shifting algorithm with a large
number of steps requires many fringe images to be captured

for a single phase measurement, which limits the efficiency
significantly.

3. ARCHITECTURE OF THE DEEP NEURAL
NETWORK

From the previous section, the phase error due to the non-
sinusoidal patterns can be reduced by increasing the number
of phase steps. However, the efficiency of the 3D imaging will
decrease obviously. To handle this issue, we resort to deep
learning techniques to retrieve the phase accurately from the
non-sinusoidal patterns without increasing PS images. In this
work, our deep neural network is constructed following the ar-
chitecture of U-net [77].

U-net is a fully convolutional network with an encoder–
decoder architecture, which is widely used in image segmenta-
tion. As shown in Fig. 5, the input images are captured
non-sinusoidal PS fringe images. We take the three-step PS al-
gorithm as an example as it requires the minimum images.
With the non-sinusoidal PS fringe images, the network learns
to predict ideal numerator M �x, y� and denominator D�x, y�,
which can be represented as

(a) (b) (c)

(d) (e) (f)

Fig. 3. Intensity and spectrum of different sinusoidal patterns. (a)–(c) The intensity profile of the saturated sinusoidal fringe, the saturated
gamma-distorted fringe, and the saturated defocused fringe, respectively. (d)–(f ) The corresponding spectra of (a)–(c).

Fig. 4. Performance of N -step phase-shifting algorithms for various
kinds of non-sinusoidal fringes.
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Fig. 5. Proposed deep neural network to process non-sinusoidal fringe images.
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M �x, y� �
XN−1

n�0

In�x, y� sin
�
2πn
N

�
, (7)

D�x, y� �
XN−1

n�0

In�x, y� cos
�
2πn
N

�
: (8)

According to Eq. (2), M�x, y� and D�x, y� can be fed into
the arctan function to calculate the final wrapped phase. At the
beginning, the input fringe images are processed by the encoder
to obtain 50-channel feature tensors with 1/2 resolution reduc-
tion along both the x and y directions. Then, these feature ten-
sors successively go through three convolutional blocks to
capture the multi-level feature information.

Contrary to the encoder subnetwork, the decoder subnet-
work then performs up-sampling operations to restore results
of the input image’s original size. It is implemented by bilinear
interpolation and is followed by two convolution layers. In the
U-net, at every step of the decoder, a skip connection is used to
concatenate the convolution layers’ output with feature maps
from the encoder at the same level. This structure helps obtain
low-level and high-level information at the same time and
weakens the typical gradient vanishing in deep convolutional
networks, which is beneficial to achieve accurate results. The
last layer of the network is a convolutional layer activated by
a linear activation function and outputs two-channel data con-
sisting of the numerator and the denominator. The objective of
the neural network is to minimize the following loss function:

Loss�θ� � 1

HW
�kY M �θ� − GMk2 � kY D�θ� − GDk2�, (9)

where θ represents the set of parameters in the neural network
that is adjusted automatically during the training.H andW are
the image height and width, respectively. Y M and Y D are the
predicted numerator and denominator. GM and GD are
the ground-truth numerator and denominator. To obtain
the ground-truth data, the PS algorithm with a large number
ofN is exploited as it is not sensitive to non-sinusoidal patterns.
From Eq. (9), the deep neural network gradually learns to map
non-sinusoidal fringe images to the numerator and the denom-
inator that are close to the ideal ones during the training.

4. EXPERIMENTS

To validate the proposed method, we built a structured light
illumination system that consisted of a projector (DLP 4500,
Texas Instruments) and an industrial camera (acA640-750 μm,
Basler). The camera was equipped with a lens of 8 mm focal
length. The distance between the test object and the imaging
system is about 1 m.

Non-sinusoidal fringe images due to five different causes
were captured, respectively: (1) the pure gamma distortion
(where γ was set as 2.2 during the pattern projection),
(2) the pure binary defocusing projection, (3) the pure image
saturation, (4) the coupling of gamma effect γ � 2.2 with im-
age saturation, and (5) the coupling of binary defocusing pro-
jection with image saturation. To collect the training data, we
captured 750 sets of non-sinusoidal three-step PS fringe images
from different objects. To obtain the ground-truth data,
Eqs. (7) and (8) were applied, where N was selected as 12

to remove the influence of the harmonics as much as possible.
The pixel depth of captured three-step fringe images is 8-bit in
our experiments. Before being fed into the neural network, they
were divided by 255 for normalization, which can make the
learning easier for the network. The neural network was imple-
mented using the TensorFlow framework (Google) and was
computed on a GTX Titan graphics card (NVIDIA). For each
non-sinusoidal scenario, we trained and tested the neural net-
work using only the data belonging to the same scenario. All of
the objects used in the testing process were not present in the
training stage.

First, we investigated the neural network’s efficacy in the
correction of gamma distortion. Figure 6(a) shows one of
the captured three-step PS images. Figure 6(b) is the 3D
reconstruction (depth map) obtained by the traditional
three-step PS algorithm, in which obvious periodic ripple errors
can be observed on the face of the retrieved model. Figures 6(c)
and 6(d) demonstrate the 3D reconstructions by the proposed
method and the 12-step PS algorithm, respectively. By com-
parison, these ripple errors have been suppressed effectively
by the neural network. For quantitative evaluation, first we
measured a pair of ceramic spheres. One of the captured
gamma-distorted fringe images is as shown in Fig. 7(a).
Figures 7(b)–7(d) demonstrate the 3D models obtained by
the three-step PS method, the proposed method, and the
12-step method, respectively. The measurement error maps
of the three-step PS method and the proposed method are
shown in Figs. 7(e) and 7(f ). The errors were calculated by re-
ferring to the high-accuracy profile obtained by the 12-step PS
algorithm. With the trained neural network, the mean absolute
error (MAE) and standard deviation error (STD) can be

Fig. 6. 3D reconstructions from fringe images that were distorted
by the projector’s gamma of 2.2. (a) One of the captured three-step PS
images. (b) The 3D result obtained by the traditional three-step PS
algorithm. (c) The 3D result obtained by the proposed method.
(d) The 3D result obtained by the 12-step PS algorithm.
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significantly reduced to 0.056 mm and 0.054 mm. Then, we
measured a ceramic plate. Figures 8(a) and 8(b) show the 3D
reconstruction of the traditional three-step PS algorithm and
our method, respectively. The cross-section error of the plate
is shown in Fig. 8(d). For the three-step PS algorithm, the
MAE is 0.11 mm, and the STD is 0.075 mm. For our method,
the MAE and the STD have been reduced to 0.045 mm and
0.034 mm, respectively, indicating the reduction of 59% for
the MAE and 55% for the STD.

Then, the neural network was tested to obtain the phase
from binary defocused fringe images. Here, we used the dith-

ering technique to generate the binary fringes projected with a
slightly defocused projector [78]. Figure 9(a) shows one of the
three-step PS patterns. The 3D reconstruction of the three-step
PS method is shown in Fig. 9(b), where the surfaces have been
measured with obvious stripe noise. Figures 9(c) and 9(d) dem-
onstrate the 3D results of our method and the 12-step PS al-
gorithm, respectively. We can see that these errors have been
removed and smooth 3D reconstructions have been acquired.
For the quantitative analysis, Fig. 10 shows the measurement
results of a pair of ceramic spheres. The 3D result shown in
Fig. 10(c) and the reconstruction error maps shown in

Fig. 7. 3D reconstructions of a pair of ceramic spheres when the projector’s gamma was 2.2. (a) One of the captured three-step PS images. (b) The
3D result obtained by the traditional three-step PS algorithm. (c) The 3D result obtained by the proposed method. (d) The 3D result obtained by
the 12-step PS algorithm. (e) The absolute error map of the three-step PS algorithm. (f ) The absolute error map of the proposed method.

Fig. 8. 3D reconstructions of a ceramic plate when the gamma was 2.2. (a) The 3D result obtained by the traditional three-step PS algorithm
(3PS). (b) The 3D result obtained by the deep-learning-based method (DL). (c) The 3D result obtained by the 12-step PS algorithm.
(d) Comparison of the measurement errors of the three-step PS method and the proposed method.
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Fig. 10(f ) demonstrate that the proposed method has effec-
tively removed the periodic errors induced by non-sinusoidal
components. Then, a ceramic plate was tested. Figures 11(a)–
11(c) show the 3D images of the tested object. High-
frequency ripple errors can be seen on the surface recovered
by the three-step PS algorithm, indicating some harmonics
of the projected pattern survived the defocused projection.
The measurement errors are shown in Fig. 11(d). For the tradi-
tional three-step PS algorithm, the MAE and the STD are
0.12 mm and 0.096 mm, respectively. The MAE and the
STD decreased to 0.046 mm and 0.034 mm, respectively,

when our method was applied, demonstrating the proposed
method reduced the MAE and the STD by 62% and by
65%, respectively.

In the third experiment, the proposed neural network was
used to analyze saturated fringe images. One of captured PS
images is shown in Fig. 12(a), where some fringes have been
captured with pure white on the two models’ faces.
Figure 12(b) demonstrates the 3D reconstruction by the tradi-
tional three-step PS method. Many ripple artifacts can be ob-
served at the recovered faces of the two objects. In Fig. 12(c),
with the assistance of deep learning, these errors were

Fig. 9. 3D reconstructions with slightly defocused binary fringe images. (a) One of the three-step PS images. (b) The 3D result obtained by the
traditional three-step PS algorithm. (c) The 3D result obtained by the proposed method. (d) The 3D result obtained by the 12-step PS algorithm.

Fig. 10. 3D reconstructions of a pair of ceramic spheres with slightly defocused binary fringe images. (a) One of the captured three-step PS
images. (b) The 3D result obtained by the traditional three-step PS algorithm. (c) The 3D result obtained by the proposed method. (d) The 3D
result obtained by the 12-step PS algorithm. (e) The absolute error map of the three-step PS algorithm. (f ) The absolute error map of the proposed
method.
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eliminated effectively by the proposed method. This
reconstruction is very close to the one obtained by the 12-step
PS method, as shown in Fig. 12(d). Figure 13 shows the mea-
surement results of a pair of ceramic spheres. From the error
maps demonstrated by Figs. 13(e) and 13(f ), we can see that
the MAE and STD have been reduced to 0.043 mm and
0.039 mm, respectively. In addition, Figs. 14(a)–14(c) show

the 3D reconstructions of a ceramic plate by the three-step
PS method, the proposed method, and the 12-step PS
algorithm, respectively. The measurement errors are demon-
strated in Fig. 14(d). Due to the image saturation, the 3D
reconstruction was distorted severely for the traditional
method. Its MAE and STD are 0.34 mm and 0.19 mm, re-
spectively. For our method, by contrast, these errors have been

Fig. 11. 3D reconstructions of a ceramic plate with slightly defocused binary fringe images. (a) The 3D result obtained by the traditional three-
step PS algorithm (3PS). (b) The 3D result obtained by the proposed method (DL). (c) The 3D result obtained by the 12-step PS algorithm.
(d) Comparison of the measurement errors of the three-step PS method and the proposed method.

Fig. 12. 3D reconstructions with saturated PS images. (a) One of the captured three-step PS images. (b) The 3D result obtained by the traditional
three-step PS algorithm. (c) The 3D result obtained by the proposed method. (d) The 3D result obtained by the 12-step PS algorithm.
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reduced to 0.052 mm and 0.039 mm, respectively, indicating
the error reduction by 84.7% for MAE and by 79.5% for STD.

Next, we tested the performance of our method for a more
complicated situation where the gamma distortion (γ � 2.2)
was coupled with the image saturation. Figure 15(a) shows
one of the captured three-step PS patterns where the head
of the left model was captured under effects of both the gamma
distortion and the pixel saturation issues. As two non-sinusoidal
factors work together, many wave artifacts can be seen in the
3D model reconstructed with the traditional three-step PS
method [Fig. 15(b)]. In contrast, Figs. 15(c) and 15(d) display

the 3D results of our method and the 12-step PS method, re-
spectively. We can see that the deep learning framework has
successfully removed the influence of the gamma effect and
the image saturation at the same time. In quantitative evalu-
ation, Fig. 16 demonstrates the measurement results of a pair
of ceramic spheres. Benefited from the deep learning, the cou-
pling non-sinusoidal errors can be removed effectively. With
the proposed strategy, the MAE and STD of the measured
sphere can be decreased to 0.047 mm. Then, a ceramic plate
was also measured. The results are shown in Figs. 17(a)–17(c).
From the error distribution shown in Figs. 17(d), we can see

Fig. 13. 3D reconstructions of a pair of ceramic spheres with saturated fringe images. (a) One of the captured three-step PS images. (b) The 3D
result obtained by the traditional three-step PS algorithm. (c) The 3D result obtained by the proposed method. (d) The 3D result obtained by the
12-step PS algorithm. (e) The absolute error map of the three-step PS algorithm. (f ) The absolute error map of the proposed method.

Fig. 14. 3D reconstructions of a ceramic plate with saturated fringe images. (a) The 3D result obtained by the traditional three-step PS algorithm
(3PS). (b) The 3D result obtained by the proposed method (DL). (c) The 3D result obtained by the 12-step PS algorithm. (d) Comparison of the
measurement errors of the three-step PS method and the proposed method.
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that the proposed approach can eliminate the periodic artifacts
and recover the shape of the plate correctly. Numerically, the
MAE and the STD of the three-step PS method are 0.28 mm
and 0.16 mm, respectively. When the proposed method was
applied, the MAE and the STD were reduced by 84% and
79% to 0.044 mm and 0.033 mm, respectively.

Last, we tested the second coupling non-sinusoidal case
where the fringe images were captured under the slightly

defocusing projection and the image saturation. Figure 18(a)
shows one of the captured three-step PS patterns in which
the face was captured with defocused and saturated fringes.
Figure 18(b) shows the 3D result obtained by the traditional
three-step PS method; wrinkle errors due to both non-sinusoi-
dal factors can be observed clearly. Figures 18(c) and 18(d)
show the 3D reconstructions of the proposed deep neural net-
work and the 12-step PS algorithm, respectively. As shown in

Fig. 15. 3D reconstructions under the coupling non-sinusoidal case where the gamma effect of 2.2 was coupled with the image saturation.
(a) One of the captured three-step phase-shifting images. (b) The 3D result obtained by the traditional three-step PS algorithm. (c) The 3D result
obtained by the proposed method. (d) The 3D result obtained by the 12-step PS algorithm.

Fig. 16. 3D reconstructions of a pair of ceramic spheres in the coupling non-sinusoidal case where the gamma effect of 2.2 was coupled with the
image saturation. (a) One of the captured three-step PS images. (b) The 3D result obtained by the traditional three-step PS algorithm. (c) The 3D
result obtained by the proposed method. (d) The 3D result obtained by the 12-step PS algorithm. (e) The absolute error map of the three-step PS
algorithm. (f ) The absolute error map of the proposed method.
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Fig. 18(c), these non-sinusoidal errors can be compensated with
the proposed method effectively. A pair of ceramic spheres was
then tested, and the results are shown in Fig. 19. We can see
that the deep neural network is able to eliminate the ripple
errors successfully and reduce the MAE and STD to

0.041 mm and 0.038 mm, respectively. Further, Figs. 20(a)–
20(c) demonstrate 3D reconstructions of a ceramic plate by
the traditional three-step PSmethod, our method, and the 12-step
PS method, respectively. From the error distribution shown in
Fig. 20(d), the MAE and the STD of the three-step PS method
are 0.33 mm and 0.21 mm, respectively. When our method was
applied, the MAE and the STD have been reduced to 0.047 mm
and 0.039 mm, showing an accuracy improvement of more
than 80%.

5. CONCLUSION

The fringe analysis is important to fringe projection profilom-
etry, which has a high requirement on captured sinusoidal
fringes. When the fringe is not a perfect sinusoid, the phase
accuracy and the 3D reconstruction suffer. This paper focuses
on several frequently encountered non-sinusoidal issues, in-
cluding the gamma effect of digital projectors, residual high-
order harmonics in binary defocusing projection, the image sat-
uration, and more complex cases where the image saturation is
coupled with the gamma effect and with the binary defocusing
projection. Conventionally, these non-sinusoidal issues are sel-
dom considered in a unified framework. Also, approaches that
can handle the coupling cases are rarely discussed. Here,
we have demonstrated that these kinds of non-sinusoidal
patterns can be represented by a generalized model and the cor-
responding phase errors can be relieved by increasing the num-
ber of phase shift in the PS algorithms. We proposed a unified
deep learning technique that can analyze fringe images from all
of the mentioned non-sinusoidal causes and their coupling
scenarios. More importantly, to remove these phase errors
without increasing the number of phase shift, we train a deep
neural network that can mimic the phase correction of PS

Fig. 17. 3D reconstructions of a ceramic plate in the coupling non-sinusoidal case where the gamma effect of 2.2 was coupled with the image
saturation. (a) The 3D result obtained by the traditional three-step PS algorithm (3PS). (b) The 3D result obtained by the proposed method (DL).
(c) The 3D result obtained by the 12-step PS algorithm. (d) Comparison of the measurement errors of the three-step PS method and the proposed
method.

Fig. 18. 3D reconstructions under the coupling non-sinusoidal case
where the images were projected through a slightly defocused projector
and were captured with the pixel saturation. (a) One of the captured
three-step phase-shifting images. (b) The 3D result obtained by the
traditional three-step PS algorithm. (c) The 3D result obtained by
the proposed method. (d) The 3D result obtained by the 12-step
PS algorithm.

Research Article Vol. 9, No. 6 / June 2021 / Photonics Research 1095

116



algorithms with many steps (e.g., the 12-step PS method) by
using PS fringe images captured with a few-step PS method
(e.g., the three-step PS method). Experimental results have
shown that compared with the traditional PS algorithm, the
proposed method can effectively suppress the phase error

due to the gamma effect of projectors, insufficient defocusing
of binary fringe projection, the image saturation, and two
complex coupled non-sinusoidal cases without increasing the
fringe images. We believe this method shows great potential
for robust and accurate phase retrieval and 3D measurements.

Fig. 19. 3D reconstructions of a pair of ceramic spheres under the coupling non-sinusoidal case where the effect of the slightly defocusing
projection was coupled with the image saturation. (a) One of the captured three-step PS images. (b) The 3D result obtained by the traditional
three-step PS algorithm. (c) The 3D result obtained by the proposed method. (d) The 3D result obtained by the 12-step PS algorithm. (e) The
absolute error map of the three-step PS algorithm. (f ) The absolute error map of the proposed method.

Fig. 20. 3D reconstructions of a ceramic plate under the coupling non-sinusoidal case where the effect of the slightly defocusing projection was
coupled with the image saturation. (a) The 3D result obtained by the traditional three-step PS algorithm (3PS). (b) The 3D result obtained by the
proposed method (DL). (c) The 3D result obtained by the 12-step PS algorithm. (d) Comparison of the measurement errors of the three-step PS
method and the proposed method.
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Abstract. In recent years, there has been tremendous progress in the development of deep-learning-based
approaches for optical metrology, which introduce various deep neural networks (DNNs) for many optical
metrology tasks, such as fringe analysis, phase unwrapping, and digital image correlation. However, since
different DNN models have their own strengths and limitations, it is difficult for a single DNN to make
reliable predictions under all possible scenarios. In this work, we introduce ensemble learning into optical
metrology, which combines the predictions of multiple DNNs to significantly enhance the accuracy and
reduce the generalization error for the task of fringe-pattern analysis. First, several state-of-the-art base
models of different architectures are selected. A K-fold average ensemble strategy is developed to train
each base model multiple times with different data and calculate the mean prediction within each base
model. Next, an adaptive ensemble strategy is presented to further combine the base models by building
an extra DNN to fuse the features extracted from these mean predictions in an adaptive and fully
automatic way. Experimental results demonstrate that ensemble learning could attain superior performance
over state-of-the-art solutions, including both classic and conventional single-DNN-based methods. Our work
suggests that by resorting to collective wisdom, ensemble learning offers a simple and effective solution
for overcoming generalization challenges and boosts the performance of data-driven optical metrology
methods.

Keywords: optical metrology; fringe-pattern analysis; deep learning; ensemble learning; three-dimensional measurement; phase
retrieval.
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1 Introduction
Optical metrology plays a significant role in many fields
because of its merits of noninvasiveness, flexibility, and high
accuracy. In optical metrology, fringe-pattern analysis is indis-
pensable to many tasks, e.g., interferometry, fringe projection
profilometry, and digital holography. According to the number
of patterns used, fringe-pattern analysis can be generally classi-
fied into two categories: single-frame and multiframe methods.
The Fourier-transform fringe-pattern analysis is a representative
single-frame approach1 that converts a fringe pattern into the fre-
quency domain and extracts the phase information by filtering

the first order of the spectrum. This method is suitable for
measuring dynamic scenes because it only needs a single fringe
image. However, it tends to compromise on handling complex
surfaces, owing to the spectrum aliasing issue. In contrast,
the multiframe approaches, e.g., the N-step phase-shifting
(PS) algorithm,2 can achieve higher accuracy, since the phase
demodulation can be carried out pixel by pixel along the tem-
poral axis. Nevertheless, multiframe approaches usually suffer
when facing fast-moving objects because of the need to capture
multiple images. Hence, there is a contradiction between the
efficiency and the accuracy of the fringe-pattern analysis.

Recently, many advances have emerged in the field of
optical metrology that benefit from harnessing the power of deep
learning.3,4 Fringe-pattern analysis using deep learning has
shown promising performance in measuring complex contours
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using a single fringe image.5 As a data-driven approach, it can
exploit useful hidden clues that may be overlooked by traditional
physical models, thus showing potential for resolving the
contradiction between efficiency and accuracy in the phase
demodulation. However, it is not trouble-free for this kind of
approach. Usually, people adopt a single deep neural network
(DNN) and depend on it completely to handle all possible mea-
surements once it is trained. Actually, this is risky, as the DNN
may only learn limited attributes of input data because of its fixed
structure. Consequently, it tends to demonstrate high variance for
unseen scenarios. Further, the DNN may converge to a local loss
minimum during training, which further increases the risk of
making unreliable predictions.

To handle these issues, ensemble deep learning has been
developed,6,7 which refers to a set of strategies where, rather
than relying on a single model, several base models are com-
bined to perform tasks. As different architectures can capture
distinct information, better decisions can be made by combin-
ing different networks. Inspired by recent successful applica-
tions of ensemble deep learning, we demonstrate for the
first time, to the best of our knowledge, that an ensemble of
multiple deep-learning models can improve the accuracy and
the stability of fringe-pattern analysis substantially. First,
multiple state-of-the-art DNNs for fringe-pattern analysis are
employed as base models. To train the base models, we propose
a K-fold average ensemble method to divide training data into
several groups so that each one can be trained multiple times by
using different data. Then, the average of the predictions is cal-
culated as the output of each base model. To further fuse the
outputs of the base models, we develop an adaptive ensemble
that trains an extra DNN to extract and combine useful features
from these outputs adaptively and automatically during train-
ing. Experimental results show that the proposed approach
can improve the phase accuracy and the generalization capabil-
ity for unseen scenarios greatly compared with the traditional
method using a single model.

2 Methods
In fringe-pattern analysis, a fringe image is often written as

Iðx; yÞ ¼ Aðx; yÞ þ Bðx; yÞ cos φðx; yÞ; (1)

where ðx; yÞ is the pixel coordinate, A is the background signal,
B is the amplitude, and φ is the phase to be measured.
Conventionally, the phase is demodulated through an arctangent
function,

φðx; yÞ ¼ arctan
cBðx; yÞ sin φðx; yÞ
cBðx; yÞ cos φðx; yÞ ¼ arctan

Mðx; yÞ
Dðx; yÞ ; (2)

where the numerator M represents the phase sine ½sin φðx; yÞ�
and the denominator D represents the phase cosine
½cos φðx; yÞ�. c is a constant that is determined according to
the phase demodulation approach. According to Eq. (2), a
DNN can be constructed to learn to predict M and D. Then,
the phase φ can be computed through the arctangent function.5

Instead of relying on a single model, we train several base
models to analyze the same input fringe image and combine
their outputs as the final prediction. Figure 1 demonstrates
the diagram of the proposed framework. First, three state-of-
the-art models for fringe-pattern analysis are selected as base
models. The first two models are the U-Net8 and the multipath
DNN (MP DNN),5 which are convolutional neural networks that
are good at extracting local features. The third model is the
Swin–Unet,9 which is a vision transformer that shows the advan-
tage of capturing global information. The structures of base
models are detailed in the Supplementary Material. As these
models have different architectures, diverse attributes of the
input data can be learned. To train the base models, we develop
a K-fold average ensemble, whose schematic is shown in Fig. 2.
The whole training data set is divided into K parts equally
(i.e., from fold 1 to fold K). Any K − 1 parts of the data can

Fig. 1 Diagram of the fringe-pattern analysis using ensemble deep learning. The input fringe
image is processed by three base models. In each base model, a K -fold average ensemble is
proposed to generate K sets of data to train K homogeneous models. Each homogeneous model
outputs a pair of numerator M and denominator D . The mean is computed over K homogeneous
models and is treated as the output of the base model. To further combine the predictions of the
base models, an adaptive ensemble is developed that trains a DNN to fuse their predictions
adaptively and gives the final prediction.
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be merged and then used for training; the remaining one is used
for validation. In this way, we can generate K sets of training
data. As each of them is different, additional information can be
provided. To train these base models, we use the following mean
squared error loss function:

LossðθiÞ ¼ 1

H ×W

XH

h¼1

XW

w¼1

ðyih;w − ŷih;wÞ2; (3)

where θi represents the parameters of the ith base model; these are
learned during the training process. H andW represent the height
and width of the image in pixels, respectively. Omitting the pixel
index, yi is the output of the base model that consists of a pair of
estimated numerator and denominator. ŷi is the ground-truth label
that can be obtained by the PS algorithm. With theK-fold average
ensemble, K homogeneous models can be trained for each base
model. As each homogeneous model can give a prediction,
K pairs of predictions can be obtained. In this work, the structures
of these homogeneous models are the same. We use the He nor-
mal initialization to initialize the parameters of these networks.10

As both the training data and the initial values of the parameters
are different, the performance of each network will be different,
which enhances the diversity in model prediction. To combine
these predictions, their average is computed as

yi ¼ 1

K

XK

k¼1

yik; (4)

where yik is the prediction of the kth homogeneous model regard-
ing to the ith base model and yi is the output of the ith base model
using the K-fold average ensemble.

To further combine the predictions of the base models, we
develop an adaptive ensemble that adopts a MultiResUNet to
fuse the features of different models adaptively.11 The diagram
of the adaptive ensemble is shown in Fig. 3. The feature extrac-
tion is enhanced by MultiRes blocks that use a series of 3 × 3
convolutions, as shown in Fig. 3(b). This structure is equivalent
to the 5 × 5 and 7 × 7 convolutions and has the advantage that it

can not only learn features of various base predictions at differ-
ent image scales but also saves memory and speeds up network
training. In addition, instead of combining the features of en-
coders and decoders immediately, residual paths are con-
structed, where features of the encoder are processed by several
convolutional layers, which can reduce the content gap between
encoder and decoder features. To train the MultiResUNet, we
also use the loss function shown in Eq. (3). During training,
the MultiResUNet can learn proper weights for features ex-
tracted from each base prediction without manual intervention,
thus making the fusion in an adaptive and automatic way.

3 Results
We validated the presented method under the scenario of fringe
projection profilometry. The system consists of a camera (V611,
Vision Research Phantom) and a projector (DLP 4100, Texas
Instruments). The measured scene was illuminated by the pro-
jector with a sinusoidal fringe pattern, and the fringe image was
captured by the camera from a different viewing point. To
collect the training data, many fringe images of various objects
were captured. To generate the ground-truth labels, the 12-step
PS algorithm was applied. The captured fringe patterns are 8-bit
gray-scale images. In the data preprocessing stage, the input
fringe pattern was divided by 255 for normalization before
being fed into the DNNs. Further details about the optical setup
and the calculation of the ground-truth data are provided in the
Supplementary Material. For the adaptive ensemble, the training
data were generated using the trained base models. All base
models and the MultiResUNet were implemented by the
Keras and computed on a graphic card (GTX Titan, NVIDIA).

To test the performance of our approach, we measured three
different scenarios that were not seen by these networks during
training. They are a set of statues, an industrial part made of
aluminium alloy, and a desk fan made of plastic. The experi-
mental results regarding each stage of our approach are shown
in Fig. 4. Here, for better performance, a seven-fold average en-
semble was used to train each base model. So, we divided the
training data into seven parts and trained seven homogeneous
models for each base model. Given an input fringe pattern,
the homogeneous models gave predictions independently, and

Fig. 2 Diagram of the K -fold average ensemble approach. The whole data set is equally
separated into K parts. We combine any K − 1 parts of the data for training and leave the remain-
ing part for validation. Then, K sets of data can be generated to train a base model, which yields
K homogeneous models. Each one gives a prediction independently, and their average is
calculated as the output of the K -fold average ensemble.
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(a)

(b) (c)

Fig. 3 Diagram of the proposed adaptive ensemble. (a) It trains a MultiResUNet to combine the
predictions of base models. (b) Structure of the MultiRes block, where a series of 3 × 3 convo-
lutions is used to approximate the behaviors of 5 × 5 convolution and 7 × 7 convolution.
(c) Structure of the residual path, where features of the encoder pass through a few convolutional
layers before being fed into the decoder.

Fig. 4 Experimental results of several unseen scenarios that include a set of statues, an industrial
part, and a desk fan. The input is a fringe pattern. It is then fed into the U-Net, MP DNN, and
Swin-Unet, which are trained by the sevenfold average ensemble, respectively. By calculating
the average, each base model outputs a pair of numerators and denominators. Then, the outputs
of base models are processed by the adaptive ensemble, which combines the contribution of each
base model and calculates the wrapped phase.
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Eq. (4) was used to compute the average. As there were three
base models, three pairs of numerators and denominators were
obtained for each input image. These predictions were further
combined by being fed into the adaptive ensemble that output
the final prediction and calculated the wrapped phase.

For quantitative analysis, the ground-truth phase was ob-
tained by the 12-step PS method. For comparison, the fringe
image was also analyzed by a single U-Net; its absolute phase
error is shown in Fig. 5(a). For the first scenario, we can see that
the phase of smooth areas is retrieved accurately, while that of
complex regions is measured with large errors. The mean abso-
lute error (MAE) of the whole scene is 0.085 rad. The phase
error of our approach is shown in Fig. 5(b). As can be seen,
the phase error of the first scene has been reduced effectively.
For detailed investigation, two regions of interest (ROIs),
i.e., two complex regions around hairs, were selected. We can
see that our method performs much better than the U-Net for
handling the complex areas of depth variations and edges.
Quantitatively, the MAE was greatly reduced to 0.061 rad when
our method was used. For the second scenario, the MAE of the
U-Net is 0.076 rad, and obvious errors can be observed around
the edges and the small raised letters on the surface of the object,

as can be seen in Figs. 5(b) and 5(c). When our approach was
applied, these phase errors were apparently reduced, and the
MAE of the scene has been reduced to 0.054 rad. Last, for
the third scenario, our method also outperformed the U-Net,
as the MAE decreased significantly from 0.080 to 0.059 rad,
demonstrating the accuracy improvement by 26%.

To further validate the proposed method, we investigated the
effect of the ensemble size of the K-fold average ensemble.
Different K were tested for these base models; the results
are shown in Fig. 5(d). We find that a similar trend can be
observed for these base models. The MAE decreases with
the increase of K, and it tends to be stable when K is larger than
seven. Therefore, the sevenfold average ensemble was used in
our work. Moreover, we also compared the accuracy of each
base model under the cases of the single model and the
seven-fold average ensemble. Table 1 shows their MAEs for
the tested scenarios. From the performance of a single DNN,
we find different models demonstrate different performances.
For example, the U-Net shows the smallest MAE for the third
scenario, while the MAE for the second scenario is the largest
among the three models. When the seven-fold average ensemble
was utilized, the ensembles outperformed the single model as

(a)

(b)

(c)

(d)

Fig. 5 Comparison of the proposed method with the U-Net. (a) and (b) The absolute phase error
maps of the U-Net and our method, respectively. (c) Selected ROIs of the phase error for the two
methods. (d) The performance of different K -fold average ensembles.
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the MAEs were reduced. After further combining the outputs of
the base models by the adaptive ensemble, we obtained the
smallest MAE of 0.061, 0.054, and 0.059 rad for these scenes,
respectively. From this experiment, we can see that different
DNNs have different advantages, and it is hard for a single
DNN to demonstrate excellent performance for all scenarios.
It is worth noting that the model accuracy and generalization
capability can be improved significantly by the proposed
approach, which combines the strengths of diverse models.
More experimental results are provided in the Supplementary
Material.

4 Conclusions
In this work, we have proposed a novel fringe-pattern analysis
method using ensemble deep learning, which can exploit the
contributions of multiple state-of-the-art DNNs. The K-fold
average ensemble approach is developed to manipulate the
training data set into different groups. Each base model is
trained several times with different groups of data. Within each
base model, the output is computed by taking the average over
the predictions of all homogeneous models. To further fuse the
predictions of the base models, we have proposed an adaptive
ensemble that can train a DNN to combine these predictions
adaptively and automatically. Experimental results have shown
that our work can leverage the strength of multiple base models
to boost performance, which is superior to the method that only
uses a single DNN. Furthermore, deepp-learning techniques
have been widely applied in various optical metrology applica-
tions, such as phase unwrapping, 3D reconstruction, and image
denoising. However, a single model with a fixed architecture
may only extract limited information from input data. We
believe that the idea of utilizing the collective wisdom demon-
strated here can also be extended to these applications because
more DNNs of different structures can extract diverse informa-
tion from input data, which is advantageous for making reliable
predictions. We believe this work has great potential in inspiring
powerful and practical optical metrology techniques in the
future.
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temporal phase unwrapping using 
deep learning
Wei Yin  1,2,3, Qian chen1,2*, Shijie feng1,2,3, Tianyang tao1,2,3, Lei Huang  4, Maciej trusiak5, 
Anand Asundi6 & chao Zuo1,2,3*

The multi-frequency temporal phase unwrapping (MF-TPU) method, as a classical phase unwrapping 
algorithm for fringe projection techniques, has the ability to eliminate the phase ambiguities even while 
measuring spatially isolated scenes or the objects with discontinuous surfaces. For the simplest and 
most efficient case in MF-TPU, two groups of phase-shifting fringe patterns with different frequencies 
are used: the high-frequency one is applied for 3D reconstruction of the tested object and the unit-
frequency one is used to assist phase unwrapping for the wrapped phase with high frequency. The 
final measurement precision or sensitivity is determined by the number of fringes used within the 
high-frequency pattern, under the precondition that its absolute phase can be successfully recovered 
without any fringe order errors. However, due to the non-negligible noises and other error sources in 
actual measurement, the frequency of the high-frequency fringes is generally restricted to about 16, 
resulting in limited measurement accuracy. On the other hand, using additional intermediate sets of 
fringe patterns can unwrap the phase with higher frequency, but at the expense of a prolonged pattern 
sequence. With recent developments and advancements of machine learning for computer vision 
and computational imaging, it can be demonstrated in this work that deep learning techniques can 
automatically realize TPU through supervised learning, as called deep learning-based temporal phase 
unwrapping (DL-TPU), which can substantially improve the unwrapping reliability compared with MF-
TPU even under different types of error sources, e.g., intensity noise, low fringe modulation, projector 
nonlinearity, and motion artifacts. Furthermore, as far as we know, our method was demonstrated 
experimentally that the high-frequency phase with 64 periods can be directly and reliably unwrapped 
from one unit-frequency phase using DL-TPU. These results highlight that challenging issues in optical 
metrology can be potentially overcome through machine learning, opening new avenues to design 
powerful and extremely accurate high-speed 3D imaging systems ubiquitous in nowadays science, 
industry, and multimedia.

Many imaging systems, such as fringe projection profilometry (FPP)1–3, optical interferometry4,5, synthetic 
aperture radar (InSAR)6,7, X-ray crystallography8, and magnetic resonance imaging9, make use of the phase to 
produce the physiological and physical information of the measured objects. For instance, in FPP, the phase is 
proportional to the surface profile; in optical interferometry, the phase can be exploited to infer profile, fast dis-
placement, and vibration of the object’s surface. In these existing imaging methods and systems, it generally need 
to perform the arctangent function for phase retrieval thus resulting in the wrapped phase with 2π phase jumps, 
so the operation of phase unwrapping is necessary to eliminate the phase ambiguities and convert the wrapped 
phases into the absolute ones10–15.

Numerous phase unwrapping algorithms have been proposed and can be divided into two categories with 
regard to the working domains: spatial phase unwrapping (SPU)10,11 and temporal phase unwrapping (TPU)12. 
Under the assumption of spatial continuity, SPU calculates the relative fringe order of the center pixel on a single 
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wrapped phase map by analyzing the phase information of its neighboring pixels, thus it cannot successfully 
measure discontinuities and isolated objects. Conversely, TPU approaches can realize pixel-wise absolute phase 
unwrapping via the temporal analysis of more than one wrapped phase maps with different frequencies even 
under the conditions of truncated or spatially isolated areas. Currently, there are three representative approaches 
to TPU: multi-frequency (hierarchical) approach (MF-TPU), multi-wavelength (heterodyne) approach, and 
number-theoretical approach. We have analyzed and discussed the unwrapping success rate and anti-noise per-
formance of these TPU algorithms in a comparative review, revealing that the MF-TPU approach provides the 
highest unwrapping reliability and best noise-robustness among others12.

The subsequent content of this paper will be focused on the MF-TPU approach, with an emphasis on the 
application of high-speed FPP16,17. In such a context, to improve the measurement efficiency, it is necessary to 
make MF-TPU as reliable as possible while using a minimum number of projection patterns18. For the simplest 
and most efficient case in MF-TPU, two groups of phase-shifting fringe patterns with different frequencies are 
used: the high-frequency one is applied for 3D reconstruction of the tested object and the unit-frequency one is 
used to assist phase unwrapping for the wrapped phase with high frequency. The final measurement precision 
or sensitivity is determined by the number of fringes used within the high-frequency pattern, under the pre-
condition that its absolute phase can be successfully recovered without any fringe order errors. However, due to 
the non-negligible noises and other error sources in actual measurement, the frequency of the high-frequency 
fringes is generally restricted to about 16, resulting in limited measurement accuracy12. On the other hand, using 
an additional intermediate set of fringe patterns (totally 3 sets of phase-shifting patterns) can unwrap the phase 
with higher frequency or higher success rate18. As a result, the increased number of required patterns reduces the 
measurement efficiency of FPP, which is not suitable for measuring dynamic scenes.

In this work, we demonstrated that a trained deep neural network can greatly improve the ability of TPU 
compared with conventional MF-TPU. This learning-based framework uses only two (one unit-frequency, one 
high-frequency) wrapped phases calculated using 3-step phase-shifting fringe patterns as input, and directly 
outputs an unwrapped version of the same phase map with high reliability. Deep learning19 is a method based on 
the representation of data in machine learning for data analysis and prediction and have been applied to various 
fields such as automatic drive, face recognition, and mechanical translation, where they have produced results 
that surpass the performance of traditional algorithms and are comparable or superior in some cases to human 
experts. Recently, machine learning-based methods have been further successfully applied to solving challenging 
problems in computational imaging20–24 and the analysis of nanostructures devices25–27, such as phase retrieval20, 
lensless on-chip microscopy21, fringe pattern analysis22, computational ghost imaging23,24, and the assist design of 
electromagnetic nanostructures26.

Inspired by the great successes of deep learning techniques for these fields, here we adopt deep neural net-
works to beat the TPU problem, which can substantially improve the unwrapping reliability compared with 
MF-TPU even in the presence of different types of error sources. To validate the proposed approach, we recover 
the absolute phases of various tested objects by projecting fringe patterns with different frequencies, such as 1, 
8, 16, 32, 48, and 64, all of which demonstrate the successful removal of phase unwrapping errors arising from 
the intensity noise, low fringe modulation, intensity nonlinearity, and motion artifacts. Furthermore, as far as 
we know, our method was demonstrated experimentally that the high-frequency phase with 64 periods can be 
directly and reliably unwrapped from one unit-frequency phase, facilitating high-accuracy high-speed 3D surface 
imaging with use of only 6 projected patterns without exploring any prior information and geometric constraint. 
These results highlight that machine learning is able to potentially overcome challenging issues in optical metrol-
ogy, and provides new possibilities to design powerful high-speed FPP systems.

Methods
Phase-shifting profilometry (PSP). In a typical FPP system, sinusoidal fringe-based FPP methods are 
more prevalent to a great variety of practical applications and can be generally divided into two main categories 
for phase extraction: Fourier transform profilometry (FTP)28 and Phase-shifting profilometry (PSP)29. Numerous 
dynamic 3D measurement techniques have been developed based on FTP, which have the advantage to provide 
the phase map utilizing only a single high-frequency fringe pattern16,30. How, suffering from frequency band 
overlapping problem, these methods generally yield coarse wrapped phase with low quality which limits its meas-
urement precision for dynamic 3D acquisition. In addition, not just limited to Fourier transform, the windowed 
Fourier transform (WFT) and the wavelet transform (WT) can also be applied for the phase retrieval and enhanc-
ing 3D measurement accuracy even in the case of complex surfaces and depth discontinuities31. Different from 
FTP, PSP can realize pixel-by-pixel phase measurements with higher accuracy unaffected by ambient light, but 
it needs to project at least three fringe patterns to obtain a phase map theoretically29. In this work, the standard 
3-step phase-shifting fringe patterns with shift offset of 2π/3 are adopted and represented as

π π= . + . −I x y fx n( , ) 0 5 0 5 cos(2 2 /3), (1)n
p p p p

where =I x y n( , ) ( 0, 1, 2)n
p p p  represent fringe patterns to be projected, f is the frequency of fringe patterns. After 

projected onto the object surfaces, the deformed fringe patterns captured by the camera can be described as

π= + Φ −I x y A x y B x y x y n( , ) ( , ) ( , )cos( ( , ) 2 /3), (2)n
c

where A(x, y), B(x, y), and Φ(x, y) are the average intensity, the intensity modulation, and the phase distribution of 
the measured object. According to the least-squares algorithm, the wrapped phase φ(x, y) can be obtained as32–34:
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φ =
−

− −
.−x y I x y I x y

I x y I x y I x y
( , ) tan 3 ( ( , ) ( , ))

2 ( , ) ( , ) ( , ) (3)

c c

c c c
1 1 2

0 1 2

Due to the truncation effect of the arctangent function, the obtained phase φ(x, y) is wrapped within the range 
of (−π, π], and its relationship with Φ(x, y) is:

φ πΦ = +x y x y k x y( , ) ( , ) 2 ( , ), (4)

where k(x, y) represents the fringe order of Φ(x, y), and its value range is from 0 to N − 1. N is the period number 
of the fringe patterns (i.e., N = f). In FPP, the core challenge for the absolute phase recovery is to obtain k(x, y) for 
each pixel in the phase map quickly and accurately.

Multi-frequency temporal phase unwrapping (MF-TPU). In temporal phase unwrapping (TPU), the 
wrapped phase φ(x, y) is unwrapped with the aid of one (or more) additional wrapped phase map with different 
frequency. For instance, two wrapped phases φh(x, y) and φl(x, y) are both retrieved from phase-shifting algo-
rithms by using Eq. (3), ranging from −π to π. It is easy to find that the two absolute phases Φh(x, y) and Φl(x, y) 
corresponding to φh(x, y) and φl(x, y) have the following relationship:

φ π
φ π










Φ = +
Φ = +
Φ = Φ

x y x y k x y
x y x y k x y
x y f f x y

( , ) ( , ) 2 ( , ),
( , ) ( , ) 2 ( , ),
( , ) ( / ) ( , ), (5)

h h h

l l l

h h l l

where fh and fl are the frequency of high-frequency fringes and low-frequency fringes. Based on the principle of 
MF-TPU, kh(x, y) can be calculated by the following formula:

φ

π
=

Φ −
.k x y

f f x y x y
( , )

( / ) ( , ) ( , )
2 (6)h

h l l h

Since the fringe order kh(x, y) is integer, ranging from 0 to fh − 1, Eq. (6) can be adapted as

φ

π
=







Φ − 



k x y Round

f f x y x y
( , )

( / ) ( , ) ( , )
2

,
(7)

h
h l l h

where Round() is the rounding operation. When fl is 1, there will be no phase ambiguity so that Φl(x, y) is inher-
ently an unwrapped phase. Theoretically, for MF-TPU, this single-period phase can be to directly assist phase 
unwrapping of φh(x, y) with relatively higher frequency. However, the phase unwrapping capability of MF-TPU is 
greatly constrained due to the influence of noise in practice. Assuming phase errors in the wrapped phase maps 
φh(x, y) and Φl(x, y) are Δφh(x, y) and Δφl(x, y) respectively, from Eq. (6) we have:

φ φ

π
Δ =

Δ − Δ
k x y

f f x y x y
( , )

( / ) ( , ) ( , )
2

,
(8)

h l l h

Let φ φ φ∆ = |∆ | |∆ |max x y x y( ( , ) , ( , ) )max h l , from Eq. (8) we can find the upper bound of Δk(x, y):

φ φ

π
φ

π
Δ =

Δ − Δ
= Δ

+
.k x y

f f x y x y f f
f

( , )
( / ) ( , ) ( , )

2 2 (9)
max

h l l h
max

h l

l

To avoid errors in determining the fringe orders, from Eqs. (7) and (9) we have:

φ
π

Δ = Δ
+

< . .k x y
f f

f
( , )

2
0 5

(10)
max max

h l

l

Subsequently, we can confirm the boundary of φΔ x y( , )max :

φ
π

≤ Δ <
+
.x y

f
f f

0 ( , )
(11)

max
l

h l

Notably, Eq. (11) defines the range of Δφmax where the absolute phase can be correctly recovered. Otherwise, 
error will occur in determining the exact kh(x, y). In MF-TPU, since the frequency of the low-frequency fringes 
is fixed to 1, it can be found from Eq. (11) that the higher the frequency of the high-frequency fringes, the nar-
rower the range of Δφmax, and the worse the reliability of the phase unwrapping. Consequently, for a normal FPP 
system, MF-TPU can only reliably unwrap the phase with about 16 periods due to the non-negligible noises and 
other error sources in actual measurement. Thus, it generally exploits multiple (>2) sets of phases with different 
frequencies to hierarchically unwrap the wrapped phase step by step, and finally arrives at the absolute phase 
with high frequency instead of only using the phase with a single period. Obviously, MF-TPU, which consumes 
additional time for projecting patterns with intermediate frequencies, is not a good choice to realize high-speed, 
high-precision 3D shape measurement based on FPP.
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Deep-learning based temporal phase unwrapping (DL-TPU). Aiming at this problem, we choose 
to use the deep neural networks (DNN) to overcome the limitations of MF-TPU, and the specific diagram of the 
proposed method is shown as in Fig. 1. The input data of the network are the two wrapped phases of the single 
period and high frequency, which is the same as the two-frequency TPU. To realize the highest unwrapping 
reliability, we adopt the residual network as the basic skeleton of our neural network35, which can speed up the 
convergence of deep networks and improve network performance by adding layers with considerable depth. 
Then, we introduce the multi-scale pooling layer to down-sampling the input tensors, which can compress and 
extract the main features of the tensors for reducing the computation complexity and preventing the over-fitting. 
Correspondingly, it is inconsistent for the tensors sizes in the different paths after the processing of the pooling 
layer. Therefore, upsampling blocks will be used to make the sizes of the tensors in the respective paths uniform 
(see Supplementary Section 1 for details)36. In summary, our network mainly consists of convolution layers, resid-
ual blocks, pooling layers, upsampling blocks, and concatenate layers. To maximize the efficiency of the model, 
after repeatedly adjusted the hyper-parameters of the network (number of layers and nodes), we found that in 
the whole network the number of residual blocks for each path should be set to 4, and the basical filter numbers 
of the convolution layers should be 50. The tensor data of each path in the network will be performed 1, 1/2, 1/4, 
and 1/8 downsampling operations by adopting pooling layers with different scales respectively, and then differ-
ent numbers of upsampling blocks will be adopted to make the sizes of the tensors in the corresponding paths 
uniform. Besides, it has been found that implementing shortcuts between residual blocks contributes to making 
the convergence of the network more stable. Furthermore, to avoid over-fitting as the common problem of the 
deep neural network, L2 regularization is adopted in each convolution layer of residual blocks and upsampling 
blocks instead of all convolution layers of the proposed network, which can enhance the generalization ability of 
the network.

Although the purpose of building the network is to achieve phase unwrapping and obtain the absolute phase, 
there is no need to directly set the absolute phase as the network’s label. Since Φh(x, y) is simply the linear com-
bination of kh(x, y) and φh(x, y) according to Eq. (4), Φh(x, y) can be obtained immediately if kh(x, y) is known. 
Once kh(x, y) is set as the output data of the network, the purpose of our network is to implement semantic seg-
mentation37, which is a pixel-wise classification. It is easy to understand that the complexity of the network will be 
greatly reduced so that the loss of the network will converge faster and more stable, and the prediction accuracy 
of the network is effectively improved. Different from the traditional SPU and TPU that the phase unwrapping 
is performed by utilizing the phase information solely in the spatial or temporal domain, it should be noted that 
our proposed method based on deep neural network is able to learn feature extraction and data screening, thus 
can exploit the phase information in the spatial and temporal domain simultaneously, providing more degrees 
of freedom and possibilities to achieve significantly better unwrapping performance (refer to Supplementary 
Section 3 for details).
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Figure 1. The diagram of the proposed method. The whole framework is composed of data process, deep 
neural network, and phase-to-height mapping. Data process is performed to extract phases and remove 
the background from fringe images according to Eq. (3) and Supplementary Eq. S1. Deep neural network, 
consisting of convolutional layers, pooling layers, residual blocks, upsampling blocks, and concatenate layer, 
is used to predict the period order map kh(x, y) from the input data (Φl(x, y) and φh(x, y)). Then, using Eq. (4), 
Φh(x, y) is obtained and converted into 3D results after phase-to-height mapping.
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Then, using Eq. (4), Φh(x, y) is obtained and converted into 3D results after phase-to-height mapping. In 
preparation for phase-to-height mapping, the projection matrices of the camera and projector need to be obtained 
through system calibration38,39. Besides, in order to speed up the reconstruction, we suggest phase-to-height map-
ping to be implemented with a graphics processing unit40 or several look-up tables41, which can greatly save the 
time cost of the 3D reconstruction.
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Figure 2. (a) Comparison of the average error rates of phase unwrapping with different high frequencies 
(such as 8, 16, 32, 48 and 64) on the testing dataset using MF-TPU and DL-TPU. (b) Comparison of the 3D 
reconstruction results after phase unwrapping with different high frequencies (such as 8, 16, 32, 48 and 64) for a 
representative sample on the testing dataset using MF-TPU and DL-TPU.
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Results
Quantitative comparison with MF-TPU. In the first experiment, to verify the actual performance of 
the proposed DL-TPU, the trained DNN models for phase unwrapping with different high-frequency fringes 
are utilized to make predictions on the testing dataset (200 image pairs) (refer to Supplementary Section 2 for 
details), and MF-TPU is also implemented for comparison. In order to quantitatively analyze the accuracy of 
phase unwrapping for DL-TPU and MF-TPU, the phases with different high frequences are independently 
unwrapped by the two algorithms, and the average error rates for phase unwrapping on the testing dataset are 
calculated and plotted against fh in Fig. 2(a). It should be noted that these results are calculated only by comparing 
the differences between the obtained phases and the label’s phases for each valid point from the testing dataset 
(refer to Supplementary Section 2 for identifying the valid points). The label’s phases can be correctly acquired as 
the ‘ground-truth’ phase by exploiting multiple sets of phases with different frequencies to hierarchically unwrap 
the wrapped phase step by step. It can be seen from Fig. 2(a) that with the increase of fh the reconstructed phases 
of MF-TPU are completely obviated, with a substantial increase of phase unwrapping error rate from 0 to 12.71%. 
The result shows again that MF-TPU cannot successfully unwraps a phase map when fh ≥ 16 due to the non-neg-
ligible noises and other error sources in actual measurement. However, our approach always provides acceptable 
results, with more than 95% of all valid pixels being properly unwrapped. These experimental results confirm 
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Figure 3. (a) The captured images (fh = 32) of a standard ceramic plate under different exposure times. (b) 
Comparison of intensity in line 230 of the captured images. (c,d) Comparison of the 3D reconstruction results 
after phase unwrapping under different exposure times using MF-TPU and DL-TPU.
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that compared with MF-TPU our method can achieve much better unwrapping results and decrease the phase 
unwrapping errors by almost an order of magnitude.

In order to reflect the specific performance of DL-TPU and MF-TPU more intuitively, the 3D reconstruction 
results after phase unwrapping for a representative sample on the testing dataset are illustrated and compared in 
Fig. 2(b), and the phase unwrapping error rates can be obviously seen in the background. It can be found from 
Fig. 2(b) that our approach provides the smallest phase unwrapping errors and the significant improvement of 
phase measurement quality with the period number fh as expected. It can be further observed that the fringe order 
errors are mostly concentrated on the dark regions and object edges where the fringe quality is low. Different from 
MF-TPU, phase unwrapping errors caused by the low signal-to-noise ratio (SNR) region of phases is significantly 
reduced by using DL-TPU. For these low SNR region, the remaining phase errors have the characteristics of accu-
mulation and can be easily further corrected by some compensation algorithm for fringe order errors42–44 (refer 
to Supplementary Section 4 for details of these compensation algorithms). Consequently, the trained models can 
substantially decrease error points to provide better phase unwrapping results (even fh = 64) and lower error rates, 
which demonstrates the capability and reliability of DL-TPU for phase unwrapping.

Performance analysis under different types of phase errors. Intensity noise. In the following series 
of experiments, we will further verify the superiority of DL-TPU in the presence of different types of phase errors. 
In high-speed 3D measurement, the quality of the fringe patterns is poorer than that of the static measurement 
because it is projected and captured with limited exposure time. To emulate the practical measurement condi-
tions, we measure a standard ceramic plate using DL-TPU (fh = 32) but artificially adjust the camera’s exposure 
time to 39 ms, 20 ms, 15 ms, and 10 ms. To better analyze and compare the reliability of the accuracy results for 
phase unwrapping, the absolute phase map obtained using the 12-step phase-shifting algorithm and combining 
with a highly redundant multi-frequency temporal phase unwrapping strategy (with different frequencies includ-
ing 1, 8, 16, and 32) can serve as the reference phase. Next, the error rate of phase unwrapping and the variance of 
the phase error σ φΔ h for different approaches are easily calculated by making a comparison between the 
unwrapped phase and the reference phase for each valid point.

Obviously, as the exposure time decreases, the quality of the phase measurement drops significantly presented 
in Fig. 3(a,b). Since the exposure time is a key factor affecting the speed and quality of phase measurement, the 
shorter the exposure time the algorithm can withstand, the faster the measurement can be achieved with six pro-
jection patterns in FFP. Therefore, a more robust phase unwrapping method is essential to eliminate the phase 
ambiguity introduced by reduced exposure times and make phase unwrapping correct. In Fig. 3(c,d), it can be 
found that DL-TPU can always provide higher success rate of phase unwrapping and lower phase error σ φΔ h com-
pared with MF-TPU, making it more appropriate for the high-speed 3D shape measurement applications.
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Figure 4. (a) The tested object with the low-modulation logo. (b) The captured fringe image (fh = 64). (c,d) 
Comparison of the 3D reconstruction results after phase unwrapping for the low-quality region using MF-TPU 
and DL-TPU.
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Low fringe modulation. Another attractive attribute of DL-TPU is its good tolerance to noise that can sig-
nificantly suppress phase unwrapping errors in low-fringe-modulation areas, which frequently appear in 
practical measurement for the surfaces of complex objects, like the tested object shown in Fig. 4(a,b). For the 
low-modulation logo region, conventional MF-TPU results provide spinous results teemed with significant 
delta-spike artifacts, as shown in Fig. 4(c). In contrast, the DNN approach successfully overcomes the low-SNR 
problem and produces smooth measurement results with negligible errors, as shown in Fig. 4(d). This experimen-
tal result confirms once again that DL-TPU can provide superior capability and stability of phase unwrapping for 
suppressing unwrapping errors caused by low fringe modulation.

Intensity nonlinearity. In this section, we test the proposed DL-TPU under different degrees of intensity gamma 
distortion. The gamma distortion, or so called intensity nonlinearity, is a common error source in FPP due to 
the nonlinear response of the commercial projector, introducing high-order harmonics to the projected fringe 
patterns. The intensity of the fringes with the gamma distortion can be expressed as

π π= . + . −γ γI x y fx n( , ) {0 5 0 5 cos(2 2 /3)} , (12)n
p p p p,

where γ represents the nonlinearity parameter of projector that means the nonlinear response of the commercial 
projector. Then, we choose an industrial workpiece of metal as the measured object to validate the resistance of 
DL-TPU to the gamma distortion. A set of fringe patterns with different nonlinearity intensities, ranging from 
0.5 to 1.5, are generated using Eq. (12) and projected onto the measured object in Fig. 5(a). It can be found from 
the 3D results shown in Fig. 5(b) that MF-TPU cannot provide acceptable phase unwrapping results even under 
low-level gamma distortions. On the contrary, DL-TPU is able to achieve a close to ideal phase unwrapping 
result even when γ is 0.8. It should be also noticed that, when γ is as low as 0.5 or as high as 1.5, both of the two 
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approaches can produce meaningful results since the phase errors artificially introduced is much larger than 
the “safe line” without triggering phase unwrapping errors, so that the success/error rate of unwrapping is about 
fifty-fifty. In Fig. 5(c–e), for phase unwrapping with different high frequencies (such as 32, 48 and 64) under dif-
ferent degrees of intensity gamma distortion, the statistics curves of phase unwrapping for MF-TPU are shown 
as the solid lines, and the results are significantly improved by using DL-TPU as shown by dashed lines. These 
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Figure 6. (a,b) The objects with fast translation movement and rapid rotatory motion. (c) Comparison of the 
3D results of phase unwrapping for the fast translation movement using MF-TPU, MF-TPU (3f), and DL-TPU. 
(d) The 3D result comparison in line 250 for the fast translation movement. (e) Comparison of the 3D results of 
phase unwrapping for the rapid rotatory motion using MF-TPU, MF-TPU (3f), and DL-TPU.
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results verify that our method can significantly reduce the fringe order errors of phase unwrapping and produce 
high-quality absolute phases even under a certain degree of gamma distortion in the FPP system.

Application to high-speed 3D surface imaging. Finally, our system, which can project and capture 
the fringe images at the speed of 25 Hz, is applied to imaging some classical dynamic scenes for fast 3D recon-
struction: objects with fast translation movement and rapid rotatory motion. In Fig. 6(a), a standard ceramic 
plate, fixed on precise displacement platform, is performed to periodic translational movement at the speed of 
1.25 cm/s. In traditional MF-TPU, it is more much difficult to recovery the high-frequency absolute phase using 
only one unit-frequency phase in Fig. 6(c) due to the unavoidable noises in actual measurement. Therefore, to 
guarantee a stable phase unwrapping success rate for the high-frequency phase, three sets of phase-shifting fringe 
patterns, so-called MF-TPU (3f) in which the frequency of the second set of fringe patterns is 8, are used to 
achieve high-accuracy but inefficient phase unwrapping. When measuring dynamic scenes, the relative motion 
between the object and the phase-shifting fringe patterns sequentially projected will cause motion artifacts and 
thus introduce additional phase errors into the initial phase map which is non-negligible and becomes more 
severe because of projecting more patterns as presented in Fig. 6(c). However, without the assistance of additional 
patterns, it illustrates the reliability and efficiency of DL-TPU from Fig. 6(c) that the trained models can still 
achieve better phase unwrapping results. We try to take one cross-section on the 3D results of the ceramic plate 
to compare DL-TPU with MF-TPU and MF-TPU (3f). From the comparison results shown in Fig. 6(d), it can be 
found that our approach provides the highest unwrapping reliability and best noise-robustness compared with 
other methods.

And then, for measuring the rapid rotatory motion, the statue of David rotates in a counter-clockwise direc-
tion at the rotation rate of 3 rpm as shown in Fig. 6(b). Undoubtedly, in Fig. 6(e), the experiment yielded a result 
similar to that of the fast translational motion. It can be found from these results that the 3D profile information 
with high quality of the ceramic plate and the David statue are accurately acquired during the entire movement 
of the tested objects, again demonstrating the unwrapping stability of the proposed method for implementing 
high-precision, fast absolute 3D shape measurement.

Discussion
In this work, we have demonstrated that a trained deep neural network can greatly improve the ability of TPU 
with high-frequency fringes acquired by a common FPP system. This high-performance TPU (so-called DL-TPU) 
can be achieved based on a deep neural network after appropriate training. Compared with MF-TPU, DL-TPU 
can effectively recover the absolute phase from two wrapped phases with different frequencies by exploiting both 
spatial and temporal phase information in an integrated way. It can substantially improve the reliability of phase 
unwrapping even when high-frequency fringe patterns are used. We have further experimentally demonstrated 
for the first time, to our knowledge, that the high-frequency phase obtained from 64-period 3-step phase-shifting 
fringe patterns can be directly and reliably unwrapped from one unit-frequency phase, facilitating high-accuracy 
high-speed 3D surface imaging with use of only 6 projected patterns without exploring any prior information 
and geometric constraint. After that, various experiments have been designed to access the phase unwrapping 
capability of the proposed approach under the conditions of intensity noise, low fringe modulation, and intensity 
nonlinearity. Experimental results have verified that TPU using deep learning provides significantly improved 
unwrapping reliability to realize the absolute 3D measurement for objects with complex surfaces. Besides, for 
the applications to high-speed FPP, it has also been observed that the deep learning-based approach is much less 
affected by motion artifacts in dynamic measurement and can successfully reconstruct the surface profile of the 
moving and rotating objects at high speed. These results highlight that machine learning is able to potentially 
overcome challenging issues in optical metrology, and provides new possibilities and flexibilities to design more 
powerful high-speed FPP systems. Although the TPU and FPP have been the main focus of this research, we 
envisage that the similar deep learning framework might also be applicable to other 3D surface imaging modali-
ties, including, e.g., stereo vision45, DIC46, spatial-temporal stereo47, spatial-temporal correlation48, among others.
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深度学习技术在条纹投影三维成像中的应用

冯世杰，左    超，尹    维，陈    钱*

(南京理工大学 电子工程与光电技术学院，江苏 南京 210094)

摘　要：条纹投影 (结构光) 三维成像是一种广泛使用的三维成像手段。近年来，集成式的三维传感

器发展迅速，特别是基于结构光原理的三维传感器件已逐渐成为高端智能手机必不可少的一个重要传

感单元。然而随着应用需求的不断增多，人们对条纹投影三维成像这项技术的效率、精度、稳定性等方

面的要求也越来越高。同时近年来，深度学习技术的飞速发展已经为光学成像技术的发展开启了一扇

新的大门，并且从这扇大门中人们注意到伴随着人工智能概念的引入，条纹投影技术的发展也正在经

历着新的突破。首先简要介绍了条纹投影三维成像的基本理论。随后举例分析通过运用深度学习技

术，起初基于物理模型的条纹投影技术也可成为一种在“数据”驱动下实现的技术，而且在这种情况下，

它展现出了超越传统算法的潜力。最后从神经网络模型、训练数据、训练方法等方面，讨论该领域面临

的挑战与未来的研究方向。

关键词：条纹投影；  三维成像；  深度学习；  相位恢复
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Application of deep learning technology to
fringe projection 3D imaging

Feng Shijie，Zuo Chao，Yin Wei，Chen Qian*

(School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

Abstract:   Fringe projection(structured light) 3D imaging is a widely used 3D imaging method. In recent years,
the  integrated three-dimensional sensor has developed rapidly,  especially the three-dimensional sensor based on
the  principle  of  structured  light  has  gradually  become  an  essential  sensor  unit  for  high-end  smart  phones.
However, with the increasing requirements from applications, people have higher and higher requirements on the
efficiency,  accuracy,  stability  and other  aspects  for  the  fringe projection technique.  At  the  same time,  the  rapid
development  of  deep  learning  technology  has  opened  a  new  door  for  the  development  of  optical  imaging
technology,  and from this  door  we notice  that  with  the  introduction of  the  concept  of  artificial  intelligence,  the
development  of  fringe  projection  technology  is  also  experiencing  a  new  breakthrough.  In  this  paper,  the  basic
theory  of fringe projection 3D imaging was introduced. Then, by using the deep learning technology, the fringe
projection technology based on the physical model can become a technology driven by "data", and in this case, it
showed the potential to surpass the traditional algorithm. Finally, the challenges and future research directions in
this field from the aspects of neural network model, training data, training methods and so on were discussed.
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0    引　言

人类所处的物理世界空间是三维的，对三维信息

的获取和处理技术体现了人类对客观世界的把握能

力，因而从某种程度上来说它是体现人类智慧的一个

重要标志。传统光探测器仅对被测场景的二维强度

敏感而无法感知其三维形貌与深度信息。人类虽可

通过自己的双眼来感知三维的世界，但无法对客观事

物的三维形貌进行准确量化的描述。三维成像与传

感技术作为感知真实三维世界的重要信息获取手段，

为重构物体真实几何形貌及后续的三维建模、检测、

识别等方面提供数据基础。近年来，随着计算机技

术、光学和光电技术的发展，以光信号为载体的光学

三维传感技术，融合光电子学、图像处理、计算机视

觉与现代信号处理等多学科为一体，已发展成为光学

计量和信息光学的最重要的研究领域和研究方向

之一。

三维信息获取与处理技术以各种不同的风貌与

特色渗透到我们身边的众多领域之中[1–4]。在工业设

计中，基于三维数字化模型的逆向设计方法可快速获

得现有成熟产品的准确和完整的计算机模型，大大缩

短产品或模具的研发周期。在虚拟现实领域，大量景

物的三维彩色模型化数据已被以用于国防、模拟训

练、科学试验、3D 动画的建构。在医学整形领域，三

维数字化技术已广泛用于面部软组织形态修复、外科

检测、假牙假肢的量身定做。文物保护领域中，三维

彩色数字化技术能以不损伤物体的手段，获得文物的

三维信息和表面色彩、纹理，便于长期保存与再现。

但在某些领域，如三维测量加工、机器人导航、快速

逆向成型、自动化生产线控制、产品质量监控等，仅

仅捕获待测物体的三维信息是不够的，三维数据获取

的速度与效率直接关系到制造系统的响应能力、产品

研制生产能力、以及产品质量保证能力。此外诸如在

压模件尺寸监测、冲压板几何形状和形变检测、机车

冲撞试验、压力波传播、不连续边界的应力集中、汽

车制导中障碍检测、流体力学、流程可视化、运动力

学、高速旋转等，这些高速瞬态过程的三维数据快速

记录与准确定量再现将有助于描绘和分析动态过程

中物体表面三维形态的变化，并为进一步提取与被测

物体相关的结构、形变、应力等物理参量提供数据

基础。

条纹投影三维成像因其非接触、高精度、全场测

量、点云重建效率高等优点，已成为目前三维传感技

术中的主流光学方法[5–7]。然而现有研究工作大多集

中在静态物体或缓变场景的形貌测量上，通过投影多

组光栅条纹并结合格雷码/时间相位展开方法以获取

绝对相位信息。这不可避免地延长了数据获取的时

间，使其难以对动态物体或者变化场景达到快速响

应。如何快速、准确、无歧义地获取目标，特别是运

动目标的三维形貌信息是当前条纹投影轮廓术领域

的一个亟待解决的问题。该问题直接制约着数字光

栅投影技术的适用对象与应用范围，也逐渐成为该领

域的研究热点之一[8–11]。

2016 年，以围棋界 AlphaGo 击败李世石开始 [12]，

以深度学习为代表的人工智能 (AI) 技术全面进入了

大众的视野，对于它的讨论变得更为火热起来；整个

业界普遍认为，它很可能带来下一次科技革命，并且

在未来可预见的 10 多年里，将深刻地改变人们的生

活。正如当时的预测，目前人工智能已经在计算机视

觉、图像语音处理等多个领域的技术上取得了全面的

突破 [13–19]。与此同时，深度学习技术也在光学成像、

计算成像、全息显微等领域逐步渗透 [20–27]，且展现出

巨大的潜力。对基于条纹投影的三维成像而言，深度

学习技术已成功应用于条纹图像的包裹相位求解、空

域/时域包裹相位展开、条纹去噪、超快三维测量等方

面。这些应用向大众展现了在人工智能的辅助下，条

纹投影技术在效率、精度等方面取得的新突破。

文中首先将回顾条纹投影三维成像的基本原

理。随后将列举深度学习技术在条纹投影三维成像

中的典型应用。最后，从神经网络的可解释性、神经

网络结构设计、神经网络训练数据获取等五个方面，

分析与总结利用深度学习技术实现条纹投影成像面

临的挑战和未来的走向。

1    基本原理

条纹投影三维成像技术通过将立体视觉中一个
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摄像机替换成光源发生器 (如投影仪) 而实现，原理如

图 1 所示。光源向被测物体投影按照一定规则和模

式编码的图像，形成主动式三维形态测量。编码图案

受到物体表面形状的调制而产生形变，而带有形变的

结构光被另外位置的相机拍摄到，通过相机投影光源

之间的位置关系和结构光形变的程度可以确定出物

体的三维形貌。条纹投影技术本质上区别于干涉测

量技术，但它采用的条纹形式和干涉测量中两束相干

光干涉产生的原理相类似。相比于立体视觉法，其最

大优点在于求解物体初相位时是点对点的运算，即在

原理上中心点的相位值不受相邻点光强值的影响，从

而避免了物面反光率不均匀或观察视角的偏差引起

的误差，测量精度可以达到几十或几个微米。
  

Object

Object
point

Phase line

Camera
pixel

Projector
pixel

Baseline

Projector Camera

B

C

图 1  条纹投影三维成像原理图

Fig.1  Diagram of fringe projection 3D imaging 

 

条纹投影技术大体上包含系统标定与三维成像

两个方面。系统标定的目的在于获取相机与投影仪

的内外参数，为相位与三维坐标转换提供参考系[28−29]。

而另一部分三维成像的目的在于通过分析采集的光

栅图像，求解相位信息，结合系统标定部分获得的参

数进行相位深度之间的转换，完成三维模型重建。文

中将简要回顾三维成像部分的基本原理。该部分可

细分为三个步骤：条纹分析、相位展开、相位与三维

坐标转换。

1.1   条纹分析

条纹投影技术通常采用正弦条纹图像作为照明

图案对被测表面进行编码，采集的条纹图案一般可表

示为：

I(x,y) = A(x,y)+B(x,y)cosϕ(x,y) (1)

(x,y) A B式中： 为像素坐标； 为背景光强； 为调制度；

ϕ为相位。傅立叶轮廓术[30, 8] 是一种常用的条纹分析

方法，通过利用带通滤波器提取光栅频谱的正负一级

谱，可获得：

I′(x,y) =
1
2

B(x,y)eiϕ(x,y) (2)

ϕ随后，利用反正切函数计算相位

ϕ(x,y) = arctan
Re
[
I′(x,y)

]
Im
[
I′(x,y)

] (3)

需要注意的是傅立叶轮廓术是一种基于空间滤

波的相位计算方法。尽管效率高，但通常假设被测表

面为平滑表面，并且需要投影光栅的空间频率足够高[30]。

2π/N

相移轮廓术[31] 是另一种经常使用的光栅条纹分

析法，以使用最为广泛的 N步相移法为例，相机拍摄

一系列具有 相对相移的光栅图像

In(x,y) = A(x,y)+B(x,y)cos[ϕ(x,y)+2πn/N] (4)

n n = 1,2, . . . ,N

N ⩾ 3

ϕ

式中： 为相移指数 ( )。当拍摄的图像大

于三幅时 (即 )，利用最小二乘法 [32]，可计算物体

相位 ：

ϕ(x,y) = arctan

N∑
n=1

In sin
(

2πn
N

)
N∑

n=1
In cos

(
2πn
N

) (5)

与傅立叶轮廓术相比，相移法的优势在于相位解

算精度高。更进一步，随着相移步数的增加，光栅图

像的噪声 [31]、系统的非线性 (如投影仪的 Gamma)[33]

以及光栅图像的饱和问题[34] 对相位计算造成的影响

都将减小。

1.2   相位展开

2π

无论是傅立叶轮廓术 (公式 (3))，还是相移轮廓

术 (公式 (5))，解调得到的相位均是包裹相位。它的空

间分布是截断的，存在 相位跳变。为了获得连续的

真实空间相位分布，需要对其进行相位展开

Φ(x,y) = ϕ(x,y)+2πk(x,y) (6)

Φ(x,y) k(x,y)式中： 为去包裹相位或展开相位； 为光栅

条纹的级次。

k(x,y)

相位展开算法目的在于确定光栅条纹的级次

。根据求取条纹级次的原理不同，常见的相位

展开方法可以被分为空域展开法[35] 与时域展开法两

类 [36]。空域相位展开是指利用相邻像素的相位值所

提供的约束来计算绝对相位值，但该方法依赖于被测
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2π

物体表面连续的假设。如果被测场景中包含多个孤

立物体，或者被测物存在处于不连续表面边界的相邻

像素的绝对相位值相差超过 ，则存在条纹级次歧

义，从而无法正确展开。与空间相位展开相比，时间

相位展开中每个像素的条纹级次都在时间轴上独立

计算，无需参考邻近像素，因此可以展开任意复杂形

状表面的包裹相位值。但就相位展开的效率而言，时

间相位展开通常还需要至少一幅额外的参考相位图。

1.3   相位与三维坐标转换

若将投影仪看做“反相机”来处理，根据双目视觉

原理[37]，对于相机存在如下投影关系：

αc(x,y,1)T = Kc [Rc, tc] (X,Y,Z,1)T (7)

对于投影仪存在如下投影关系

αp(xp,yp,1)T = K p [Rp, tp] (X,Y,Z,1)T (8)

Φ(x,y)将展开后的相位 作为线索，可构建相机坐

标与投影仪坐标之间的关系：

xp =
Φ(x,y)
2π f0

wp (9)

α K R t

f0 wp

(x,y) (X,Y,Z)T

式中： 为缩放因子； 为内参； 为旋转矩阵； 为平移

向量； 为光栅频率； 为投影仪分辨率。在预先矫

正系统的畸变后，通过联立公式 (7)~(9)，可获得的相

机像素 对应的三维坐标 。

至此，笔者简要回顾了条纹投影的基本原理。这

些基本原理构成了条纹投影技术的物理模型。传统

的条纹投影技术是在“物理 (模型)”驱动下的技术。

下面将介绍通过运用深度学习技术，条纹投影技术也

可成为一种在“数据”驱动下的技术，并且在这种情况

下，它展现出了超越传统算法的能力。

2    基于深度学习的条纹分析

2.1   基于深度学习的单幅光栅条纹分析

光栅条纹分析的目的在于解调光栅中蕴含的与

深度信息相关的相位信息。单幅光栅条纹分析，也就

是空域相位解调法，具有天然的高时域分辨率优势。

传统的单帧条纹分析法包括：傅立叶分析法[30]、加窗

傅立叶法 [38]、小波分析法 [39] 等。由于所有能运用的

解调手段只能局限于一张信息量有限的光栅图像之

中，传统的单帧条纹分析方法一般只适合处理表面高

度变化平缓的物体，对轮廓陡变、不连续以及物体细

节丰富的区域较为敏感。针对轮廓复杂的物体，难以

实现高精度、高分辨率的相位测量。此外这类算法在

实施过程中通常需要操作者手动地设定与调节算法

参数，因此它们难以完全实现全自动化操作。由于相

位解调的结果与算法参数设定有较大关系，对于初

学者而言，他们往往难以迅速获得理想的相位解调

结果。

为了克服这些问题，Feng 等人 [40] 提出了一个基

于深度学习框架的单帧光栅条纹分析法。该方法的

思想在于仅采用一张条纹图像作为输入，利用深度神

经网络来模拟时域相移法的相位解调过程。如图 2

所示，结合光栅图像的公式 (1)，通过构建两个卷积神

经网络 (CNN1 和 CNN2)，CNN1 负责从输入条纹图

像 (I) 中提取背景信息 (A)。随后 CNN2 利用提取的

背景图像 (A) 和原始输入图像 (I) 生成所需相位的正

弦部分 (M) 与余弦部分 (D)。最后，将该输出的正余

弦结果带入反正切函数计算得到最终的相位分布。

为了给深度神经网络树立一个“优秀”的学习对象，该

文作者以标准 12 步相移算法作为学习目标，通过对

各类不同的大量样本进行训练，两个卷积神经网络学

习各类型条纹图像中相位相关特征的提取。经过适

当的训练之后，它们就可以被用于对单幅条纹图像进

行全自动分析并且输出对应的高精度相位分布。

 
 

I(x, y) A(x, y)

Input

Input Input

Input

Output

Output

CNN 1

M(x, y)

D(x, y) D(x, y)

φ(x, y)
M(x, y)

Atan

CNN 2

图 2  利用深度神经网络解调单幅条纹图像中的相位信息流

程图[40]

Fig.2  Flowchart  of  phase  calculation  from  a  single  fringe  image  using

deep neural network[40]
 

 

实验结果表明，对于复杂表面，基于深度学习的

条纹分析技术能够达到传统傅立叶变换法和加窗傅
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立叶变换法难以实现的相位解调精度 (相位误差降

低 50% 以上)，且能够有效保持物体边界与轮廓的细

节，总体测量效果接近于 12 步相移法 (如图 3 所示)。

由此可见，该方法为实现“高精度、高效率、全自动”

的条纹投影或相位恢复提供了一条切实可行的方

案。仅采用单一条纹图像作为输入，深度神经网络即

可快速生成对应的高精度相位分布。整个过程全自

动、无需人工干预。

 
 

(a) (b)

(c) (d)

图 3  三维重建结果对比[40]。(a) 傅立叶变换法[30]，(b) 加窗傅立叶变换法[38]，(c) 基于深度学习的条纹分析法，(d)12 步相移法

Fig.3  Comparison of 3D reconstruction results[40]. (a) Fourier transform profilometry, (b) windowed Fourier transform profilometry, (c) fringe analysis

based on deep learning, and (d) 12-step phase-shifting profilometry 

 

2.2   基于标签增强与区域分块的深度学习条纹分析

同样为了实现针对单幅光栅图像的包裹相位恢

复，Shi 等人[41] 提出了一种基于标签增强与区域分块

的深度学习条纹分析技术。Shi 等人建议将原始大

小 (如 512×512 分辨率) 的图片，划分成更小且具有邻

域交叠 (如 40×40 分辨率) 的小图片作为神经网络的

输入数据进行相位恢复的训练。由于图片更小，神经

网络的训练对于设备的硬件要求可有所降低。相位

恢复方面，该方法同样利用深度学习模型进行相位计

算的中间变量 (光栅条纹的余弦信息) 提取。随后，该

方法对得到的中间变量进行 Hilbert 变换与反正切函

数计算，获取最终的包裹相位信息。作为一种监督式

的神经网络学习，为了使神经网络能更好地学习与模

仿正确的包裹相位解调，研究人员需要尽可能地制作

高精度的标签数据。为达到这一目的，Shi 等人提出

首先通过四步相移法得到所需的标签数据，然后采用

Shearlet 变换法对得到标签数据进行滤波，实现光栅

中噪声信号的抑制。图 4 展示了该方法的流程图。

为了证明该方法的有效性，Shi 等人对运动的手

掌进行了三维测量。他们选取了运动过程中的六个

不同时刻，然后利用神经网络重建相位信息。作为对

照，还采用了传统的傅立叶轮廓术 (FT) 进行相位提

取。相位重建结果如图 5 所示。实验表明相比于传

统的傅立叶变换轮廓术，该方法 (DNN) 可更为准确的

提取运动手掌的相位信息。

 
 

DNN prediction
for fringe part

extraction

Wrapped phase
retrievalDNN training

Pure phase Phase
unwrappingCarrier removal

图 4  基于标签增强与区域分块的深度学习条纹分析的相位反演流程图[41]

Fig.4  Flowchart of label enhanced and patch based deep learning fringe

analysis for phase retrieval[41]
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图 5  用 FT 法和 DNN 法对六个不同时刻的运动手掌进行了相位测量[41]

Fig.5  Phase measurement of hand movement at six different moments by FT and DNN methods[41]
 

 

2.3   基于深度学习的条纹图像去噪

对于基于条纹图像分析的相位恢复方法，如条纹

投影、干涉测量、全息术等，噪声的存在会降低图像

的条纹信号信噪比，进而影响相位恢复的准确性。

Yan 等人 [42] 提出了利用深度学习算法来降低条纹图

的噪声。图 6 显示了该方法的流程图。该方法的核

心在于构建一个层数为 20 的深度卷积神经网络。图 6(a)

为具有噪声的光栅图，它是整个神经网络的输入数

据。该输入随后经过一系列的串联卷积神经网络，最

后输出噪声得到抑制的光栅图 (图 6(b) 所示)。该网

络的训练方式为监督式训练，使用的训练标签为不含

任何噪声的仿真光栅图 (图 6(c) 所示)。

为验证该方法的有效性，Yan 等人利用训练好的

神经网络预测了六组不同的含噪声条纹图。结果如

图 7 所示。图 7(a) 显示了含有噪声的原始条纹图，图 7(b)

显示了不含噪声的标准条纹图，图 7(c) 为利用深度学

习法计算得到的去噪后条纹图。与标准结果相比，不

难发现深度学习算法成功地学习了如何去除噪声。

此外，基于深度学习向前计算的优势，整个去噪算法

的执行速度相比传统方法更快。作为训练数据的生

成，该方法采用了计算机仿真的方式进行生成。尽管

效率高，但是可节省操作人员的大量时间。但是实际

的光栅图与仿真的光栅图存在差异，此差异将对算法

的性能提出更高的要求。 
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图 6  基于深度学习的条纹图像去噪方法原理图[42]

Fig.6  Diagram of fringe image denoising using  deep learning[42]
 

 
 
 

Gaussian noise (μ=0, σ=10)Gaussian noise (μ=0, σ=8)
(a1)

(b1)

(c1)

(a2)

(b2)

(c2)

图 7  神经网络的测试结果[42]。(a1)、(a2) 带有噪声的仿真条纹图；(b1)、

(b2) 不含噪声的条纹图；(c1)、(c2) 用深度学习去噪后的结果

Fig.7  Test  results[42].  (a1),  (a2)  Simulation  fringe  pattern  with  noise;

(b1), (b2) fringe pattern without noise; (c1), (c2) denoised results

with deep learning
 

3    基于深度学习的相位展开

如 1.2 节所述的基本原理，相位展开法大体上分

为空域相位展开和时域相位展开两类。按照这一方

法分类，基于深度学习的相位展开方法也可同样划分

为空域法和时域法。

3.1   基于深度学习的空域相位展开

3.1.1    相位神经网络 PhaseNet

Spoorthi G.E.等人[43] 提出了一个基于相位神经网

络 (PhaseNet) 用于实现二维的空域相位展开。该方

法的原理如图 8 所示。该网络的输入为包裹相位，通

过构建的神经网络 DCNN，使其输出条纹级次 (即包

裹计数)。该网络由一个编码器、一个对应的解码器

和一个像素级分类层组成。研究人员发现由于深度

神经网络预测的条纹级次在包裹相位跳变周围区域

和存在相位陡变的区域容易发生错误，他们继续提出

了一个基于聚类的条纹级次后处理方法。该方法通

过合并互补的方式来增强相位空间分布的平滑度。

最后，原始的包裹相位结合优化后的条纹级次，可计

算最终的展开相位。

为了验证该方法，研究人员首先利用展开后相位

与条纹级次之间的关系，仿真生成了大量的训练数

据。然后利用这些数据训练构建神经网络。神经网

络训练结束后，研究人员又采用一组额外的仿真数据

来测试该网络的表现。图 9(a) 显示了神经网络输入

的包裹相位，图 9(b) 和图 9(c) 分别为利用神经网络

计算和条纹级次优化后得到展开相位和条纹级次。

此外，Spoorthi G.E.等人还发现该方法对于包裹相位

中的噪声具有很好地抑制作用。相比于 MATLAB 自

带的相位展开函数以及基于质量导向的相位展开法，

该方法的展开相位误差更小。最后，得益于深度学习
 

Post-
processing

2n

DCNN

图 8  基于 PhaseNet 的相位展开原理图[43]

Fig.8  Schematic of phase unwrapping using PhaseNet[43]
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方法的一个先天优势，即训练结束后，神经网络的

执行是无迭代、无搜索的向前传播计算，该方法的计

算速度也比传统的基于质量导向方法更快。但是值

得注意的是，在训练和测试过程中，该方法使用的数

据同样来自仿真。由于实际的包裹相位情况通常比

仿真的相位更加复杂，采用该方法在处理实际的或者

更为复杂的包裹相位时还需要更为深入地调试与优化。
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图 9  利用 PhaseNet 展开不同形状包裹相位得到的结果[43]。(a) 包裹

相位；(b) 展开相位；(c)PhaseNet 输出的条纹级次

Fig.9  Results  of  different  wrapped  shapes  using PhaseNet[43].  (a)

Wrapped  phase;  (b)  unwrapped  phase;  (c)  fringe  order  with

PhaseNet 

 

3.1.2    一步相位去包裹法

为了解决相位展开过程中的噪声问题与采样不

足引起的混叠问题，Wang 等人[44] 也利用深度学习技

术构建了相位展开神经网络。与 PhaseNet 不同，该方

法采用的是具有 U-Net 结构的神经网络，该结构适用

于训练数据样本较小的神经网络。图 10 展示了该方

法的训练和测试过程。与 PhaseNet 相比，PhaseNet 是

利用神经网络预测条纹级次，再结合包裹相位计算展

开后的相位。而该方法省去了计算条纹级次的这个

中间步骤，直接预测包裹相位对应的去包裹相位。

实验中研究人员对动态的蜡烛火焰进行了相位

恢复，结果如图 11 所示。在实验过程中，火焰受到风
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ψ(x, y)=angle(exp(jφ(x, y)))
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Wrapped
phase

Optimize
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Wrapped
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图 10  神经网络的训练与测试[44]。(a) 训练；(b) 测试

Fig.10  Schematics  of  the  training  and  testing  of  the  neural  network[44].

(a) training; (b) testing 
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图 11  动态蜡烛火焰的包裹相位展开结果对比[44]。Wrap 表示包裹相位；CNN 表示该方法获得的展开相位；LS 表示最小二乘法获得的展开相

位；Diff 为 CNN 法与 LS 法计算结果之间的差异

Fig.11  Comparison  of  results  of  phase  unwrapping  of  dynamic  candle  flame[44].  Wrap  represents  the  wrapped  phase;  CNN  represents  the  phase

unwrapped by this method; LS represents the phase unwrapped by the least square method; Diff represents the difference between the results of

CNN and LS methods 
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扇的干扰，产生不同的相位分布。该图显示了动态蜡

烛火焰的包裹相位、该方法 (CNN) 和 LS 方法在不同

帧中重建的展开相位以及它们在 20 s 内在不同帧中

的相位展开差异。实验表明该方法可成功地重建神

经网络在训练阶段中未见过对象的包裹相位。

3.2   基于深度学习的时域相位展开

时域相位展开较空域相位展开相比具有恢复不

连续或孤立物体表面包裹相位的优势。为了实现这

一优势，通常需要采集不同频率光栅对应的多幅包裹

相位。时域相位展开有三种代表性的方法[36]：多频相

位展开方法、多波长 (外差) 相位展开方法和数论相

位展开方法。研究人员发现多频相位展开方法具有

最高的展开可靠性和最佳的鲁棒性[36]。

通常为了提高测量的效率，笔者需要使用尽量少

的光栅图案。所以一种常见的做法是获取具有两个

不同频率光栅的包裹相位。将它们简单地称为低频

相位和高频相位。对于多频相位展开方法，通常低频

光栅的频率为 1，即投影光栅只包含一个正弦分布。

由于三维重建模型最终来自于高频光栅，为了获得高

精度的三维数据，需要尽可能地提升高频光栅的空间

频率。但由于噪声等因素的影响，低频光栅相位的展

开 (辅助) 能力有限，它难以正确展开频率大幅提升后

的高频光栅包裹相位。

在不改变低频光栅的前提下，为了尽可能地提高

可展开的高频光栅空间频率，Yin 等人[45] 提出了基于

深度学习的时域相位展开方法。如图 12 所示，首先

利用三步相移法得到两个不同频率光栅对应的包裹

相位。然后，将它们作为输入，送入构建的一个四路

径的卷积神经网络。该网络经过训练后，可输出高频

光栅包裹相位对应的条纹级次。最后结合高频包裹

相位，进行相位展开，进而获得被测物体的三维

数据。
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图 12  基于深度学习的时域相位展开方法的示意图[45]

Fig.12  Schematic of temporal phase unwrapping using deep learning[45]
 

 

Yin 等人比较了传统多频相位展开法 (MF-TPU)

与基于深度学习的时域相位展开法。图 13 显示了一

组被测物体的相位展开后的 3D 重建结果，背景颜色

的深浅显示了相位展开误差率的大小。当投影的高

频光栅频率为 16 时，传统多频相位展开法开始表现

出较为明显的去包裹错误。当频率持续增加时，相位

展开错误率也随之明显增加。但对于基于深度学习

的时域相位展开法，相位展开的错误率并未随光栅频

率增加而显著增加。根据该实验结果，即使当高频光

栅频率达到 64，该方法的相位展开的正确率仍高于传

统方法在频率为 16 时的正确率。由此可见，采用深

度学习技术辅助后，时域多频相位展开的正确率可得

到大幅提升。
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Error rate
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fh=32

fh=48

fh=64

图 13  针对不同的高频光栅包裹相位 (例如频率分别为 8、16、32、

48 和 64)，比较多频相位展开方法 (图中 MF-TPU) 和基于深度

学习的时域相位展开方法 (图中 Our method) 的相位展开结果[45]

Fig.13  Comparison between traditional  MF-TPU and the deep learning

based  method  for  high-frequency  phase  unwrapping  (for

example, the frequencies are 8, 16, 32, 48 and 64 respectively) [45]
 

 

4    基于深度学习的深度计算与系统误差标定

4.1   基于深度学习的深度计算

在光学三维成像中，基于单幅图像的测量方法在

测量速度和对运动伪影的鲁棒性等方面均优于基于

多幅图像的结构光测量技术。Sam Vam Der Jeught 等

人[46] 提出了一种完全基于深度学习的单帧光栅解调

方法，该方法可直接从一幅变形的光栅中解调处被测

表面的高度 (或深度) 信息。该方法首先通过计算机

仿真的方式，随机生成对应不同高度分布的扭曲光栅

条纹。然后将这些的仿真数据输入构建的卷积神经

网络，其结构如图 14 所示。输入的光栅图顺次经过

10 个卷积神经网络，最后输出对应的高度分布图。

为了训练该神经网络，Sam Vam Der Jeught 等人

随机生成了 12 500 幅高度分布图和与它们对应的扭

曲光栅图。其中的 10 000 组数据用来训练网络，剩余

的 2  500 组数据用来验证。在 Titan X 的 GPU 平台

上，整个训练耗时接近 12 h。图 15 给出了一组实验

结果。该实验一共测试了三个对象：球面、三角斜面

和人脸头像。从第四列的误差分析来看，对于球面和

三角斜面这类变化较为简单的对象，均方根误差

(RMSE) 误差较小，而对于轮廓较为复杂的人脸模型，

RMSE 误差较大且超过了 1%。

对于基于条纹投影的三维成像而言，该方法提出

的是一个端对端的深度学习训练模型。对于“端对端”

的训练策略，其优势在于将中间结果的计算过程 (如

包裹相位计算和相位展开) 与最后的深度计算融合在

了一起，使得轮廓计算一步到位。尽管高效，但由于部

分中间结果，比如包裹相位，其存在固有的空间不连

续性，使得神经网络往往难以直接对齐进行准确的拟

合。尽管这一过程隐藏在了这个“端对端”的大框架下，

但是从最后恢复的高度图来看，该方法的测量精度仍

有很大的提升空间。此外，由于该方法同样是基于仿

真数据进行的神经网络训练和验证，当其处理真实拍

摄的光栅图像时，处理过程也许需要更为深入的优化。
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图 14  从单幅条纹图解调高度信息的神经网络结构图[46]

Fig.14  Neural network structure diagram of height estimation from a single fringe image[46]
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图 15  针对球面、三角斜面和人脸头像光栅图的实验结果图[46]。第一列为输入神经网络的条纹图；第二列为真实的高度分布；第三列为神经网络

输出的高度分布；最后一列为根据第二列与第三列得出的误差分布图

Fig.15  Experimental results of spherical, triangular bevel and face image grating[46]. The first column is the fringe image of the input neural network; the

second column is the true simulated height distribution; the third column is the height distribution of the output of the neural network; the last

column is the error distribution map based on the second column and the third column 

 

4.2   基于深度学习的系统误差标定

系统标定作为条纹投影中重要的一环一直都是

本领域的研究重点。条纹投影系统将双目视觉系统

的一个相机替换成投影仪，构建了一种主动式的“双

目”视觉三维成像系统。为了重构三维坐标，将投影

仪当做“反相机”来处理，然后运用现有双目成像的原

理。然而，投影仪的镜头与相机的镜头在设计与功能

上存在一定差异。因此严格地说起来，有时投影仪的

标定并非能够简单地套用相机标定的模型。这种套

用带来的其中一个问题是投影仪镜头畸变矫正问题，

即相机的畸变模型难以准确标定投影仪的畸变，致使

重建的三维轮廓出现失真。

为了解决这一问题，LV 等人[47] 提出了一种基于

深度学习的投影仪镜头畸变影响矫正方法。如图 16

所示，该方法首先采用传统标定方法，对投影仪和相

机的畸变进行矫正，随后利用深度学习矫正剩余的投

影仪畸变对三维轮廓造成的影响。
 

Calibrate
structured-light
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Correct the
camera lens
distortion

Construct the
neural network

The correction
of the projector

distortion

The training
of the network Make data set 

图 16  基于深度学习的投影仪畸变矫正流程图[47]

Fig.16  Flowchart  for  projector  distortion  correction  with  deep

learning[47]
 

 

[
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]T
∆z

LV 等人提出了一个全连接神经网络，其输入为

存在畸变残差的三维空间坐标 ，输出为该空间

位置处的深度方向误差 。通过该方法来补偿剩余

畸变对三维重构造成的影响。研究人员利用训练好

的模型对平板测量进行的验证，结果如图 17 所示。

可以看出，经过矫正后，峰谷误差 (PV) 得到了较大幅

度的下降。但是需要指出的是，该方法获取训练的标

签数据依赖于对存在残余误差的平面三维数据进行

平面拟合，来获得理想的平面三维数据。如果需要更

加准确地确定畸变造成的深度误差，也许需要一种精
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度更高的方式来确定不同姿态下平板表面的真实三

维数据。
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图 17  测试数据结果[47]。(a) 原始数据的三维形状；(b) 原始数据的误

差分布；(c) 校正后的数据三维形状；(d) 校正后数据的误差分布

Fig.17  Test  results[47].  (a)  3D  shape  of  the  original  data;  (b)  error

distribution  of  the  original  data;  (c)  3D  shape  of  the  corrected

data; (d) error distribution of the corrected data 

5    基于深度学习的超快三维成像

高速摄影技术作为图像获取技术的一个重要分

支，能够对各种瞬态过程进行记录，广泛应用于军工、

航空航天等领域 [48]。尽管高速 CMOS 器件目前已能

实现每秒万帧，甚至百万帧的拍摄，但仅能够获取二

维平面图像数据。针对瞬态场景，如何从二维平面图

像中获取三维深度图像，依旧是一个极具挑战性的世

界性难题。为此 Feng 等人[49] 提出了微频移深度学习

轮廓术，研制了基于数字光栅投影的瞬态三维轮廓测

量系统，测量速度可达每秒 20,000 帧三维数据。

为了满足超快测量中相位信息的高效提取，高速

三维成像中使用数量更少的光栅条纹对运动物体进

行编码，可以减小物体运动对三维重建造成的干扰。

同时为了确保三维重建的精度，该方法最终使用了三

种不同的高频率光栅。该方法的原理如图 18 所示，

首先利用深度学习算法计算这三幅光栅图中的相位

信息，其中一幅用于重构三维轮廓，另外两幅用来辅

助相位的绝对展开。最后根据标定的系统参数，重构

光栅图像中蕴含的三维轮廓数据。
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图 18  微频移深度学习轮廓术原理图[49]

Fig.18  Diagram of micro deep learning profilometry[49]
 

 

为了测试该方法的有效性，Feng 等人设置了一个

瞬态场景。该场景由一个静态的石膏像和一个下落

的乒乓球组成。相机拍摄速度为 20 000 帧/s，记录了

乒乓球落地与反弹的全过程。这两个物体均未在神

经网络的训练过程中出现。图 19 的第一行显示了在

不同时刻下拍摄的光栅图像。图 19 的第二行显示了

该时刻对应的重构三维模型。可以看出整个乒乓球

的下落过程不到 0.1 s，根据三维重建的结果可知，针

对不同的时刻，该方法成功地恢复了具有不同运动状

态的物体轮廓。相比于传统超快三维成像方法，该方

法表明得益于深度学习算法的强大运算能力，可在光

栅图像数量减少的前提下，依然精确恢复物体的轮廓

信息。因此基于人工智能的辅助，基于条纹投影的超

快三维成像可朝着更高的时间与空间分辨率方向

发展。
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Time: 0.009 75 s Time: 0.049 40 s Time: 0.091 80 s Time: 0.118 90 s Time: 0.235 20 s

图 19  针对下落的乒乓球和静态石膏像进行的高速三维成像，速度为 20 000 帧/s[49]

Fig.19  High speed 3D imaging of a falling table tennis and static plaster at speed of 20 000 frame/s[49]
 

 

6    挑战与未来的方向

6.1   深度学习到底学到了什么？

如第一章基本原理所介绍，条纹投影技术的三维

成像部分主要包括条纹分析、相位展开、相位深度映

射这几个方面。通过第二章至第五章的介绍，笔者发

现当前研究人员正尝试着用深度学习技术替代传统

方法以实现上述几个方面中的某一项内容，或者全部

内容 (端对端的策略)。然而对于大多数研究人员而

言，深度学习方法预测最终结果的过程仍是一个“黑

箱子”——只能通过最终的测试结果来判断神经网络

的优劣。由于难以把握神经网络的推演机理，使得优

化和提升神经网络性能的目标沦为了大量的试错。

尤其是对于大规模的神经网络，巨量的参数使得完成

一次训练通常需要数个昼夜甚至更久。多次且无明

确方向的试错易造成时间的大量浪费。

近年来越来越多的研究人员意识这个问题的重

要性，为了解神经网络的学习过程，Zeiler 等 [50] 提出

了一种针对卷积神经网络的可视化方法。该方法通

过对神经网络学习的特征进行可视化，为优化网络结

构、提升预测的准确性提供了思路。

6.2   深度神经网络的架构设计与优化

针对具体的条纹投影应用 (如计算包裹相位、相

位展开、高动态范围成像等)，到底什么样的神经网络

合适？尽管从前人相似工作中能找到网络结构设计

的灵感，但是在神经网络后期的调试与优化过程中，

如何调整超参数 (如神经网络的类型，卷积神经网络

中滤波器的尺寸，抽取特征的数量等) 使得能够在自

己的应用上表现出色仍是一个难以回答的问题。通

过试错法进行超参的调整尽管有一定效果，但时间成

本过高。此外，当神经网络的规模足够大时，想要快

速地输出结果对计算平台的硬件也是一种考验。对

于固定的服务器而言，这种影响相对较小。但是对于

移动终端或者穿戴设备，如手机、平板、智能手表等，

通常难以将规模过大的神经网络部署到这些设备上，

而这时需要考虑对网络结构进行压缩。

令人欣喜的是，近年来自动化机器学习 (AutoML)

成为深度学习技术领域的一个研究热点。自动机器

学习的目标就是使计算机自动地做出上述的决策。

自动机器学习采用：超参数优化 [51](Hyper-parameter

Optimization)、元学习 [52](Meta Learning)、神经网络架

构搜索[53](Neural Architecture Search) 等方式自动搜索

理想网络结构与超参数。使用者只需提供训练数据，

自动机器学习系统就能自动地决定最佳的训练方

案。让不同领域的研究人员不必苦恼于学习各种机

器学习的算法。

6.3   训练数据的获取与标注成本高

神经网络并非一个新概念，它实际上已具有几十

年的历史。但是由于它是一种数据驱动的计算方法，

几十年前的数据规模并未像今天一样地井喷式增

长。因此当前迅速发展的互联网时代积累下的数据

与算力释放了深度学习神经网络的潜力。

但就当前而言，对于条纹投影技术领域，训练数

据的大规模获取与正确标注仍需要耗费大量的人力

和物力成本。加之公开的数据集稀少，这都增加了深

度学习技术的实施难度。尽管采用仿真的方式获取

数据集可在一定程度上降低训练数据采集过程中的
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成本。但是仿真数据受制于有限的预设参数，它并不

能完全等于真实数据。而深度学习的强大能力就在

于学习与发掘输入数据与输出数据之间的潜在联

系。因此，如何快速获得准确可靠的训练数据是提高

深度学习技术在条纹投影技术领域应用效率的一个

重要问题。值得注意的是迁移学习将是解决这一问

题的一个潜在方案。迁移学习[54] 的初衷是节省人工

标注样本的时间，让模型可以通过已有的标记数据向

未标记数据迁移，从而训练出适用于未标记数据的运

算模型。

6.4   深度神经网络泛化能力的思考

泛化能力评价的是一个神经网络在完成训练后，

在处理“从未遇见过”的输入数据时的表现。对于传

统的条纹投影方法而已，得益于构建的数学模型普适

通用，对于满足朗伯体假设条件的所有测量对象，均

可获得较为理想的三维成像。但是如前所述，深度学

习技术是以数据为导向的算法，它依赖于大量的训练

数据为其良好的表现提供基础。因此当训练数据的

类型较少时，深度神经网络往往难以抽取以及学习有

效的图像特征映射。为了提升神经网络在处理全新

场景的能力，大规模的训练数据通常是必不可少的。

但是，笔者认为关于神经网络的泛化能力应该能

够一分为二的看待。这就像是“通才”与“专才”。“通

才”掌握知识全面，但深度有所不足，且往往需要大量

的时间累积以获得丰富的知识储备。而“专才”尽管

只专注于部分领域，但能够做到精益求精。其实“通

才”与“专才”都是社会发展或不可或缺的。

因此，对于条纹投影的应用而言，如果拟研制系

统设计的潜在对象类型本身就较为单一，通过单方面

地增加相同类型的训练数据就应该能对其性能提高

发挥积极的效用。同时还能节省设备的开发周期，有

利于专用系统的快速研发。笔者认为一切从实际出

发，具体问题具体分析，才能最大限度地发挥深度学

习技术的特长。

6.5   “数据驱动”与“物理驱动”双引擎并存

深度学习的强大能力源于大量的训练数据支撑

与驱动。因此本质上来说，这样的人工智能只能机械

式的学习而缺乏推理能力。图灵奖得主、贝叶斯网络

之父 Judea Pearl 曾指出当前的深度学习“不过只是曲

线拟合”。以条纹投影中的条纹分析为例，根据第二

节中所述方法，目前基本的策略是两步走：先利用深

度学习技术学习求解某项中间变量 (比如条纹的实部

信息与虚部信息)，然后再将中间变量代入反正切函

数计算最终的包裹相位。由于缺乏推理能力，神经网

络不知道包裹相位具有不连续空间跳变性质的先验

知识，难以训练神经网络直接计算包裹相位。

基于物理模型的算法仍是当今世界科技的核

心。尽管在许多任务中，数据驱动模型算法表现已优

于物理驱动模型算法，但“数据驱动”的可解释性仍是

个挑战。对于条纹投影的应用，我们认为需要向当前

以“数据驱动”的神经网络引入“物理模型”。只有把

数据和物理结合起来，综合运用数据与物理两个世界

的优势，才能更全面地揭示出问题的本质。

7    结　论

文中回顾并讨论了近年来基于深度学习的条纹

投影三维成像技术的研究现状。尽管这一研究方向

才刚起步，但对于已经经历了几十年发展历程的条纹

投影技术而言，这无疑是一个具有强大潜力的新增长

点。总的来说，在深度学习技术的辅助下，将条纹投

影技术放在以“数据驱动”的神经网络模型中重新考

虑后，笔者发现的优势包括：

(1) 相位测量效率的提升   当前面向运动物体的

快速三维成像是条纹投影技术的一个热点研究方

向。尽管通过补偿的方式可有效去除由物体运动引

起的运动误差，但当物体运动过快时，这类补偿算法

仍难以发挥期待的效果。而深度学习技术仅采用单

幅光栅图像即可准确恢复物体的相位信息，从而减少

了三维图像重建所需的条纹图像数量，提高了成像的

效率。结合多视角几何理论，该方法有望成为快速三

维成像的一种理想手段。

(2) 相位测量精度的提高   作为条纹投影技术而

言，三维成像质量的优劣直接取决于相位质量的好

坏。对于用于求解相位信息的神经网络，当其经过适

当的训练，其计算得到的包裹相位比传统的单幅条纹

分析方法获得的相位信息更加准确，有效降低相位误

差，相位解调精度已接近相移法。

(3) 成像稳定性的提升   将深度学习应用于相位

展开，无论是空域展开还是时域展开，经过深度神经

网络的处理，原始包裹相位中的噪声均得到了较好的
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抑制。这使得即使在信噪比不理想的情况下，依然能

获得准确的去包裹相位。此外，将深度学习技术直接

应用于条纹图像的去噪，也能较好地去除图像中的

噪声。

尽管在深度学习的辅助下，条纹投影三维成像取

得新的研究进展。但是人们依然需要意识到，深度学

习技术目前还无法做到真正的人工智能，这其中还有

很长的路要走。为了能够更好地将深度学习技术应

用于条纹投影三维成像技术的研究之中，首先需要明

白“深度学习到底学到了什么？”。由于难以把握神

经网络的推演机理，为了提升神经网络的性能，大部

分人能做的只有试错。因此急需理解神经网络到底

是如何思考我们为其布置的任务，进而找到优化神经

网络的有效线索，避免无明确方向的试错造成的时间

浪费。

在不久的将来，借助于自动机器学习，人们完全

可以期待深度神经网络根据自己部署的需求，通过自

身的迭代优化，自动地给出最佳的网络架构设计与优

化。自动的机器学习将进一步降低深度技术应用的

门槛，为条纹投影技术研究与应用的深度定制提供高

效可靠的方案。

对于基于深度学习的条纹投影技术研究而言，目

前的训练数据基本都需要实地采集与标注，这需要耗

费大量的人力和物力成本。在仿真数据尚不能完全

代替实拍数据的前提下，基于少量样本的迁移学习将

是提高研究效率的一个有效手段。同时，为了保障训

练的神经网络能够处理各种不同类型的物体，需要在

训练过程中尽可能多的让神经网络接触不同的物体，

以提升其泛化能力。但是对于某些专用设备的研制，

我们也许能够反向运用这种泛化能力，利用少量的同

类样本训练研究针对特定样本的专用算法。最后，为

进一步提升神经网络的性能，可在神经网络模型的构

建或者迭代过程中加入“物理驱动”的引擎，这样有利

于神经网络更为全面地认识问题的本质。

综上所述，条纹投影三维成像技术是一个极具发

展前景的三维图像获取技术。在人工智能的辅助下，

基于深度学习的条纹投影三维成像在相位测量效率、

相位测量精度与三维成像稳定性等方面得到显著提

升。这将推动条纹投影技术的进一步快速发展，以及

带动该技术在更多领域的深入应用。
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composite fringe projection profilometry for
single-shot absolute 3D shape measurement
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Single-shot high-speed 3D imaging is important for reconstructions of dynamic objects. For fringe projection profilometry
(FPP), however, it is still challenging to recover accurate 3D shapes of isolated objects by a single fringe image. In this
paper, we demonstrate that the deep neural networks can be trained to directly recover the absolute phase from a unique
fringe image that involves spatially multiplexed fringe patterns of different frequencies. The extracted phase is free from
spectrum-aliasing problem which is hard to avoid for traditional spatial-multiplexing methods. Experiments on both static
and dynamic scenes show that the proposed approach is robust to object motion and can obtain high-quality 3D recon-
structions of isolated objects within a single fringe image.
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Introduction
The development of information technology has acceler-
ated  human  life  into  the  digital  three-dimensional  (3D)
world. Among many 3D optical measurement technolo-
gies,  fringe  projection  profilometry  (FPP)  stands  out  as
one  of  the  most  promising  3D imaging  methods  due  to
its non-contact,  high  spatial  resolution,  high  measure-
ment accuracy, and good system flexibility1−5. Nowadays,
FPP has  been  widely  applied  in  intelligent  manufactur-
ing, cultural  relic  scanning,  human-computer  interac-
tion and some other fields6−9. In some important applica-
tions, such as rapid reverse engineering and online qual-
ity control10,11, it is essential to obtain high-quality 3D in-

formation in continuously changing dynamic scenes12−14.
For FPP, the projector projects a series of fringe patterns
onto  the  target  object,  and  then  the  camera  captures
these  images  modulated  and  deformed  by  the  object.
With the  captured  fringe  patterns,  the  phase  informa-
tion of the measured object can be extracted through the
fringe analysis algorithms. The most popular fringe ana-
lysis approaches  are  the  Fourier  transform  (FT)  meth-
ods15−19 and the phase-shifting (PS) methods20,21.  The FT
approaches  can  utilize  only  a  single  high-frequency
fringe pattern, where the phase information is recovered
by applying a properly designed band-pass filter, such as
the  Hanning window,  to  extract  phase-related spectrum 
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information in  the  frequency  domain.  However,  spec-
trum aliasing  may  cause  low  phase  quality  around  dis-
continuities and isolated regions  of  the  phase  map.  Un-
like the FT methods, the PS technologies usually require
three  or  more  PS  fringe  patterns  in  the  time  domain  to
retrieve the phase map. Such methods are quite robust to
ambient  illumination  and  varying  surface  reflectivity,
and can achieve pixel-wise phase measurement with high
resolution and accuracy. For both FT and PS algorithms,
the  retrieved  phase  distribution  is  mathematically
wrapped to  principle  values  of  arctangent  function  ran-
ging between  and . Consequently, the phase value is
wrapped whenever there is a  jump. To solve the phase
ambiguity problem  and  establish  a  unique  pixel  corres-
pondence between  the  camera  and  the  projector  to  en-
sure correct 3D reconstruction, phase unwrapping must
be  carried  out.  One  of  the  most  commonly  used  phase
unwrapping methods  are  the  temporal  phase  unwrap-
ping  (TPU)  algorithms22,  which  can  obtain  the  absolute
phase with  the  assistance  of  multi-frequency  fringe  im-
ages.  However,  such  sacrifice  of  time  resolution  using  a
large number of images seriously decreases the 3D meas-
urement efficiency of  FPP.  Therefore,  in order  to meas-
ure dynamic scenes, researchers usually reduce the fringe
patterns required  for  phase  unwrapping,  thus  to  im-
prove the efficiency of per 3D reconstruction23,24. Ideally,
the absolute depth is expected to be obtained by a single-
shot fringe pattern.

The strategy of spatial frequency multiplexing is an ef-
fective  single-frame  3D  measurement  technology25−32.
The  earliest  idea  of  spatial  frequency  multiplexing  was
proposed by Takeda et al25. By combining multiple sinus-
oids with  different  two-component  spatial  carrier  fre-
quencies into a fringe pattern, they developed single-shot
spatial-frequency  multiplexing  for  the  FT  technique15

with the Chinese remainder theorem phase unwrapping
technique (referred to as the G-S algorithm) to measure
3D objects with discontinuous and isolated surfaces. An-
other  similar  approach  combined  traditional  multi-
frame structure light pattern into a single composite pat-
tern and can recover the depth data of moving or non-ri-
gid  object  in  real-time27. Although  special  fringe  com-
posite  design is  realized  to  separate  the  spectrum in  the
above  work25,27, it  is  still  unable  to  avoid  spectrum  ali-
asing entirely. Therefore, the resulting low phase quality
around discontinuities and isolated regions of the phase
map makes these methods unable to be applied in high-
accuracy  3D  measurement  field.  Liu  et  al.23 proposed  a

dual-frequency  composite  PS  scheme,  where  high-fre-
quency wrapped phase with high-quality obtained by the
PS  method  is  unwrapped  according  to  a  low-frequency
phase  through  three  look-up  tables  (LUTs)  algorithm.
Although higher-quality 3D measurement is allowed, the
5 fringe patterns required by the PS method increase the
sensitivity to dynamic scenes.

In recent years, many studies have used deep learning
as a tool to solve or improve the measurement efficiency
issues  in  traditional  FPP33−38.  Feng  et  al.33,37 proposed  a
fringe analysis  approach  using  deep  learning.  By  com-
bining the  physical  model  of  the  traditional  PS method,
high-quality  phase  information  can  be  extracted  from  a
single-frame  fringe  image.  Shi  et  al.39 proposed  a  deep
learning-based  fringe  enhancement  method  to  improve
the  phase  imaging  quality  of  the  FT  method.  However,
the  above  two  methods  can  only  achieve  high-quality
single-shot wrapped  phase  acquisition.  In  order  to  im-
prove the efficiency of phase unwrapping, Yin et al.34 ap-
plied  deep  learning  to  perform  TPU.  Although  a  large
number of projected images required by traditional TPU
are reduced, at least two phase maps with one frequency
and high frequency are  needed.  Qian et  al.36 proposed a
deep-learning-enabled  geometric  constraints  and  phase
unwrapping  method  for  single-shot  absolute  3D  shape
measurement.  Although  robust  phase  unwrapping  can
be achieved on a single-frame projection,  it  is  at  the ex-
pense of  increased hardware costs,  where they used two
cameras.  Besides,  they also combined deep learning and
the color-coded technology  to  develop  a  single-shot  ab-
solute 3D  shape  measurement  with  color  fringe  projec-
tion profilometry38. However, this method will fail when
measuring  colored  objects.  In  addition,  there  are  also
some end-to-end methods for linking fringe images and
absolute  depth  information35,40,41. However,  these  meth-
ods may  be  difficult  to  obtain  high-precision  measure-
ment results  in  practical  applications,  or  may  not  guar-
antee stable fringe ambiguity removal.

Considering the  traditional  multi-frequency  compos-
ite  methods  cannot  guarantee  single-frame  high-accur-
acy 3D imaging,  and inspired  by  the  successful  applica-
tions  of  deep  learning  in  FPP,  we  propose  a  single-shot
deep  learning-based  dual-frequency  composite  fringe
projection profilometry, which can achieve spectrum-ali-
asing-free high-quality  phase  information  retrieval,  ro-
bust phase  ambiguity  removal  and  high-accuracy  dy-
namic 3D shape measurement under the premise of only
a single fringe projection image.
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Different from the  traditional  end-to-end deep learn-
ing network that directly links the fringe image to abso-
lute  phase/depth35,40,41,  we  incorporate  the  concept  of
spatial  frequency  multiplexing  in  deep  learning  and
design an unambiguous composite fringe image input to
ensure that the networks have robust phase unwrapping
performance. Besides, in order to provide the deep neur-
al  networks  with  the  capability  to  overcome  the  serious
spectrum aliasing problem that traditional spectrum sep-
aration technology  cannot  deal  with,  the  fringe  projec-
tion  images  without  this  problem  are  used  to  generate
the aliasing-free labels.  After proper training,  the neural
networks can  directly  recover  robust  absolute  phase  in-
formation  through  a  composite  fringe  input  image.
Compared  with  traditional  spatial  frequency-multiplex-
ing FT methods and deep learning techniques, our meth-
od can achieve higher quality phase information extrac-
tion as  well  as  more  robust  phase  unwrapping  for  ob-
jects with complex surface.

The remainder of this paper is organized as follows. In
Section Principle,  the  basic  principle  of  dual-frequency
composite fringe  projection  profilometry,  the  acquisi-
tion  of  deep  learning  training  data,  the  proposed  deep
learning-based composite fringe projection profilometry
(DCFPP) method  and  the  network  architectures  are  in-
troduced  respectively.  In  Section Experiments and  res-
ults,  experimental  verifications  and  comparison  results
are  presented  in  detail.  In  the  final  Section Conclusions,
we draw conclusions. 

Principle
 

Single-shot dual-frequency composite fringe
projection profilometry
In FPP,  to  achieve  3D  measurement  for  high-speed  dy-
namic scenes, it is necessary to minimize the number of
projection  frame  per  3D  reconstruction31.  In  this  work,
we aim at challenging the physical limit of the number of
fringe patterns required for 3D imaging, and retrieval 3D
data from a single frame.

Generally,  phase unwrapping is  a  crucial  step in FPP,
which  establishes  the  unique  correspondence  between
different views, thereby allowing absolute 3D reconstruc-
tion. Meanwhile, it is also the operation that most affects
3D  measurement  efficiency42.  Therefore,  the  key  to
achieve single-shot 3D shape measurement is to remove
phase ambiguity through single-frame fringe image. One
of the conventional single-shot phase unwrapping meth-

Ip
cp(x, y)

ods  is  the  spatial  phase  unwrapping  algorithm43,  which
can directly  recover the absolute phase from only single
wrapped phase  map  through  the  phase  values  of  spa-
tially  adjacent  pixels.  However,  this  method  cannot
uniquely  determine the period numbers  for  the  cases  of
large discontinuities  or  spatially  isolated  surfaces.  In-
spired  by  the  recent  successful  applications  of  deep
learning  techniques  on  FPP,  we  consider  applying  deep
neural  networks  to  perform  single-shot  absolute  phase
acquisition.  Since  the  reliability  of  deep  learning  largely
depends on the raw input information, if the input itself
is ambiguous,  the  network  is  by  no  means  always  reli-
able44. Thus, in order to robustly eliminate the phase sin-
gularity, we must design an unambiguous input pattern.
To this  end,  refer  to  the  traditional  temporal  phase  un-
wrapping  (TPU)  algorithms22,  which  project  a  series  of
fringe patterns with different frequencies and determine
the pixel-wise fringe orders through the unique wrapped
phase  distribution  in  the  time  domain,  we  superimpose
the time domain information of different frequencies in-
to the spatial domain to generate a composite fringe pat-
tern. As the phase unwrapping network input, the com-
posite  pattern  should  have  sufficient  capability  to  resist
phase ambiguity,  in  other  words,  multi-frequency  in-
formation  separated  from  the  composite  fringe  pattern
should  achieve  the  unambiguous  phase  unwrapping.  In
this  work,  we  design  a  dual-frequency  composite  fringe
coding strategy, where two vertical sinusoidal fringe pat-
terns with  different  frequencies  are  added.  The  com-
posed fringe pattern  (Fig. 1(a)) can be expressed
as Eq. (1): 

Ip
cp(x, y) = ap(x, y)+bp(x, y)[cos(2πx/λh)+cos(2πx/λl)],

(1)

(x, y) ap

bp λh λl

Ip
cp

where  is the image pixel coordinate,  denotes the
mean intensity,  represents the amplitude,  and  are
the wavelengths of the two hybrid sinusoidal fringe pat-
terns  with  high  and  low  frequencies,  respectively.  After
illuminating the  object  with  the  composite  fringe  pat-
tern  through a digital  projector,  the intensities  of  the
captured image can be expressed as: 

Ic
cp(x, y) = A(x, y) + B(x, y)[cosΦh(x, y) + cosΦl(x, y)],

(2)

A(x, y)
B(x, y)

where  is the average intensity relating to the pat-
tern  brightness  and  background  illumination,  is
the intensity modulation relating to the pattern contrast
and surface  reflectivity.  Besides,  the  captured composite
fringe image contains two phase information of high and
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Φh Φl

φh φl 2π

low frequency, which are  and  respectively. In con-
ventional  fringe  analysis  methods,  the  extracted  initial
phase is the wrapped phase  and  with  phase dis-
continuities  due  to  the  arctangent  function45.  Thus,
phase unwrapping is required to remove the fringe ambi-
guities and correctly extract the absolute depth of the ob-
ject42.  The  absolute  phase  maps  corresponding  to  the
wrapped  phases  of  the  hybrid  sinusoidal  fringe  image
can be represented as:  {

Φh(x, y) = φh(x, y) + 2πkh(x, y)
Φl(x, y) = φl(x, y) + 2πkl(x, y) , (3)

kh kl

φh φl kh, kl ∈ [0,K − 1] K
where  and  are the integer fringe order correspond-
ing to the wrapped phases  and , , 
denotes the number of the used fringes.

λh λl

LCM(λh, λl)

(φh,φl)

W × H
λh λl

For  two  wrapped  phase  maps  with  different
wavelengths,  theoretically,  we  can  use  the  traditional
number-theoretical approach22, which is one of the TPU
algorithms,  to  perform absolute  phase unwrapping.  The
basic idea of this method relies on the fact that for suit-
able chosen fringe wavelengths  and , their least com-
mon  multiple  determines  the  maximum
range on the absolute phase axis within which the com-
bination  of  wrapped  phase  values  is  unique46,47.
For  a  projection pattern with  resolution, the  se-
lected two different wavelengths  and  should satisfy
the following inequality to exclude phase ambiguity: 

LCM(λh, λl) ⩾ W , (4)

LCM()

LCM(λh, λl)

where  represents  the  least  common  multiple
function. That is to say, if  (called the unam-

LCM()

λhλl

kh kl

biguous  range)  can  exceed  the  lateral  resolution  of  the
projected pattern, the phase ambiguity of the whole field
can  be  eliminated.  Specially,  when  the  selected
wavelengths are relatively prime, the  function can
be  simplified  to  the  multiplication  of  two  wavelengths
and the range of unambiguous phase becomes . After
examining  that  the  pairs  of  wrapped  phase  values  are
unique, the fringe orders  and  of the two phase maps
can be determined.

λh λl

Since  the  two  sets  of  fringe  patterns  have  different
wavelengths (  and ), their absolute phase map should
have the following relationship: 

Φh(x, y)
Φl(x, y)

=
λl

λh
. (5)

Combining Eqs.  (3) and (5),  we can get the following
relation: 

λlφh(x, y)− λhφl(x, y)
2π

= kl(x, y)λh − kh(x, y)λl. (6)

(kh, kl)

Stair
(kh, kl)

According  to  the  number  theory  method,  the  fringe
order  pairs  can  be  determined  by  the  pre-com-
puted  lookup  table  (LUT)  which  establishes  the  unique
correspondence  between the  left  side  (called  func-
tion) and : 

(kh, kl) = LUT [Stair(x, y)] . (7)

StairAnd the  function can be expressed as: 

Stair(x, y) = round
(

λlφh(x, y)− λhφl(x, y)
2π

)
, (8)

round(·)where the  represents a rounding function.

 

a

b
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Captured N-step phase-shifting fringe patterns
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Fig. 1 | The process of generating training data. (a) The projection mode includes dual-frequency 12-step phase-shifting fringe projection pat-

terns and dual-frequency composite fringe pattern. (b) A set of captured images and the corresponding labels contain numerator term, denomin-

ator term, and absolute phase map.
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Refer to  the  optimal  dual-frequency  selection  ap-
proaches48−50, the high-frequency is as high as possible to
allow  high-accuracy  measurement,  while  the  low-fre-
quency  cannot  be  too  low  to  ensure  the  stability  of  the
phase unwrapping, and the relative minimum gap of the
combined  frequencies  should  be  as  large  as  possible  to
improve the fault tolerance rate of phase unwrapping, we
finally  select  the  frequency  combination  of  a  high-fre-
quency fringe with wavelength of 19 pixels and a low-fre-
quency fringe with wavelength of 51 pixels to synthesize
a  single-frame  composite  fringe  pattern.  It  can  perform
unambiguous  phase  unwrapping  of  points  within  the
range of 969 pixels,  which means that the whole field of
the projected  pattern  can  carry  out  absolute  phase  un-
wrapping. 

Generate training data
The purpose of the data-driven-based deep learning net-
work is to apply a large number of training data includ-
ing the input values (the samples) and the ground-truth
values  (the  targets/labels)  to  train  a  model,  the  output
values  predicted  by  which  can  be  infinitely  close  to  the
ground-truth  value.  In  this  work,  we  aim  at  utilizing
deep learning to  predict  high-quality  the absolute  phase
map through a single fringe image.

λh λl

In  order  to  make  the  trained  deep  neural  network
overcome the problem of spectrum aliasing, we use dual-
frequency  12-step  phase-shifting  fringe  patterns  (Fig.
1(a)) to  generate  high-quality,  high-precision,  and spec-
trum-aliasing-free network  labels.  In  particular,  the  se-
lected two frequencies/wavelength  and  are the same
as the composite  dual-frequency/dual-wavelength of  the
composite  fringe  pattern.  The  captured  high-frequency
and low-frequency  sinusoidal  fringe  images  can  be  ex-
pressed as: 

Ic
hn(x, y) = Ah(x, y) + Bh(x, y)cos

[
φh(x, y) +

2π(n − 1)
12

]
Ic

ln(x, y) = Al(x, y) + Bl(x, y)cos
[

φl(x, y) +
2π(n − 1)

12

]
,

(9)

Ic
hn Ic

ln n

n , · · · , Ah Al Ic
hn

Ic
ln Bh Bl

φh φl

where  and  represent  the  intensity  of  the th cap-
tured image with  high and low frequencies  respectively,

=1,2 12,  and  are  the  average  intensity  of 
and ,  and  are the  corresponding  amplitude  in-
tensity maps. Then, the wrapped phase  and  can be
obtained through the least-squares algorithm: 

φh(x, y) = arctan

∑12

n=1
Ic

hn(x, y)sin(2π(n − 1)/12 )∑12

n=1
Ic

hn(x, y)cos(2π(n − 1)/12 )

= arctan
Mh(x, y)
Dh(x, y)

φl(x, y) = arctan

∑12

n=1
Ic

ln(x, y)sin(2π(n − 1)/12 )∑12

n=1
Ic

ln(x, y)cos(2π(n − 1)/12 )

= arctan
Ml(x, y)
Dl(x, y)

, (10)

Mh Dh

φh Ml Dl

φl

Φh

where set  and  as the numerator term and the de-
nominator  term  of  the  arctangent  function  of  wrapped
phase ,  and set  and  as  the  numerator  term and
the  denominator  term  of  the  arctangent  function  of
wrapped phase . In order to eliminate the ambiguity of
the  high-frequency wrapped phase,  we use  the  number-
theoretical method (Eqs. (3), (7) and (8)) to unwrap the
high-frequency  wrapped  phase  into  an  absolute  phase

.
It  should  be  emphasized  that  for  the  following  three

reasons, we  do  not  adopt  an  end-to-end network  struc-
ture that directly link the input fringe images to the out-
put absolute  phase/depth,  but  choose  a  network  struc-
ture  that  predicting  the  numerator  and  denominator
map  of  the  wrapped  phase  arctangent  function  and  a
low-accuracy  absolute  phase  map.  1)  Since  a  single-fre-
quency  fringe  image  is  insufficient  to  eliminate  the
phase/depth  ambiguity  in  FPP  while  the  multi-fre-
quency fringe  images  can  effectively  remove  this  ambi-
guity through the TPU algorithm22, we use a single dual-
frequency composite fringe image. As the network input,
this composite  image  can  not  only  retain  the  character-
istics of a single frame projection, but also can be decom-
posed  into  two  fringe  images  with  different
wavelengths/frequencies,  which  effectively  removes  the
ambiguity of  phase retrieval  in essence and ensures that
the  absolute  3D  shape  measurement  is  not  affected  by
any assumptions and prior knowledge,  such as continu-
ous surface, limited measurement range, geometric con-
straints. 2)  Since  the  difficulty  of  establishing  an  accur-
ate correspondence between the fringe intensity inform-
ation and  the  high-accuracy  absolute  phase  value,  espe-
cially  when  the  surface  of  the  measured  object  contains
sharp edges,  discontinuities  or  large  reflectivity  vari-
ations, a simple input-output network structure only can
usually  obtain  compromised  imaging  accuracy36.  Based
on this  consideration,  we use  deep learning to  predict  a
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2π

rough absolute phase containing the correct fringe order
information  from  the  designed  composite  fringe  image.
3) Our deep neural network is trained to predict the nu-
merator and denominator of the arctangent function, to
bypass the  difficulties  associated  with  reproducing  ab-
rupt  phase  wraps,  and  thus,  obtain  a  high-quality
phase information33.

Mh

Dh

Φh

Therefore, in this work, the output of the network we
constructed  includes  the  numerator  and  denominator
used to calculate high-quality phase information, as well
as the  rough absolute  phase  that  provides  the  fringe  or-
der information.  The  labels  of  the  training  data  corres-
ponding to these outputs are the numerator , the de-
nominator ,  and  the  high-frequency  absolute  phase

. Figure 1(a) is  our  projection  mode,  and Fig. 1(b)
shows set of fringe images and the labels generated from
these images.

B(x, y)

In addition, in order to enhance the network learning
ability,  we  set  an  appropriate  modulation  threshold  to
mask the invalid points of the training data maps by us-
ing  the  modulation  function  (Eq.  (11))  and  the
Mask function (Eq. (12)): 

B(x, y) =
2
N

√
Mh(x, y)2

+ Dh(x, y)2
, (11)

 

Mask(x, y) =
{

B(x, y), B(x, y) ⩾ Thr
0, B(x, y) < Thr

. (12)

ThrThe value  of  threshold  is  set  to  8,  which is  suitable
for most of our measurement scenarios in this work. 

Deep-learning-based single-shot composite fringe
projection profilometry (DCFPP)
Our purpose  is  to  propose  a  single-shot  fringe  projec-
tion profilometry  using  deep  learning,  which  can  ro-
bustly  recover  high-quality  absolute  phase  information
from a composite fringe image, thus to perform high-ac-
curacy 3D  reconstruction.  The  flowchart  of  our  pro-
posed approach (DCFPP) is shown in Fig. 2.

λh = 19 λl = 51
LCM(19, 51) =

969 > 912

[0, 255] ap + bp =

255
λh = 19 λl = 51

ap = 130 bp = 125

Step  1: Selection  of  wavelength  combination  strategy
to  generate  a  composite  fringe  pattern.  We  choose  two
wavelength  and  with  the  unambiguous
range  pixels  that  satisfy  the Eq.  (4): 

(mentioned  in  Section Single-shot  dual-fre-
quency  composite  fringe  projection  profilometry), to  gen-
erate  the  composite  fringe  image,  which  is  sufficient  to
overcome phase ambiguity, as the input of the deep con-
volution neural network. In order to cover the entire dy-
namic  range  of  the  projector ,  we  set 

 in Eq.  (1),  and the composite  pattern along with its
cross-section  intensity  profile  for , ,

, and  is illustrated in Fig. 2(b).
Step 2: Preparation for network training data. Accord-

ing  to  the  principle  mentioned  in  Section Generate
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Fig. 2 | Flowchart of our proposed approach. (a) Part of network training data sets. (b) Hardware system and the cross-section intensity distri-

bution of the designed composite fringe pattern. (c) Test data and prediction results obtained by the training model.
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λh λl

Mh

Dh

training  data, we  use  two  sets  of  12-step  PS  fringe  im-
ages with the same dual-wavelength  and  of compos-
ite  pattern to calculate  the numerator terms  and the
denominator  terms  of  spectrum-aliasing-free  high-
frequency  wrapped  phases  and  absolute  phases  as  the
ground-truth values of the neural network.

float32

Step  3: Training  data  preprocessing.  Before  feeding
the input data and targets  into the neural  network,  data
preprocessing is  required.  Such  operation  aims  at  mak-
ing the raw data more amenable to neural networks, in-
cluding vectorization and normalization. First, all inputs
and targets in a neural network must be tensors of float-
ing-point,  this  step  called  data  vectorization,  and  in  the
experiment,  we  transform  them  into  array  of
shape (number of images, 640, 480). Besides, it should be
noted that all network inputs and targets need to be con-
verted to a format compatible with TensorFlow. In gen-
eral, it is unreliable to input relatively large values or het-
erogeneous data (that  is,  the size between the input and
the target may differ ten or even a thousand times) into a
neural  network.  Thus,  data  normalization  is  required.
We divide the input images by 255 to convert the previ-
ous gray values from 0–255 range to 0–1 range.

Ic
cp(x, y)

Step  4: Training  the  neural  network  models.  After
preparing the  training  data  sets,  including  a  large  num-
ber  of  unambiguous  input  data  sets  and  corresponding
high-quality ground-truth data sets as shown in Fig. 2(a),
we  put  these  specially  designed  inputs  and  outputs  into
the  U-Net  networks,  so  that  the  network  will  have  a
more  powerful  absolute  phase  retrieval  capability.  In
terms  of  phase  information  acquisition,  such  data-driv-
en-based training network can overcome the problem of
poor  imaging  quality  caused  by  frequency  aliasing  and
has the  high-quality  phase  information  extraction  func-
tion  like  the  traditional  PS  algorithms;  And  in  terms  of
phase unwrapping, it can directly recover absolute phase
from  a  single  fringe  image,  so  as  to  reach  the  physical
limit the number of the fringe image required for a single
3D  reconstruction  and  maximize  the  efficiency  of  3D
imaging.  As  shown  in Fig. 2(c),  we  construct  two  deep
convolutional  neural  networks  with  the  same  structure
except  the  final  convolution  layer,  referred  to  as  the  U-
Net1 and U-Net2, to perform phase information extrac-
tion and phase unwrapping tasks, separately. The specif-
ic reasons for choosing two networks instead of one will
be  explained  in  Section Network  architecture.  Plenty  of
raw composite fringe images  are fed into the two
deep  convolution  neural  networks,  then  U-Net1  will  be

Mh Dh

Φh

trained  with  the  corresponding  and  as  ground-
truth to generate a phase acquisition model, and U-Net2
will  be  trained  with  the  corresponding  absolute  phases

 as  the  ground-truth  to  obtain  a  phase  unwrapping
model.

Mdl Ddl

Mdl Ddl

φdl(x, y)

Step 5: Prediction for absolute phase. The U-Net1 net-
work  is  responsible  for  predicting  the  numerator  terms

 and  the  denominator  terms  of  a  single-frame
composite  fringe  image.  Then,  taken  the  output  results

 and  into  the  arctangent  function,  the  wrapped
phase distribution  can be extracted:
 

φdl(x, y) = arctan
Mdl(x, y)
Ddl(x, y)

. (13)

Φcoarse(x, y)

φdl

Φcoarse

kdl(x, y)
Φdl(x, y)

Simultaneously, the U-Net2 predicts  the “coarse”  ab-
solute  phase  of  the  single-frame  composite
fringe image.  Due to  the  environmental  light,  large  sur-
face reflectivity and discontinuities, it is hard to get high-
quality  phase  information  directly.  Thus,  feeding  the
wrapped phases  from U-Net1 and the “coarse” abso-
lute phase  from U-Net2 into Eq. (14) to obtain the
fringe  order ,  the  high-quality  absolute  phase

 can be recovered by Eq.(15). 

kdl(x, y) = Round
[

Φcoarse(x, y)− φdl(x, y)
2π

]
, (14)

 

Φdl(x, y) = φdl(x, y) + 2πkdl(x, y). (15)

Step  6: 3D  shape  reconstruction.  Finally,  by  utilizing
the pre-calibrated parameters of the FPP system51−53,  3D
information of the objects can be reconstructed. 

Network architecture
Next,  we  will  further  discuss  the  selection  strategy  and
main architecture of the deep learning networks (Fig. 3).
For  the  network  architecture  selection,  we  respectively
use one  U-Net  network  and  two  U-Net  parallel  net-
works to achieve phase retrieval  and phase unwrapping.
Figure 4 shows the  comparison  results  of  phase  predic-
tion using one U-Net network and two U-Net networks,
from which we can draw conclusions:  Using one U-Net
network can predict an absolute phase of the object with-
in the allowable error from different surface complexity,
however, since this method directly outputs the absolute
phase from the network, the absolute phase predict cap-
ability  and  quality  of  this  end-to-end  structure  is  worse
than the result of two U-Net parallel networks. Thus, we
use two U-Net parallel networks (marked as U-Net1 and
U-Net2) to train the network models.
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Taken U-Net1 network as an example to reveal the in-
ternal  structure  of  the  constructed  networks,  the  input
tensors of size (H, W,  1) are successively processed by a
stack of convolutional layers, pooling layers, upsampling

blocks,  and  concatenate  layers.  Each  of  convolutional
layer represents a  convolution operation,  which extracts
patches from its input feature map and applies the same
transformation  to  all  of  these  patches,  producing  an
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Fig. 3 | The U-Net network architecture.
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Fig. 4 | Comparison between one U-Net network and two U-Net networks (the proposed method). (a, d, g, j) The raw composite fringe im-

ages  from  four  different  measurement  scenes.  (b, e, h, k)  The  absolute  phase  result  error  between  deep-learning-predicted  value  and  the

ground-truth value by using one U-Net network. (c, f, i, l) The absolute phase result error between deep-learning-predicted value and the ground-

truth value by using two U-Net networks.
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output feature map. For each convolution layer, the ker-
nel size is 3×3 with convolution stride one and zero-pad-
ding,  and  it  is  activated  by  the  rectified  linear  unit
(ReLU)  except  for  the  last  1×1  convolution  layer.  The
output of the convolutional layer is a 3D tensor of shape
(h, w, d), where h×w is the size of feature map input, d is
the number of channels also representing filters that en-
code  specific  aspects  of  the  input  data.  The  number  of
channels is controlled by the first argument passed to the
convolutional  layers  which  is  set  to  32  in  the  proposed
U-Net network.  The  role  of  pooling  layer  is  to  aggress-
ively  downsample  feature  maps,  consists  of  extracting
windows from the input feature maps and outputting the
max value of each channel. Usually, max pooling layer is
done with 2×2 windows and stride 2,  in order to down-
sample the feature maps by a factor of 2. Thus, the size of
composite  image  input H×W tend  to  shrink  as  it  gets
deeper in the network. After downsampling the input by
five  times  for  better  extraction,  the  upsampling  block
needs to match the raw input size. Then, copy the convo-
lutional layer and merge it with the upsampling layer in-
to  a  concatenate  layer.  Besides,  the  ultimate  goal  of  the
network  is  to  achieve  a  model  that  can  be  generalized,
that  is,  perform  well  on  never-seen-before  data.
However, overfitting  is  the  central  obstacle.  The  pro-
cessing  of  fighting  overfitting  is  regularization.  In  this
network, we use the Dropout which is one of the most ef-
fective and  most  commonly  used  regularization  tech-
niques  for  neural  networks  to  fight  overfitting.  The  loss
function  we  select  in  this  neural  network  is  mean
squared  error  (MSE),  which  is  used  to  compare  these
predictions  with  the  targets  and  generate  a  loss  value.
The  optimizer  chooses  the  Adam  optimization  scheme,
which  is  used  to  update  the  network  weights  with  the
loss value  and  achieve  better  gradient  propagation.  Fi-
nally, the network of layers chained together maps input
data to predictions. 

Experiments and results
To verify the performance of the proposed DCFPP meth-
od, we  construct  a  monocular  FPP  system,  which  con-
sists of  a  monochrome  camera  and  a  digital  light  pro-
cessing (DLP) projector.  The camera used in the system
is a Basler acA640-750 μm one equipped with an 8.5 mm
Computar lense, which has 8-bit pixel depth and a max-
imum frame rate of 750 fps at a full 640×480 resolution.
The used projector is a LightCrafter 4500 one with a res-
olution of 912×1140 and a projection pattern rate of 120

Hz  with  8-bit.  The  field  of  view (FOV)  of  the  system is
about 210 mm×160 mm, and the distance from the cam-
era  to  the  region  of  interest  is  approximately  400  mm.
The  network  training  experiment  is  computed  on  a
desktop  with  Intel  Core  i7-7800X  CPU  and  a  NVIDIA
GeForce GTX 1080 Ti GPU, and we use the Python deep
learning framework  Keras  with  the  TensorFlow  plat-
form (developed  by  Google)  to  speed  up  the  computa-
tion of the training model. 

Training the network model and testing the data

Ic
cp Mh

Dh Φh Mh Dh

Φh

λh λl

Mh

Dh

Φ

As mentioned earlier,  a set  of input and output data for
training the network includes a dual-frequency compos-
ite fringe image , as well as the numerator , denom-
inator  and  the  absolute  phase ,  where  and 
are  calculated  by  the  12-step  PS  method,  and  is ob-
tained  by  the  number  theory  method  (refer  to  Section
Generate  training  data).  We  project  25  fringe  patterns
each time  in  one  projection  period,  including  24  PS  si-
nusoidal fringe  patterns  and  one  dual-frequency  com-
posite  pattern.  Making  full  use  of  the  three-color  wheel
projection mechanism of the DLP projector, three differ-
ent images can be captured in red, green, and blue chan-
nels respectively, and combined into a single RGB image.
Therefore,  the  system  projection  speed  can  actually  be
increased  by  three  times.  In  this  experiment,  we  set  the
pattern  exposure  to  148.5  ms  and  the  pattern  period  to
150  ms.  To  maximize  the  generalization  ability  of  the
neural  network,  we  need  to  obtain  more  training  data.
Thus, in the training experiment, a total of 1032 datasets
from different  scenes  are  collected  including  800  train-
ing sets and 232 validation sets. Each of dataset contains
one  composite  dual-wavelength  ( =19, =51)  fringe
image inputs, the ground-truth values numerator  and
denominator , and the  ground-truth  values  the  abso-
lute  phase . Figure 5 shows  some  typical  shooting
scenes of the training datasets. The convolutional neural
network  is  executed  in  200  epochs,  of  which  the  mini-
batch (used to compute a single gradient-descent update
for  the  weights  of  the  model)  is  2,  the  initial  model  will
be learned  through  the  above  process.  In  order  to  fur-
ther optimize this model, network parameters and struc-
ture need to be adjusted. Due to data augmentation, the
time for network training takes 8.3 hours on an NVIDIA
graphics card.

We collect 60 scenes data that different from the train-
ing  and  the  validation  sets  to  test  the  accuracy  of  the
model.  The processing speed of our approach can reach
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about 15 fps. We can put the captured and processed im-
age  data  into  the  trained  network  model  to  retrieve  the
phase information of target object and complete the off-
line  3D  measurement.  Although  our  system  can  only
complete 3D measurement of complex objects and mov-
ing  objects  in  an  offline  state,  our  single-frame imaging
method  provides  basic  support  for  real-time  online
processing.

It  should be noted that since our network models  are
trained  from  the  composite  fringe  images  with  dual
wavelengths (19 and 51) and the fringe images with dif-
ferent  wavelengths  at  the  same  position  correspond  to
different fringe orders, the trained model is only valid for
composite  fringe  images  with  wavelengths  19  and  51.
However,  as  long  as  the  selected  frequency/wavelength
combination  meets  the  selection  conditions  mentioned
in  Section Single-shot  dual-frequency  composite  fringe
projection profilometry to eliminate fringe pattern ambi-
guity, the trained model on the composite fringe images
with the  selected  frequency  combination  can  also  per-
form single-frame  measurement  on  the  composite  im-
age with the same frequency combination. 

Qualitative evaluation
To test  the  proposed  approach,  we  conducted  static  ex-
periments and dynamic experiments, respectively.

Ic
cp(x, y) λh λl

Mdl Ddl

We first  measured  four  static  scenarios  that  our  net-
work  has  never  seen  before,  including  a  Voltaire  statue
plaster model,  a  David  plaster  model,  little  girl  and wo-
men combination models, and a metal workpiece. These
scenes  involve  a  single  object  with  continuous  complex
surface  shapes,  a  combination  of  multiple  objects  with
isolated  surfaces,  and  workpieces  with  different  surface
reflectivity  materials. Figure 6(a–d) show  the  captured
composite fringe images  with =19 pixel, =51
pixel which are  the input  of  the constructed neural  net-
work,  and Fig. 6(e–h) are  corresponding  cross-sections
of their spectrum intensities, from which we can see that
the  spectrum  aliasing  is  so  serious  that  it  is  difficult  to
separate and  extract  effective  dual-frequency  informa-
tion through applying the filter window in the frequency
domain.  The  U-Net1  network  model  predicts
the numerator  and denominator  results for each
input image, as shown in the first two columns of Fig. 7.

 

Fig. 5 | Part of input training datasets. The surface shapes contain single complex surface, geometric surface and discontinuous surface, and

the materials include plaster, plastic, and paper.
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These intermediate  results  are  then  fed  into  the  arctan-
gent  function  (Eq.  (13)) to  calculate  the  phase  distribu-
tion ,  as  shown in the third column of Fig. 7.  The U-
Net2  training  model  is  responsible  for  outputting  a
coarse absolute phase map, and then the high-quality ab-
solute  phase  can  be  calculated  through Eq.  (14) and
Eq.  (15),  as  shown in  the  last  column of Fig. 7.  We also
compare our proposed DCFPP with the traditional dual-
frequency composite FT method in the above four static
scenes.  Since  the  3D  information  is  obtained  from  the
phase data, the 3D measurement accuracy can be reflec-
ted by the accuracy of the phase data. In the experiment,
we  directly  perform  error  analysis  on  the  recovered
phase  information  of  the  objects.  Taking  the  wrapped
phase maps calculated by the 12-step PS method and the
absolute phase generated by the traditional number the-
ory  method  as  the  ground-truth  values,  the  high-fre-
quency  phase  errors  of  our  approach  and  traditional
method are shown in Fig. 8, where the first column (Fig.
8(a, e, i, m))  and  the  third  column  (Fig. 8(c, g, k, o))  are
the  errors  of  traditional  method,  the  second  columns
(Fig. 8(b, f, j, n))  and  the  last  columns  (Fig. 8(d, h, l, p))
show the phase error results  of  the proposed DCFPP.  It

can be seen that, compared with the traditional method,
our  method  can  significantly  improve  the  performance
of phase extraction and phase unwrapping from a single
fringe  image.  Due  to  frequency  spectrum  aliasing
between fundamental frequency (the low-frequency) and
zero  frequency  (refer  to Fig. 6), the  foundational  spec-
trum cannot be filtered out exactly, and the inexact phase
information will lead to poor phase imaging quality, thus
causing  serious  phase  unwrapping  errors.  By  contrast,
our  approach  eliminates  the  need  to  analyze  the  image
spectrum and directly retrievals the high-quality aliasing-
free  absolute  phase  by  the  unambiguous  composite
fringe input. The comparison results of traditional dual-
frequency  composite  FT  methods  proved  that  DCFPP
can  significantly  improve  the  performance  of  single
fringe  phase  retrieval  and  phase  unwrapping.  For  the
quantitative  analysis  of  the  method,  we  calculate  the
mean  absolute  error  (MAE)  of  the  wrapped  phase  and
absolute  phase  from  these  four  scenes,  as  shown  in  the
Table 1.  For  the  traditional  method,  the  low-quality
wrapped phase leads to serious phase unwrapping errors,
so that the calculated absolute phase has larger error val-
ues.  For  the  DCFPP,  the  reason why the  absolute  phase
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2π

2π

MAE is smaller than the wrapped phase MAE is that 
jump area of the predicted wrapped phase and the cutoff
area of the label wrapped phase do not completely coin-
cide.  The  errors  close  to  caused  by  these  very  slight
misalignments (often only one pixel  apart)  will  be elim-
inated after phase unwrapping.

Furthermore,  through  phase-height  mapping  and  the
calibration parameters of  the camera-projector FPP sys-
tem,  the  3D  reconstruction  results  of  the  above  four
scenarios can be obtained. Figure 9 shows the comparis-
on results of the three methods: the end-to-end network,
the  DCFPP  method  and  the  12-step  PS  with  number-
theoretic method (the ground-truth generation method).
Fig. 9(a, d, g, j) are  the  results  of  the  method40.  In  their

end-to-end deep neural network, they use one single-fre-
quency  fringe  pattern  as  input  and  directly  output  the
corresponding  depth  map.  From  which  we  can  see  that
the 3D reconstruction results of the end-to-end network
are poor. The low accuracy results further verify the the-
oretical analysis in Section Generate training data that a
single-frequency fringe image is insufficient to eliminate
the phase/depth ambiguity. Our proposed method (pro-
posed method (Fig. 9(b, e, h, k)) using only one compos-
ite  image  can  yield  the  imaging  quality  comparable  to
that obtained by the traditional 12-step PS with number-
theoretic method (Fig. 9(c, f, i, l)).

In  the  second  experiment,  we  measure  an  object  in
constant  motion  to  validate  the  capability  of  the
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Fig. 8 | Phase error comparison results of traditional dual-frequency composite FT method and the proposed DCFPP method. (a, e, i,
m) The wrapped phase error calculated by traditional method. (b, f, j, n) The wrapped phase error predicted by the DCFPP. (c, g, k, o) The ab-

solute phase error of traditional method. (d, h, l, p) The absolute phase error of the DCFPP.

 
Table 1 | MAE of wrapped phase and absolute phase of the traditional dual-frequency composite FT method and the proposed DCFPP
method (noted that the “FT method” mentioned in the table refers to the traditional dual-frequency composite FT method).
 

MAE (rad)
Scenario 1 Scenario 2 Scenario 3 Scenario 4

FT DCFPP FT DCFPP FT DCFPP FT DCFPP

Wrapped phase 0.259 0.063 0.255 0.089 0.430 0.125 0.923 0.092

Absolute phase 3.314 0.034 2.185 0.071 4.333 0.083 5.707 0.055
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proposed  DCFPP  approach  in  the  dynamic  scenarios.
Figure 10 shows the 3D reconstruction results of a rotat-
ing  Voltaire  plaster  statue  model  using  DCFPP  method
in selected moments. During the measurement, a single-
frame composite  fringe  pattern  is  continuously  projec-
ted on the surface of the object, and a monochrome cam-
era simultaneously captures the gray fringe image of each
frame. In conventional phase-shifting profilometry, mo-
tion  introduces  additional  phase  shift,  which  breaks  the
basic  assumptions  of  phase-shifting  profilometry  and
produces  motion  ripples  in  the  reconstructed  result6,
while our  method  uses  only  one  image,  which  funda-
mentally overcomes the influence of motion, so there are

no  motion  ripples.  The  whole  measurement  process  of
the rotating plaster statue is shown in Fig. 10 (Multime-
dia  view).  It  can  be  seen  that  due  to  the  single-frame
nature  of  DCFPP,  the  motion-induced  artifacts  can  be
avoided in the reconstruction process.
 

Quantitative evaluation

R = 25.4

At  last,  to  quantitatively  evaluate  the  3D reconstruction
precision of the proposed method, we respectively meas-
ured  a  standard  ceramic  plate  and  a  standard  ceramic
sphere  with  radii  mm.  The  precision  analysis
results  are  shown  in Fig. 11,  where Fig. 11(a) and 11(d)
are  the  3D  reconstruction  results  calculated  by  our
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method, Fig. 11(c) and 11(f) respectively show the distri-
bution  of  errors  of  the  plate  and  the  standard  ceramic
sphere.  Specifically,  the  ground-truth  values  of  both  of
them  are  generated  by  fitting  a  plane  or  a  sphere  using
3D reconstruction data. The root mean square (RMS) er-
ror  of  them  are  0.054  mm  and  0.065  mm,  respectively.
This  experiment  proves  that  our  method  can  achieve
high-quality  3D  measurement  just  using  a  single  fringe
image. 

Conclusions
In  this  study,  we  present  a  deep  learning-based  single-
shot 3D measurement technology, which is able to recov-
er  the  absolute  3D  information  of  complex  scenes  with
large  surface  discontinuities  or  isolated  objects  while
projecting  only  a  single  composite  fringe  pattern.  By
combining  the  deep  learning  network  with  the  physical
model  of  FPP,  we  take  a  well-designed  unambiguous

composite fringe pattern as input, and the phase inform-
ation  without  spectrum  aliasing  as  the  ground-truth  to
drive the neural networks to achieve robust, high-quality
single-shot  absolute phase recovery.  Compared with the
traditional  spatial  frequency  multiplexing  FT  method,
our DCFPP approach avoids the resulting poor 3D meas-
urement  accuracy  caused  by  spectrum  aliasing,  whose
imaging quality is comparable to the performance of tra-
ditional  12-step  PS  method  which  uses  more  than  12
fringe patterns.

This paper aims to show that deep learning is an effi-
cient tool for synthesizing temporal and spatial informa-
tion. It can avoid the spectrum aliasing problem of tradi-
tional single-frame phase measurement methods, and as-
sist  in  achieving  robust  phase  unwrapping  for  complex
scenes  with  large  surface  discontinuities  or  isolated
objects  from a  single  fringe  image.  However,  due to  the
intensity  containing  varying  reflectance  that  cannot  be
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correctly mapped to the absolute phase distribution with
high-accuracy,  it  is  still  difficult  to  retrieve  high-quality
absolute phase information in an end-to-end deep learn-
ing-based  network.  In  the  future,  we  will  explore  more
advanced network  structures  and  integrate  more  suit-
able physical models into deep learning networks to real-
ize  higher-speed,  higher-accuracy  and  more  robust  3D
shape  measurement  through  fewer  neural  networks  or
even an end-to-end manner.
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Deep-learning-enabled temporally 
super-resolved multiplexed fringe projection 
profilometry: high-speed kHz 3D imaging 
with low-speed camera
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Abstract 

Recent advances in imaging sensors and digital light projection technology have 
facilitated rapid progress in 3D optical sensing, enabling 3D surfaces of complex-
shaped objects to be captured with high resolution and accuracy. Nevertheless, due 
to the inherent synchronous pattern projection and image acquisition mechanism, 
the temporal resolution of conventional structured light or fringe projection profilom-
etry (FPP) based 3D imaging methods is still limited to the native detector frame rates. 
In this work, we demonstrate a new 3D imaging method, termed deep-learning-ena-
bled multiplexed FPP (DLMFPP), that allows to achieve high-resolution and high-speed 
3D imaging at near-one-order of magnitude-higher 3D frame rate with conventional 
low-speed cameras. By encoding temporal information in one multiplexed fringe 
pattern, DLMFPP harnesses deep neural networks embedded with Fourier transform, 
phase-shifting and ensemble learning to decompose the pattern and analyze sepa-
rate fringes, furnishing a high signal-to-noise ratio and a ready-to-implement solution 
over conventional computational imaging techniques. We demonstrate this method 
by measuring different types of transient scenes, including rotating fan blades and bul-
let fired from a toy gun, at kHz using cameras of around 100 Hz. Experiential results 
establish that DLMFPP allows slow-scan cameras with their known advantages in terms 
of cost and spatial resolution to be used for high-speed 3D imaging tasks.

Keywords: 3D imaging, Fringe projection profilometry, Multiplex, Deep learning, 
Temporal super-resolution

Introduction
Over recent decades, significant advancements in optoelectronics have ignited interests 
in capturing and documenting instantaneous phenomena. The ability to capture imme-
diate three-dimensional (3D) geometric changes in objects provides invaluable insights 
into fast events, crucial for diverse fields such as industrial inspection [1], biomedicine 
[2], and solid mechanics [3]. Among the array of 3D imaging techniques, fringe projec-
tion profilometry (FPP) [4] is one of the most promising modalities due to its capacity 
for high-accuracy and full-field 3D measurements.
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To enhance the speed of FPP, efforts have been made to improve the speed of meas-
urement system. Binary defocusing techniques, for instance, have emerged to increase 
the projection speed of digital light processing (DLP) systems [5, 6]. By projecting binary 
fringes (1-bit) instead of grayscale patterns (8-bit) in a defocused manner, these tech-
niques have demonstrated the capability to increase projection speeds from a hundred 
frames per second (fps) to thousands or even tens of thousands fps. Additionally, custom 
projectors utilizing rotating wheels [7] or LED arrays [8, 9] have also been developed to 
achieve high-speed pattern projection.

Although system speed has improved, motion can still compromise 3D measure-
ments if numerous patterns are required for dynamic 3D reconstruction [10]. Therefore, 
researchers have presented methods using a small number of patterns, such as dual-fre-
quency phase-shifting (PS) [11], bi-frequency PS [12], 2+2 PS [9], composite PS [13], 
and micro Fourier transform profilometry [14]. These approaches utilize each projected 
pattern for both wrapped phase calculation and absolute phase unwrapping, effectively 
reducing the number of patterns. Fourier transform profilometry (FTP) employs a single 
fringe pattern for 3D reconstruction but struggles with complex shapes due to spectrum 
aliasing [15]. Recent advancements in artificial intelligence have introduced deep neural 
networks (DNNs) [16, 17] to optical metrology [18]. Properly trained DNNs can retrieve 
phase [19] and 3D coordinates [20–23] using a single fringe pattern accurately for com-
plex objects, pushing the 3D measurement speed to the upper limit that is the camera’s 
speed for capturing two-dimensional (2D) images.

However, enhancing the camera’s speed often comes at a cost, such as the decrease in 
pixel resolution and the signal-to-noise ratio (SNR) of captured images. Although high-
speed cameras capture images at a high frame rate without reducing the resolution, the 
cost of the system will sharply increase. Moreover, the speed of 3D imaging is inherently 
hindered by the rate at which 2D images can be captured and processed. Therefore, we 
are facing a big challenge that is “can affordable low-speed cameras be used to replace 
high-speed cameras and achieve high-speed 3D imaging without compromising image 
resolution”.

In recent years, we have witnessed the rapid progress of deep learning in computa-
tional imaging [24]. Meanwhile, the refresh rate of digital micro-mirror devices (DMDs) 
has significantly increased, reaching tens of thousands fps, while at an affordable price. 
This motivated us to combine computational imaging and deep learning to encode tem-
poral information in space and break through the physical limits of camera hardware 
speed. Inspired by the concept of holographic multiplexing [25], for the first time to our 
knowledge, we introduce a novel approach termed deep-learning-enabled multiplexed FPP 
(DLMFPP). DLMFPP enables high-speed 3D imaging, surpassing the camera’s acquisi-
tion rate by nearly an order of magnitude, while preserving spatial resolution. We employ a 
series of fringe images with varying tilt angles. When the speed of projector is higher than 
that of camera, we capture a multiplexed image overlaid with a sequence of fringe patterns. 
DLMFPP can decode the image into its original sequence by DNNs embedded with Fou-
rier transform (FT), PS [26], and ensemble learning [27]. By harnessing each fringe pattern 
to record the scene at different time, it achieves up to 9x temporal super-resolution imag-
ing beyond the camera’s frame rate. In practice, the DLMFPP method can be implemented 
on almost any off-the-shelf FPP system, eliminating the need for complicated optical paths 
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and furnishing a high SNR and ready-to-use solution compared to conventional computa-
tional imaging techniques [28–30]. We validate the effectiveness and versatility of DLMFPP 
through experimental demonstrations on different types of transient scenes, including 
rotating fan blades and bullet fired from a toy gun, showcasing its ability to achieve high-
speed kHz 3D imaging with low-speed cameras operating at around 100 Hz. By tran-
scending the limitations of sensor frame rates, the DLMFPP allows slow-scan cameras to 
quantitatively study dynamic processes with both high spatial and temporal resolution.

Methods
The schematic of the DLMFPP approach is demonstrated in Fig. 1. The projector sequen-
tially projects fringe patterns Ipm with different directions onto the dynamic scene. The pat-
tern sequence can be represented as

where (xp, yp) represents the pixel coordinate of projector, ap is the mean value, bp is the 
amplitude, and m denotes the pattern index m = 1, 2, 3, ...,M (M is the total number of 
the patterns). The phase ϕp

m is assigned as

where f px  and f py  are the frequency in xp , yp directions, respectively, and θ is a scalar 
characterizing the incline of fringes. After modulated by the object surface, the corre-
sponding fringe images Im (shown in Fig. 1) can be expressed as

where (x, y) indicates the pixel coordinate of camera, Am is the average intensity, Bm is 
the modulation, and φm is the phase to be measured. Letters of “MULTIPLEX” in Fig. 1 
represent a dynamic scene, and each Im encodes the scene at different time t. Then, the 
camera captures a multiplexed image ILE overlaid by the sequence of Im with a long 
exposure time. After performing FT on ILE , multiple fundamental frequency compo-
nents (corresponding to Im ) are circularly distributed in the spatial spectrum FLE , occu-
pying distinct locations. Specifically, we consider four principles when designing the 
pattern sequence Ipm : (1) the fringe interval in each Ipm is kept equal to guarantee the con-
sistent defocusing level when capturing the binary pattern sequence; (2) the zero com-
ponent in FLE should be far away from the fundamental components to avoid spectrum 
overlap; (3) the fundamental components of these fringe patterns should be distributed 
in a circular pattern in FLE , which minimizes the harm of spectrum leakage; (4) funda-
mental components near fy axis should be excluded as it is hard to employ this kind of 
near-horizontal fringe pattern to measure 3D shape for a conventional horizontally con-
figured FPP system.

The flowchart of DLMFPP is shown in Fig. 2, where there are two steps to analyze the 
input multiplexed image. Step 1 is to decompose the multiplexed pattern into a fringe 

(1)Ipm(xp, yp) = ap + bpcos[ϕp
m(xp, yp)],

(2)ϕp
m(xp, yp) = 2π f

p
x x

pcosθm + f py y
psinθm ,

(3)θm = (−1)m
(

m

2
+

(−1)m − 1

4

)

θ ,

(4)Im(x, y) = Am(x, y) + Bm(x, y) cos[φm(x, y)],
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pattern sequence, each of which corresponds to the measured object at a moment. Step 2 is 
to analyze the decomposed fringe patterns for phase retrieval. To be specific, inspired by the 
rationalized deep learning framework [31], we propose a multiplexed pattern decomposing 
module (DNN1) that comprises three branches. The spatial decomposing (SD) branch is 
trained to extract the features of the multiplexed image ILE and decompose it in the spa-
tial domain. The frequency decomposing (FD) branch, which is parallel to the SD branch, 
incorporates the physical model of FT into the framework to analyze the multiplexed image 
as follows: (1) it obtains the spatial spectrum FLE of ILE by FT, and feeds its real and imag-
inary components into the FD branch [32]; (2) the branch then decomposes FLE in fre-
quency domain and outputs the real and imaginary parts of the separate spectrums as the 
branch output; (3) inverse FT (iFT) is performed to obtain separate fringe images. The fea-
ture ensemble (FE) branch is engineered to adaptively merge features learned by the SD and 
FD branches with the idea of ensemble learning [27]. This branch can incorporate features 
from both spatial and frequency domains and give the final outputs, i.e., separate fringe 
images I1 − I9 in Fig. 2. In Step 2, we design an augmented fringe pattern analysis (AFPA) 
module (DNN2) embedded with the physical model of PS to retrieve the phase from each 
fringe image. The module receives each separate fringe image Im as input and predicts the 
corresponding numerator Mm and denominator Dm . Then, the wrapped phase φm in Eq. (4) 
is demodulated through an arctangent function

where c is a constant determined by the phase demodulation approach, pattern index 
m = 1, 2, 3, ..., 9 . After that, the absolute phase �m can be acquired with the help of φ′

m 
from another camera via stereo phase unwrapping (SPU) [33], then 3D reconstruction 

(5)φm(x, y) = arctan
cBm(x, y) sin[φm(x, y)]

cBm(x, y) cos[φm(x, y)]
= arctan

Mm(x, y)

Dm(x, y)
,

Fig. 1 Schematic of DLMFPP: The projector sequentially projects fringe patterns Ipm [Eq. (1)] onto the dynamic 
scene, allowing the corresponding modulated fringe images Im [Eq. (4)] to encode the scene at different time 
t. Then the camera captures a multiplexed image ILE with a long exposure time, and the spatial spectrum FLE 
(multiple fundamental components corresponding to Im are circularly distributed) can be obtained by FT 
(pattern index m = 1, 2, 3, ...,M , M is the total number of the patterns). A synthetic scene composed of letters, 
“MULTIPLEX”, is used to illustrate the principle
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can be performed. Notably, in a conventional horizontally  configured FPP system, 
the mapping from phase to 3D coordinates is generally designed for vertical fringes. 
To cope with the case of arbitrarily oriented fringes in this work, we propose the aug-
mented 3D reconstruction (A3DR) method. By creating a unique correspondence value 
xpcosθm + (f

p
y /f

p
x )ypsinθm for every camera pixel coordinate (x,  y), 3D reconstruction 

can be performed from Eq. (S13) with pre-calibrated parameters. For further details on 
system calibration and A3DR, see Supplementary Note 6.

Fig. 2 Flowchart of DLMFPP. A multiplexed image ILE and its spatial spectrum FLE are fed into a multiplexed 
pattern decomposing module (DNN1) comprised of three branches. The DNN1 framework incorporates 
the physical model of FT and the idea of ensemble learning to decompose ILE and output separate fringe 
images Im . The AFPA module (DNN2) embedded with the physical model of PS receives each Im to predict 
the corresponding Mm and Dm , enabling wrapped phase φm calculation via Eq. (5). The absolute phase �m 
is then derived by SPU, and 3D data of #m can be reconstructed by the developed A3DR (pattern index 
m = 1, 2, 3, ..., 9 ). The insert shows the DLMFPP system configuration, consisting of a projector and two 
cameras. The projector sequentially projects nine fringe patterns with different directions onto a moving 
object, then the cameras capture the multiplexed image (shown as ILE ) with a long exposure time
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The SD, FD, FE branches and the AFPA module are constructed by MultiResUnet [34], 
which is a novel architecture that combines MultiRes blocks and residual paths on the 
well-known U-Net framework [35], owing the advantage to reconcile features from dif-
ferent context size, alleviate the disparity between the encoder-decoder features, save 
memory and speed up network training (detailed in Supplementary Note 2 and Fig. S2). 
Network training for multiplexed pattern decomposition and phase retrieval is carried 
out in a supervised manner, and the process is elaborated in Supplementary Note 4 and 
Fig. S4. Moreover, for the objective functions of training, the SD and FD branches use 
joint losses containing data-based and physics-based loss, while the FE branch and the 
AFPA module use only the data-based loss. The combination of physical and data loss 
can effectively improve the recovered accuracy and generalization of the DNNs. Details 
related to the loss functions design are provided in Supplementary Note 5 and Fig. S5. 
By incorporating FT, PS and ensemble learning, DLMFPP embeds more physical prior 
knowledge in the network structure and loss functions to provide reliable phase recov-
ery across various scenes and conditions, significantly improving the generalization abil-
ity of networks.

We developed the DLMFPP system shown in the insert of Fig.  2, composed by two 
CMOS cameras (Vision Research Phantom V611) and a customized projection system 
with an XGA resolution (1024×768) DMD. By functioning in binary (1-bit) mode, the 
DMD is manipulated to achieve a refresh rate of 1,000 fps. Meanwhile, the cameras are 
operated at an image resolution (640×440) with pixel depth of 16 bits. The projection 
system outputs a trigger signal every nine frames, thus the cameras work at a frame rate 
of ∼111.11 Hz. DLP development hardware is used for precisely triggering to ensure sig-
nal synchronization between the projector and the cameras. For more information about 
the system synchronization, see Supplementary Note 1 and Fig. S1. During the training 
stage, we photographed a variety of objects made of different materials (plastic, plaster, 
metal, ceramic, etc.) to generate diverse datasets. In this work, 1,200 groups of images 
were captured, of which 800 groups were used for training and 400 groups for validation. 
Details of training dataset generation can be found in Supplementary Note 3 and Fig. S3.

Results
To evaluate the contribution of each branch in DLMFPP, we measured three scenes 
to conduct  an ablation study as shown in Fig.  3. The ground truths of separate fringe 
images were captured by setting the camera frame rate to 1,000 Hz (same as the DMD 
refresh rate). Then, the ground truths of phase were obtained by 12-step PS, as in Fig. 3e 
(detailed in Supplementary Note 3). Figure 3a shows multiplexed images modulated by 
the scenes (insets show the corresponding Fourier frequency spectrums, locally zoomed 
in for better visibility) and the phase errors of FTP. We can see substantial phase errors 
on the sharp edges of the measured surface, and the average mean absolute error (MAE) 
of these scenes is up to 0.4731 rad. Figure 3b-d show the separate fringe images decom-
posed by the SD, FD, and FE branches, respectively, and the corresponding phase errors 
of the reconstructed results demodulated by AFPA. From the fringe images in Fig. 3b, 
we can observe obvious noise. Meanwhile, blur fringes can be observed around the 
edges of the object as shown in Fig. 3c, which results in significant phase errors with an 
average MAE of 0.2091 rad. Contrastingly, in Fig. 3d, the FE branch harnesses the idea 
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of ensemble learning to integrate features from both the spatial and frequency domains, 
yielding a high-quality restoration of fringe images. The resultant average peak SNR 
(PSNR) ups to 60.88 dB and the average structural similarity index (SSIM) ups to 0.9989. 
By feeding these fringe images into AFPA, we can achieve high-accuracy phase recovery 
with the average MAE of 0.0630 rad.

For dynamic 3D measurements of moving objects, we applied DLMFPP to measure 
a fan with 4 rotating plastic blades. Figure 4a presents a particular frame of the multi-
plexed image ILE and corresponding spectrum FLE (locally zoomed in for better visibil-
ity). Although significant motion blur of the blades is observed in the multiplexed image, 
the proposed DLMFPP can still successfully reconstruct the 3D shape of the blades, as 
shown in Fig. 4b and e. It is noted that the motion blur in DLMFPP is not determined by 
the camera exposure time, but by the projection time, which is near-one-order of magni-
tude-lower than the exposure time of a single camera frame. This greatly reduced expo-
sure time effectively handles the challenges of motion blur of dynamic scene changes, 
thus ensuring accurate 3D reconstruction. For more information on the discussion of 
motion blur in DLMFPP, see Supplementary Note 8 and Fig. S8. Figure 4c plots the dis-
placement of z at 3 selected point locations within 90 ms [A, B, and C in Fig. 4b], reveal-
ing that the rotation period of the fan blades is 45 ms, i.e., the rotation speed is 1,333 
rotations per minute (rpm). Figure 4d shows five fringe images ( I1 , I3 , I5 , I7 , and I9 , corre-
sponding to T = 27, 29, 31, 33, and 35 ms) decoded from the multiplexed image ILE and 
the corresponding 3D model reconstructed by the proposed DLMFPP. Moreover, Fig. 4f 
displays two cross sections of the 3D reconstruction, one of which shows the tangential 

Fig. 3 Ablation study of DLMFPP: a Multiplexed images modulated by 3 different scenes [insets show the 
corresponding spatial spectrums (locally zoomed in)] and phase errors of FTP; b-d separate fringe images 
decomposed by SD, FD, and FE branches, respectively, evaluated by PSNR and SSIM, and phase errors of the 
reconstructed results demodulated by AFPA; e ground truths of separate fringe images and phase, obtained 
by setting the camera frame rate same as the DMD refresh rate (1,000 Hz) and 12-step PS ( #m represents the 
mth pattern index of each scene, and m = 1, 2, 3, ..., 9)
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profile (black dot line) and the other the radial profile (white dot line). The profile of 
the centre hub is shown in the zoomed-in view. The corresponding 3D movie about 
the complete process of DLMFPP and 3D reconstruction results of the whole dynamic 
process of the rotating fan is further provided in Supplementary Movie S1. With this 
experiment, we can see that DLMFPP accurately retrieved nine 3D images with each 
multiplexed image ILE , validating that 1,000 Hz high-speed 3D shape measurement has 
been achieved with cameras running at ∼111.11 Hz. Additionally, we applied DLMFPP 
to image a running fascia gun for a supplementary experiment. It shows that the cyclic 
movement of the gun head has a period of about 35 ms, which corresponds to a speed of 
1,714 rpm of the rotary motor inside the gun. More experimental results are provided in 
Supplementary Note 9, Fig. S9 and Supplementary Movie S3.

To verify the scalability of our DNNs, we developed another system consisting of two 
low-speed cameras (Basler acA640-750um) and the same projection unit. The cameras 
are equipped with zoom lenses that adjust the focal length, aperture size and degree of 
focus to make the field of view and brightness consistent with the existing datasets. So 
we can directly utilize the trained DNNs before. The projector operated at the rate of 
1,080 fps and the camera at 120 fps. For the dynamic experiment, we measured a one-
time transient event: a bullet was fired diagonally downward from a toy gun, and then 
rebounded from the ground. Representative 3D reconstruction results during the event 
are presented in Fig. 5a. The bullet began to appear near the muzzle at 11.1 ms. It flew 
straight forward until 59.3 ms and then hit the ground and rebounded upwards. Three 
points are selected to demonstrate the performance of DLMFPP [A, B, and C in Fig. 5a]. 
The displacements in z direction at selected locations are plotted in insets of Fig.  5a, 
indicating that DLMFPP has accurately recovered the profile of the fast moving bullet 
at different moments. Figure 5b shows the side-view (y-z) of the 3D reconstruction at T 
= 45.4 ms, and Fig. 5c shows the trajectory and the variation of the velocity of the bullet 

Fig. 4 Measurement of a rotating fan by DLMFPP. a The multiplexed image ILE and corresponding spectrum 
FLE (locally zoomed in). b 3D reconstruction of the fan at T = 0 ms. c Displacement of z at 3 selected point 
locations within 90 ms [A, B, and C in (b)]. d Five fringe images ( I1 , I3 , I5 , I7 , and I9 , corresponding to T = 27, 29, 
31, 33, and 35 ms) decoded from the multiplexed image ILE , and the corresponding 3D model reconstructed 
by DLMFPP. e Side-view of (b). f Two cross sections of the 3D reconstruction, one of which shows the 
tangential profile (black dot line) and the other the radial profile (white dot line). The local zoomed-in view 
shows the profile of the centre hub
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during the whole process. The initial speed of the bullet was 2.4 m/s at discharge. It 
accelerated uniformly to 4.6 m/s during the flight and then hit the ground with the speed 
decreased abruptly to 0.8 m/s (refer to Supplementary Movie S2 for more details). The 
experiment demonstrates the scalability of our DNNs for high-speed 3D imaging with 
low-speed cameras and the capability of DLMFPP to capture one-time transient events.

It should be noted that DLMFPP is the first temporally super-resolved 3D imaging 
technique proposed in FPP, while previous deep learning-based approaches were devel-
oped for single-shot 3D imaging [20–23]. The structure, training process, and loss func-
tion design of previous networks cannot meet the necessity for high-accuracy phase 
recovery and measurement in temporally super-resolved 3D imaging, therefore we pro-
posed DLMFPP to address this challenge. To justify the progressiveness of DLMFPP, in 
Supplementary Note 7 and Fig. S6, we provide a comparative study and analysis between 
the proposed DLMFPP and two state-of-the-art deep learning-based approaches. This 
study demonstrates that DLMFPP solves the dilemma of the state-of-the-art methods 
in handling regions with large height variations and demodulates high-accuracy phase 
information from the multiplexed image. DLMFPP achieves the lowest phase error 
with the average MAE of 0.0495 rad, revealing the superior performance achieved from 
DLMFPP’s advanced network design.

For the 3D imaging speed in DLMFPP, the increase of imaging speed depends on 
the number of overlapped images in a multiplexed image. The overlapping number is 
referred to as compression rate (CR). In this work, we employ CR = 9 when the marginal 
benefit between CR and recovered phase accuracy is highest (detailed in the compara-
tive study of different CRs in Supplementary Note 7 and Fig. S7), allowing DLMFPP to 
achieve 9x temporal super-resolution. Practically, to trade off temporal resolution and 
spatial resolution accuracy, the DLMFPP approach is also flexible. If higher phase accu-
racy is required, CR can be reduced appropriately, and vice versa.

Discussion and conclusion
In this work, we have introduced a deep-learning-enabled temporally super-resolved 
3D measurement approach by multiplexed FPP. By temporally embedding a sequence of 
fringe patterns with different tilt angles into a single multiplexed image, DLMFPP allows 

Fig. 5 Measurement of bullet fired from a toy gun by DLMFPP. a 3D reconstruction results at T = 0, 11.1, 45.4, 
59.3, and 88.0 ms, with insets presenting displacements in z direction at A, B, and C locations. b The side-view 
(y-z) of the 3D reconstruction at T = 45.4 ms. c The 3D reconstruction of the scene at T = 90.7 ms, as well as 
the trajectory and the variation of the velocity of the bullet during the whole process
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to achieve high-resolution and high-speed 3D imaging at near-one-order of magnitude-
higher 3D frame rate with conventional low-speed cameras. Experiential results demon-
strate that kHz 3D imaging can be achieved by using cameras merely running at around 
100 Hz without compromising the spatial resolution.

DLMFPP encodes multi-frame temporal information in the spatial dimension, which 
gives this compressive imaging modality the advantage of cost-effective, low bandwidth/
memory requirements, and low power consumption [36]. Moreover, the modality breaks 
through the limitation of 3D imaging speed imposed by the intrinsic frame rate of the 
imaging sensor, allowing it to be further used for ultrahigh-speed imaging when com-
bined with high-speed cameras. This new 3D imaging paradigm opens an avenue for the 
development of high-speed or ultra-high-speed 3D imaging capabilities, thereby push-
ing the boundaries of current 3D imaging technologies.

Compared to conventional computational imaging techniques [28–30], DLMFPP 
system eliminates the need for complex optical modulation hardware (e.g., a spatial 
encoder), avoiding complicated optical paths. Practically, DLMFPP can be implemented 
on almost any off-the-shelf FPP system. This simple optical path avoids photon losses 
and makes greater use of optical information, guaranteeing a high SNR in 3D imaging. 
Moreover, DLMFPP combines the physical models of FT and PS method, and harnesses 
the idea of ensemble learning to integrate features from both the spatial and frequency 
domains. This progressive architecture also ensures the high SNR in high-speed 3D 
imaging with low-speed cameras. From the perspective of space-time-bandwidth prod-
uct (STBP), the multi-frame modulation mechanism of DLMFPP can rationally harness 
the spatio-temporal redundancy in fast changing scenes, thereby better utilizing the 
STBP of sensors compared to conventional single-frame recordings.

Despite promising results in high-speed 3D imaging, DLMFPP still faces challenges. 
For example, the exclusion of near-horizontal fringe patterns leaves the region near fy 
axis in the multiplexed spatial spectrum unused, which exacerbates the harm of spec-
trum overlap, affecting the recovered phase quality. Moreover, due to the trade-off 
between CR and the information capacity of each fringe image, further increasing the 
multiple of temporal super-resolution results in a loss of final phase quality, and vice 
versa. It should also be noted that the maximum speed of DLMFPP is still constrained 
by the projection rate. The speed can be potentially further enhanced by using custom 
physical grating [7] or LED arrays [8, 9], which will be explored in our future research. 
Furthermore, there is an untapped potential of DLMFPP, as latest innovations in deep 
learning can be directly introduced into the method. For example, physics-informed 
learning can bring domain expertise to improve performance [37–40], and all-optical 
neural networks operating at the speed of light can accelerate computations [41–43].
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a b s t r a c t 

How to obtain object information as rich as possible, with the highest possible speed and accuracy from recorded 

optical signals, has been a crucial issue to the pursuit of powerful imaging technologies. Nowadays, the speed of 

ultra-fast photography can exceed one quadrillion. However, it can record only two-dimensional images which 

lack the depth information, greatly limiting our ability to perceive and to understand the complex real-world 

objects. Inspired by recent successes of deep learning methods in computer vision, we present a novel high-speed 

three-dimensional (3D) surface imaging approach named micro deep learning profilometry ( 𝜇DLP) using the 

structured light illumination. With a properly trained deep neural network, the phase information is predicted 

from a single fringe image and then can be converted into the 3D shape. Our experiments demonstrate that 𝜇DLP 

can faithfully retrieve the geometry of dynamic objects at 20,000 frames per second. Moreover, comparative 

results show that 𝜇DLP has superior performance in terms of the phase accuracy, reconstruction efficiency, and 

the ease of implementation over widely used Fourier-transform-based fast 3D imaging techniques, verifying that 

𝜇DLP is a powerful high-speed 3D surface imaging approach. 

1. Introduction 
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It is usually said that the first instance of what we would call high-

peed photography nowadays was to settle the hot dispute “is there a

oment in a horse’s gait when all four hooves are off the ground at

nce? ” in 1872 [1] . Eadweard Muybridge, a pioneer in the field of mo-

ion study, developed an imaging system that involved 12 cameras trig-

ered by the legs of the horse through tripwires, successfully capturing

hotos on photographic glass plates at the shutter speed of near 2000

rames per second (fps) [2] . After that, the major development for high-

peed photography came, as with scientific purposes, in the wake of the

esearches on nuclear weapons during the cold war. With applications

f rotating mirror technologies, streak cameras, and rotating prism cam-

ras [3] , the imaging speed soared up to 100 million fps, i.e., Mfps. In

he late nineteenth century, the high-speed imaging underwent a further

dvancement owing to the great breakthrough in electronic semiconduc-

or devices, leading to film-based cameras replaced gradually by CCD or

MOS based cameras [4] . Nowadays, with the assistance of laser, e.g.,

he femtosecond laser pulse [5] , the imaging speed can even exceed one

uadrillion, i.e., 10 15 fps. Benefiting from the ever-increasing power of

he high-speed photography, many transient events, which happen at

emtosecond to nanosecond time scale and reflect significant fundamen-

al mechanisms, can be analyzed in-depth [6–11] . 
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his fundamental restriction greatly limits our ability to perceive and to

nderstand the complex real-world objects. The past several decades

ave witnessed tremendous development in three-dimensional (3D)

maging technologies in many fields including biomechanics [12] , ge-

materials [4] , industrial manufacturing [13–15] , driven by the rapid

dvances in sensors, optical engineering and computer vision [16–21] .

n general, optical 3D surface imaging techniques can be classified into

wo categories: the passive approaches and the active ones. Stereo vi-

ion techniques, as the representative passive methods, capture inherent

urface textures from two or more viewpoints and calculate 3D shapes

hrough triangulation [22] . However, they are susceptible to uniform

r periodic textures. Compared with the passive sensing, active meth-

ds encode test objects with predesigned signals, thus reducing the de-

endence of the object textures and increasing the accuracy of 3D re-

onstructions. Time-of-flight (ToF) techniques emit a modulated light

ay onto test objects and collect the light scattered back. The distance

s then estimated via multiplying the speed of light by the time delay

f the light pulse [23] . As the 3D reconstruction of ToF is not based

n triangulation, the system can be made very compactly for appli-

ations where portable equipment is preferred. Microsoft Kinect 2 ex-

loits this technique for real-time 3D imaging and finds applications for
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human-computer interactions [24] . But, the depth precision of ToF is 

generally not high for short-range inspections as light travels too fast. 
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purpose [50–54] . These approaches can remove the phase ambiguity 

without greatly increasing the projected images, but would suffer in the 
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Fig. 1. Schematic of 3D surface imaging by structured light illumination. 
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s another extensively used active methods, the structured light tech-

iques illuminate test scenes with 2D spatially varying intensity pattern.

he 3D shape is extracted based on the information from the distortion

f captured structured light patterns. Because of the advantages of favor-

ble flexibility and versatility, 3D surface imaging based on the struc-

ured light illumination is receiving increasing attention, and becoming

ore and more important. The commercial success of these techniques

ncludes Microsoft Kinect 1 [25] , Intel RealSense [26] , Apple iPhone X

27] , and OPPO Find X [28] . Owing to advances of intelligent manu-

acturing, pilotless vehicle, and cloud imaging, the desire to developing

eal-time ( ∼30 fps) or high-speed ( > 10,000 fps) 3D imaging techniques
as never been more apparent [29,30] . 

Rapid developments in high-frame-rate imaging sensors and digital

rojection technology are providing new avenues for the generation of

owerful high-speed 3D surface imaging systems. Compared with high-

peed cameras running at tens of thousands fps or even faster, how-

ver, projectors normally operate at a much lower rate that is often

round 120 fps when gray-scale patterns are projected. Therefore, the

efocusing techniques are developed, with which quasi-sinusoidal fringe

atterns can be projected at the maximum allowed frame rate (typi-

ally more than 1000 fps) with binary dithering techniques and lens-

efocused digital light processing projectors [31,32] . Once the limita-

ion of the system hardware is overcome, the major concern focuses

n the imaging theory, for which the key is to reduce the number

f images required for a single 3D reconstruction. Intuitively, spatial-

ultiplexing or one-shot techniques, e.g., Fourier transform based pro-

lometry (FT) [33–36] , windowed Fourier transform technique (WFT)

37] , wavelet transform technique [38] , and intensity-correlation-based

ethods [39,40] , are very suitable for scanning moving objects. As the

odification can be condensed into a single pattern, these methods have

deal efficiency for high-speed 3D surface imaging. However, their spa-

ial resolution and depth accuracy are not high for discontinuities, e.g.,

bject edges, due to the inherent hypothesis of the continuity and the

moothness for local areas in these methods. 

For high-accuracy 3D surface imaging, researchers typically prefer

ime-multiplexing or multi-shot techniques that can benefit from abun-

ant information collected temporally. Some techniques project many

atterns of random intensity to implement active high-speed stereo-

ision 3D measurements [41,42] . However, the 3D reconstructions tend

o compromise for rapidly moving objects since a relatively long se-

uence of images (usually > 9 frames) is required to extract a single 3D

rame. In contrast, the phase-shifting profilometry (PSP) [43] , which is

ne of the most widely used multi-shot approaches, can produce accu-

ate 3D reconstructions by projecting a small-scale set of phase-shifting

ringe images (minimum three images). Nevertheless, it is still sensitive

o motion even with the minimum images. The reason is the object mo-

ion violates the nominal phase shifts of the raw fringe patterns, leading

o artificial ripples on reconstructed surfaces [44] . Besides, the motiva-

ion to remove the phase ambiguity due to the periodic nature of sinu-

oids is also a challenge for time-critical PSP applications, which can

asily double or even triple the size of the image sequence [45] . 

To reduce the size of the image sequence (captured in the time do-

ain) while collecting comparable amount of information, some re-

earchers suggest strengthening the encoding capability in the space do-

ain. To reduce the images for phase unwrapping, one can have more

han one viewpoints, e.g., using more cameras to capture structured-

ight patterns. Benefiting from the geometric constraint, the methods

an discriminate the fringe order without capturing extra images [46–

9] . But, the weakness is that the structure of the imaging system would

ecome complex. Also, the cost would increase significantly because of

he use of additional high-speed cameras. Alternatively, without resort-

ng to more viewpoints, the spacial coding strategy can also be intro-

uced into the time-multiplexing techniques by condensing two images

nto a single one or reusing the existing patterns with more than one
185
rocess of phase unwrapping when the projected fringe is very dense

55] . Recently, micro FTP ( 𝜇FTP) was developed to measure 3D profiles

or transient scenes at 10,000 fps [32] . Although the dynamic 3D shapes

an be recovered from dense fringe patterns, several uniform images

i.e., pure white images) have to be projected along with the structured-

ight patterns for robust phase retrieval. Thus, the size of overall image

equence is still relatively large, making the 3D imaging sensitive to fast

oving objects. 

In this work, we present a novel micro deep learning profilometry

 𝜇DLP), which enables high-quality 3D shape reconstructions for tran-

ient scenes. The micro means small values for both the frequency vari-

tions and periods of fringe patterns, allowing highly-accurate phase

easurement and high resistance to the global illumination. Deep learn-

ng is a powerful machine learning technique that has shown great suc-

ess in numerous imaging and computer vision applications [56–61] .

hanks to the strength of machine learning, the proposed method shows

uperiority in three aspects to the state-of-art methods. The first one is

he high efficiency. The phase information can be extracted from a sin-

le image via a properly trained neural network. Compared with 𝜇FTP,

t only uses half of the images to obtain a 3D image. Then, the second

dvantage is the high-quality phase measurement. As indicated by our

xperiments, the phase error of 𝜇DLP is only one-third of those of FT

nd WFT and is almost half of that of 𝜇FTP. Further, with only three im-

ges our method can nearly reproduce the ground-truth 3D result that

s calculated with the multi-shot phase-shifting method that uses 36 im-

ges. Last, the proposed method is easy to use. Different from Fourier-

ransform-based methods in which the phase measurement deeply re-

ies on the fine tuning of parameters, e.g., the window size in FT, the

igma, the sampling intervals, and the frequency threshold in WFT, the

resented 𝜇DLP is fully automatic once the neural network has been

rained, which means the exhaustive search for the optimal parameters

an be avoided. Experiments demonstrate that 𝜇DLP is a powerful high-

peed 3D surface imaging approach that can reconstruct high-accuracy

D shapes for transient scenes at 20,000 fps. 

. Theory 

.1. Phase retrieval through a deep neural network 

In 𝜇DLP, the fringe image is captured with a system of structured

ight illumination, which consists of a projector and a camera typically.

ccording to the schematic shown in Fig. 1 , the projector emits a fringe

mage onto the measured object to encode the illuminated surface. The

amera captures the image from a different viewpoint, from which the
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Fig. 2. Schematic of the proposed 𝜇DLP. With a few fringe patterns I 1 ( x, y ), I 2 ( x, y ), and I 3 ( x, y ), the neural network predicts the numerator M t ( x, y ) and the 

denominator D t ( x, y ) for each input fringe image. These intermediate results are then fed into the arctangent function to calculate the phase distribution 𝜙t ( x, y ). 

After phase unwrapping, an unwrapped absolute phase map Φ( x, y ) is obtained and is further converted into the 3D reconstruction. 

stripes are observed with distortion due to the depth variation of the 

object. The phase is then calculated from the captured fringe image, 
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y ), D t ( x, y )} is then fed into the arctangent function ( Eq. (3) ) to obtain 

the wrapped phase map 𝜙t ( x, y ). Next, an unwrapped phase distribution 
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hich works as a cue to compute the 3D information. 

During the image projection, 𝜇DLP exploits several fringe patterns

ith slightly different wavelengths or fringe pitches 
{
𝜆1 , 𝜆2 , … , 𝜆𝑇 

}
. For

apid projection, the sinusoidal patterns are generated in the binary

ode and are projected by a defocused projector [62,63] . The wave-

engths of projected patterns are carefully chosen by considering: First,

he selected 𝜆 is supposed to be small enough, i.e., the frequency should

e sufficiently high for high-quality phase retrieval. Second, the least

ommon multiple ( LCM ) of the wavelengths should be larger than the

orizontal or vertical resolution of the projector so that the phase ambi-

uity can be removed properly. In this work, we project vertical fringes,

hich means 𝐿𝐶𝑀 

(
𝜆1 , 𝜆2 , … , 𝜆𝑇 

)
should be greater than the width of

rojection plane. With the determined wavelengths, the intensity of pro-

ected patterns can be written as 

 

𝑝 

𝑡 
( 𝑥 𝑝 , 𝑦 𝑝 ) = 𝑎 + 𝑏 cos 

( 2 𝜋𝑥 𝑝 

𝜆𝑡 

) 

(1)

here ( 𝑥 𝑝 , 𝑦 𝑝 ) is the pixel coordinate of the projector, and 𝑡 = 1 , 2 , … , 𝑇 .

arameters a and b are the mean value and the amplitude, respectively.

Then, the generated patterns are projected and captured sequen-

ially. The intensity of captured images can be represented as 

 𝑡 ( 𝑥, 𝑦 ) = 𝐴 ( 𝑥, 𝑦 ) + 𝐵( 𝑥, 𝑦 ) cos 𝜙𝑡 ( 𝑥, 𝑦 ) (2)

here ( x, y ) is the pixel coordinate of the camera, A ( x, y ) the background

ntensity, B ( x, y ) the modulation, and 𝜙t ( x, y ) the phase to be recovered.

n most phase measurement techniques, the wrapped phase map is often

etrieved from an inverse trigonometric function: 

𝑡 ( 𝑥, 𝑦 ) = arctan 
𝑀 𝑡 ( 𝑥, 𝑦 ) 
𝐷 𝑡 ( 𝑥, 𝑦 ) 

= arctan 
𝑐𝐵( 𝑥, 𝑦 ) sin 𝜙𝑡 ( 𝑥, 𝑦 ) 
𝑐𝐵( 𝑥, 𝑦 ) cos 𝜙𝑡 ( 𝑥, 𝑦 ) 

(3)

here M t ( x, y ) and D t ( x, y ) denote the numerator and the denominator

f the arctan function, respectively. c is a constant that depends on the
hase demodulation algorithm, e.g., 𝑐 = 0 . 5 for FT and 𝑐 = 

𝑁 

2 for N -step

SP. 

To realize the process of phase retrieval with machine learning, we

onstruct a deep convolutional neural network. As mentioned above,

e prefer small sets of fringe images for high-speed 3D surface imag-

ng. However, one or more assistant phase maps are required for robust

hase unwrapping of dense fringe pattern [45] . Thus, we have a balance

y totally employing three fringe patterns (i.e., 𝑇 = 3 ) for 3D imaging
hat can produce three phase maps, one of which is used for 3D recon-

truction and the rest for reliable phase unwrapping. Fig. 2 demonstrates

he schematic of the proposed method. The neural network is trained to

redict the numerator M t ( x, y ) and the denominator D t ( x, y ) for each

nput image I t ( x, y ). Each pair of numerator and denominator { M t ( x,
186
( x, y ) is obtained by the temporal phase unwrapping algorithm based

n projection distance minimization. Finally, the 3D surface is calcu-

ated from the absolute phase map with calibrated mapping parameters

etween the camera and the projector. 

Note that we presented a machine-learning-based fringe analysis

ethod [56] that employs two neural networks to calculate the phase

nformation. For applications of transient 3D measurements, some im-

rovements have been made in this work. First, 𝜇DLP uses only one

etwork for the phase retrieval, thus easing the learning process and

aving the time cost of the training process. To compensate the influence

f the absence of the background intensity, a more powerful three-scale

ata processing architecture is developed here to perceive the surface

etails and learn the phase extraction. Moreover, the neural network in

DLP can learn fringe patterns of different frequencies simultaneously

nd output the intermediate results for corresponding fringe patterns,

hich improves the measurement efficiency of the phase and 3D con-

ours. 

Fig. 3 shows the internal structure of the neural network in 𝜇DLP.

he labeled dimension of each layer or block indicates the size of the

utput data. The inputs of the network are the fringe images { I 1 ( x, y ),

 2 ( x, y ), I 3 ( x, y )}. The size of each input image is W ×H pixels, where W

s the width and H is the height. Three data-flow paths are constructed

o process the input images at different scales. In the first path which

eeps the original size of input data, the fringe images are successively

rocessed by a convolutional layer, a group of residual blocks and an-

ther convolutional layer. C is the number of filters used in the convo-

utional layer and equals the number of channels of output data. Each

lter is used to extract a feature map (channel) for the output tensor.

he same input data also undergoes similar but more sophisticated pro-

edures in the second and the third paths where the data are first down-

ampled by ×2 and ×4 for high-level perceptions and then upsampled
o match the original dimensions. Eventually, the results of each data-

ow path are concatenated to produce the final outputs that feature

hree pairs of { M ( x, y ), D ( x, y )} corresponding to every input image

 t ( x, y ). With the design of multi-scale data-flow paths, geometric de-

ails that the input images contain can be perceived precisely, ensuring

he estimation of high-quality phase information. Note that it is diffi-

ult to output the wrapped phase directly with the input of the fringe

mage, since the sharp discontinuity at the 2 𝜋 jump is hard to learn by

he neural network. Therefore, for high-accurate phase estimations, the

eep neural network is trained to calculate the intermediate results that

ary continuously in space, i.e., the numerator and the denominator.

urther details about the architecture of the network are provided in

ppendix A. 
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Fig. 3. Architecture of the proposed multi-scale deep neural network. The input data have three channels containing the three fringe images. The neural network 

has three data-flow paths that involve different kinds of layers/blocks, which can process the input data at different scales and extract useful information with 

downsampling rates of ×1, ×2 and ×4, respectively. The outputs of the network are three pairs of numerator and denominator that correspond to each fringe 
pattern. 

2.2. Phase unwrapping and 3D reconstruction 
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After feeding the estimated pair of numerator and denominator into

q. (3) , 𝜇DLP calculates wrapped phase maps 𝜙t ( x, y ) for each in-

ut fringe image. To remove the phase discontinuity of 𝜙t ( x, y ), we

se the temporal phase unwrapping approach based on the projec-

ion distance minimization [32] . Given a vector of wrapped phase 𝜑 =
𝜙1 , 𝜙2 , … , 𝜙𝑇 

)𝑇 𝑟𝑠 
of the pixel ( x, y ), where Trs means the transposition,

he vector of corresponding unwrapped phase 𝚽 = 

(
Φ1 , Φ2 , … , Φ𝑇 

)𝑇 𝑟𝑠 
an be expressed as 

= 𝛗 + 2 𝜋𝐤 (4)

here 𝐤 = 

(
𝑘 1 , 𝑘 2 , … , 𝑘 𝑇 

)𝑇 𝑟𝑠 
is the vector of integer fringe order that we

alculate for phase unwrapping. By taking the wavelengths into account,

e have the following relationship 

1 𝜆1 = Φ2 𝜆2 = … = Φ𝑇 𝜆𝑇 (5)

Eq. (5) reveals that the unwrapped phase 𝚽 = 

(
Φ1 , Φ2 , … , Φ𝑇 

)𝑇 𝑟𝑠 
of

ach pixel forms a line in space R T . Therefore, with the mentioned con-

traint that 𝐿𝐶𝑀 

(
𝜆1 , 𝜆2 , … , 𝜆𝑇 

)
> 𝑊 

𝑝 where W 

p is the width of projec-

ion plane in pixel, there will be a unique qualified fringe order vec-

or k that corresponds to the measurement range. In theory, the un-

rapped phase 𝚽 of each pixel would align perfectly along the line

xpressed by Eq. (5) . However, the unwrapped phase often scatters

round the line due to the effects of random noise and non-sinusoidal

ringe intensity in reality. Therefore, the distance between each candi-

ate unwrapped phase and its projection onto this line is calculated.

he desired 𝚽 = 

(
Φ1 , Φ2 , … , Φ𝑇 

)𝑇 𝑟𝑠 
is determined when the distance is

inimized. 

As a group of unwrapped phase maps is obtained after phase unwrap-

ing, one of them is selected as Φ( x, y ) for the 3D reconstruction. In the
erspective of the camera, given the point ( x w , y w , z w ) of test object is

maged by pixel ( x, y ), we have the following projection relationship in
187
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𝑧 𝑤 
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⎟ ⎟ ⎟ ⎟ ⎠ 
(6)

here s c is a scaling factor, P c is the projection matrix of camera that is

he product of the extrinsic parameter matrix and the intrinsic parameter

atrix of the camera. In the other perspective of projector, there is a

imilar process when the projector is considered as an inverse camera 
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(7)

here s p is a scaling factor, P p is the projection matrix of projector that is

he product of the extrinsic parameter matrix and the intrinsic parameter

atrix of the projector. Given the unwrapped phase of this pixel is Φ, the
elationship between the camera pixel and its corresponding projector

ixel can be expressed by 

( 𝑥, 𝑦 ) = 

2 𝜋
𝜆
𝑥 𝑝 (8)

Thus, the 3D coordinate can be calculated by combing Eqs. (6) and

7) , giving 
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⎞ ⎟ ⎟ ⎠ = 
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𝑝 𝑐 11 − 𝑝 𝑐 31 𝑥 𝑝 𝑐 12 − 𝑝 𝑐 32 𝑥 𝑝 𝑐 13 − 𝑝 𝑐 33 𝑥 

𝑝 𝑐 21 − 𝑝 𝑐 31 𝑦 𝑝 𝑐 22 − 𝑝 𝑐 32 𝑦 𝑝 𝑐 23 − 𝑝 𝑐 32 𝑦 

𝑝 𝑐 11 − 𝑝 𝑐 31 𝑥 
𝑝 𝑝 𝑐 12 − 𝑝 𝑐 32 𝑥 

𝑝 𝑝 𝑐 13 − 𝑝 𝑐 33 𝑥 
𝑝 

⎞ ⎟ ⎟ ⎠ 
−1 ⎛ ⎜ ⎜ ⎝ 
𝑝 𝑐 34 𝑥 − 𝑝 𝑐 14 
𝑝 𝑐 34 𝑦 − 𝑝 𝑐 24 
𝑝 𝑐 34 𝑥 

𝑝 − 𝑝 
𝑝 

14 

⎞ ⎟ ⎟ ⎠ (9) 

The projection matrices of the camera and the projector can be ob-

ained with the system calibration [46] . Note that gigabyte-scale image

ata are often recorded in applications of high-speed imaging. Although

he 3D reconstruction can be carried out off-line, the time cost would be

till very high. To increase the calculation speed, we suggest Eq. (9) to

e implemented with a graphics processing unit [64] or several look-up

ables [65] , which can greatly save the time cost of the 3D reconstruc-

ion. 
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Fig. 4. Testing the trained network using a scene which is not present in the 

training phase. (a) The measured scene; (b) fringe image I 1 ( x, y ) with 𝜆1 = 9 ; (c) 
fringe image I 2 ( x, y ) with 𝜆2 = 11 ; (d) fringe image I 3 ( x, y ) with 𝜆3 = 13 . 
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To validate the proposed method, we built a structured light illu-

ination system that consisted of a projector (DLP 4100, Texas Instru-

ents) with resolution of 1024 ×768 and a high-speed camera (V611,
ision Research Phantom) with resolution of 640 ×440 and with pixel
epth of 8 bits. The camera equipped with a lens of 24 mm focal

ength. The distance between the test object and the imaging system

as about 1.5 m. The wavelengths of projected images were selected

s 
{
𝜆1 = 9 , 𝜆2 = 11 , 𝜆3 = 13 

}
, which provided unambiguous 3D recon-

tructions for the whole projection range (i.e., 𝐿𝐶𝑀 ( 9 , 11 , 13 ) = 1287 >
024 ). 
The implementation of 𝜇DLP has two steps: training and testing. In

he training stage, the training data were collected from different scenes.

nalogous to traditional approaches of structured light illumination that

equire fringes with enough signal-to-noise ratio or without saturated

ixels, 𝜇DLP also prefers the training objects without very dark or shiny

urfaces. Otherwise, the training process would be damaged, since it is
ig. 5. Predicted results of the trained neural network. Each row shows the estima

ringe image. 

420 

188
hifting method, we captured 1620 different fringe patterns and their

orresponding ground-truth data for each wavelength (see Appendix B

or more details on the collection of the training data). The neural net-

ork was implemented using TensorFlow framework (Google) and was

omputed on a GTX Titan graphics card (NVIDIA). To monitor during

raining the accuracy of the neural network on the data that it has never

een before, we created a validation set including 120 fringe images

rom 10 validation scenes which were separate from the training scenar-

os. With 120 epochs of training, the training loss and the validation loss

f the network converged. And there is not overfitting to our training

ataset. We provide further details of the training results in Appendix

. 

.1. The performance of 𝜇DLP for static scene 

To test the performance of the trained neural network, we measured

 static scenario that includes two isolated plaster models, as shown

n Fig. 4 (a). Note that our neural network never sees these models in

he training stage. Fig. 4 (b)–(d) are the captured fringe images I 1 ( x, y ),

 2 ( x, y ), and I 3 ( x, y ), respectively. With these images, the trained neu-

al network predicted the numerator and the denominator for each of

he input fringe image. The results are shown in the first two columns

f Fig. 5 . The estimated numerators and denominators were then fed

nto Eq. (3) to calculate the wrapped phase maps that are shown in the

hird column of Fig. 5 . Finally, we calculated the unwrapped phase dis-

ributions that are displayed in the last column of Fig. 5 . As we can see,

he discontinuity have been removed completely for all of the wrapped

hase. 

We chose one of the unwrapped phase maps, i.e., Φ2 ( x, y ), to inves-
igate the quality of the phase estimated by 𝜇DLP. In the investigation,

2-step phase-shifting method was used to calculate a reference phase

ap which was unwrapped in the same way. Moreover, we also applied

T, WFT, and 𝜇FTP for comparison. Fig. 6 shows the phase error of each

ethod. We can see the errors of WFT and FT are more significant than

hose of 𝜇FTP and 𝜇DLP. Further, 𝜇DLP shows better performance than

FTP due to less phase errors observed at the object edges. To compare

he error maps in detail, we studied two recovered areas of complex sur-

aces, as can be seen in Fig. 7 . The selected regions are the hair of the left

odel and the face of the right one. These two regions of interest (ROI)

ave rich details, which can be used to evaluate the capability of han-
ted numerator, denominator, wrapped phase, and unwrapped phase for each 
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Fig. 6. Comparison of the phase error distribution for methods: (a) WFT, (b) FT, (c) 𝜇FTP, and (d) 𝜇DLP. 

Fig. 7. Comparison of the phase error of two ROI. The 

first ROI is selected from the hair of the left model, and 

the second is picked from the face of the right model. 

The zoom-in phase error of different approaches are 

demonstrated for each region. 

Fig. 8. 3D reconstructions of the methods: (a) WFT, (b) FT, (c) 𝜇FTP, (d) 𝜇DLP, and (e) 12-step phase-shifting method (ground truth). 

Table 1 

Quantitative comparison of the proposed 

𝜇DLP with WFT, FT and 𝜇FTP in terms of MAE 

of unwrapped phase and the required number 

of images. 

WFT FT 𝜇FTP 𝜇DLP 

MAE (rad) 0.36 0.26 0.13 0.077 

Images 3 3 6 3 

dling profiles with fine structures. In Fig. 7 , we can observe WFT has the 

largest phase error, especially for the region of hair. By contrast, FT per- 
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Fig. 9. Amplified views of the 3D reconstructions of four ROI: The face of the 

left model, the pedestal of the left model, the face of the right model, and the 

arms of the right model. 

shifting method. From the 3D reconstruction of FT, the result features 

many grainy distortions that are mainly due to the inevitable spectra 

l  

a  

a  

s  

l  
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ormed better than WFT as there are less errors at the reconstructed hair.

ut, it still failed to accurately retrieve the phase of the facial contour

f the right model. In contrast to WFT and FT, 𝜇FTP shows increased

ut yet not high enough accuracy for these areas. As to 𝜇DLP, it has the

east phase errors for both the hair of the left model and the details of

he face of the right one. For quantitative evaluation, the mean abso-

ute error (MAE) of unwrapped phase and the number of used images

or the phase retrieval are shown in Table 1 . Although the same images

re used, the error of 𝜇DLP is smaller than one-third of those of WFT

nd FT. Compared with 𝜇FTP, 𝜇DLP only exploited half of the patterns

hile improved the phase accuracy by almost 50%. 

Further, we converted the unwrapped phase maps into 3D rendered

eometries, as shown in Fig. 8 . Also, several ROI were selected for the

etailed comparison. Fig. 9 shows the enlarged views of reconstructions

f the face and the pedestal of the left model, and the face and the

rms of the right model. From the result of WFT, the general profiles

f these regions have been recovered but with significant loss of details

ompared with the reference that was reconstructed by 12-step phase-
189
eakage and overlapping in the frequency domain. In contrast to WFT

nd FT, 𝜇FTP successfully retrieved some fine structures, e.g., the nose

nd the mouse of the right model. But, it still failed to preserve a few

harp edges. Finally, from the result of our method, we can see the deep-

earning based approach yielded the highest-quality 3D reconstruction,
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Fig. 10. 3D surface imaging of an electric fan rotating at different speeds by 𝜇FTP. (a)–(c) Images captured at 1000 rpm, 3000 rpm, and 5000 rpm with their 

corresponding 3D reconstructions. 

Fig. 11. 3D surface imaging of an electric fan rotating 

at different speeds by the proposed 𝜇DLP. (a)–(c) Im- 

ages captured at 1000 rpm, 3000 rpm, and 5000 rpm 

with their corresponding 3D reconstructions. 

which almost reproduced the reference 3D model. It is worthwhile to 

mention that only three images were used in our method while 12 ×3 
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tem kept capturing the images at 20,000 fps for both approaches. As the 

phase information was extracted from a pair of images (a fringe image 
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mages were employed by the 12-step phase-shifting method. This exper-

ment verifies that 𝜇DLP can produce high-fidelity phase measurements

nd 3D reconstructions, and is superior to the state-of-art high-speed 3D

urface imaging approaches regarding the accuracy and efficiency. 

.2. The performance of 𝜇DLP for dynamic scene 

We measured an electric fan rotating at a high speed to show 𝜇DLP’s

erformance of handling fast rotating objects. The radius of the fan is

bout 50 mm. For comparison, we also used the 𝜇FTP to test the same

cene. By tuning the input current (from 0.3A to 5A), we let the fan ro-

ate from 1000 rotations per minute (rpm) to 5000 rpm. Fig. 10 shows

he images captured by 𝜇FTP and the corresponding surface reconstruc-

ions when the fan rotated at about 1000 rpm, 3000 rpm, and 5000 rpm,

espectively. During the tests, the fan rotated clockwise, and the sys-
190
nd a plain image) in 𝜇FTP, it reconstructed the 3D surface at 10,000 fps.

n Fig. 10 , we can observe that within a period of 3D reconstruction the

eft blade shifted upward about two and six pixels respectively with the

otating speed of 1000 rpm and 3000 rpm. Under these conditions, 𝜇FTP

uccessfully measured the contour of the blades. However, when the fan

ccelerated to 5000 rpm, several areas were retrieved with many errors

s can be observed from Fig. 10 (c). The reason lies in the fact that 𝜇FTP

xploited six images to reconstruct a single 3D frame. When the speed

eached up to 5000 rpm, the left blade moved ∼9 pixels during the cap-
ure of the six images. Because of the long period of the image capture,

he 3D reconstruction becomes fragile for the object motion. 

By contrast, 𝜇DLP can reconstruct 3D shapes at 20,000 fps with the

act that the height-related phase was measured from a single fringe

mage. Fig. 11 shows the captured images and the corresponding recov-

red 3D results of 𝜇DLP. Although the speed increased to 5000 rpm, our
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Fig. 12. Measurement of a dynamic scene that includes a static model and a falling table tennis, which are also not present in the training process. The first row 

shows captured fringe images at five different moments, and the second the corresponding 3D reconstructions obtained through 𝜇DLP. 

Fig. 13. Investigation of the speed of the table tennis. (a) 

The speed of the table tennis during the fall; (b) the am- 

plified view of the red box in (a) showing the change of 

speed at the moment when the sphere hit the ground. 

method can still measure the surface robustly. As fewer images were 

used by 𝜇DLP, the motion caused a shift of merely about 4 pixels as can 
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e seen in Fig 11 (c), which did not affect the 3D reconstruction. From

his experiment, thanks to the powerful computational capability of ma-

hine learning, the number of images can decrease significantly, which

s favorable for overcoming the influence of object motion and dealing

ith fast moving objects. 

Then, another dynamic scene was measured to further validate

DLP’s capability of handling transient events. The scene consisted of

 static plaster model and a falling table tennis. During the measure-

ent, the fringe patterns were projected repeatedly onto the scene and

he camera was synchronized with the projector at 20,000 fps. The first

ow of Fig. 12 shows the captured fringe images I 2 ( x, y ) at five different

oments. We can see in this transient process the table tenuis gradually

ell to the lowest point, and then bounced after hitting the ground. The

ynamic process was retrieved by 𝜇DLP and is shown in Visualization

. The 3D images corresponding to the selected moments are displayed

n the second row of Fig. 12 . We can observe that both the static model

nd the dropping sphere have been faithfully reconstructed with the

eep-learning based technique. 

Further, we analyzed the velocity of the falling table tennis using

he retrieved geometry. First, the 3D point cloud of the table tennis was

tted to the function of sphere. Then, we estimated the center of the

phere, and calculated the speed by computing the displacement of the

enter between successive 3D frames. The velocity of the sphere dur-

ng this transient event is shown in Fig. 13 (a). As the measurement just

tarted after the fall, the table tennis had an initial velocity which is

bout 1.36 m/s. As time went on, it moved faster due to the acceler-

tion of gravity. When the velocity reached the maximum, the sphere

it the ground. Fig. 13 (b) shows the speed of the sphere before and

fter the rebound. We can see the table tennis had the maximum ve-
191
nd, the velocity reduced to 1.62 m/s and 0.37 m/s. Then, the speed

ent up instantly to 1.49 m/s due to the elastic potential energy. We

an see the speed at this moment is smaller than the previous maxi-

um velocity. The reason could be the fact that some of the energy

as consumed to overcome the damping effect during the energy con-

ersion. Next, the table tennis gradually raised but with a diminishing

peed until it reached a point where the velocity came close to zero.

rom the overall process, we can see it happened in less than 0.25 s.

lthough the time period is very short, 𝜇DLP reconstructed the 3D

hape of the falling sphere accurately and analyzed the velocity success-

ully with the geometry information. This experiment demonstrates that

DLP can not only reconstruct 3D shapes of the dynamic objects but also

e applied to the study of some key physical quantities of the transient

vents. 

.3. Quantitative evaluation of 3D reconstruction accuracy 

Last but not least, we measured a pair of gauge spheres made from ce-

amic to demonstrate the accuracy of 3D reconstruction quantitatively.

he shape of the gauge spheres have been calibrated by a coordinate

easurement machine. Fig. 14 (a) shows the tested spheres whose radii

re 25.398 mm and 25.403 mm, respectively, and their center-to-center

istance is 100.069 mm. With the proposed method, we computed the

D point cloud and fitted the 3D points into the sphere model. The re-

onstructed result is shown in Fig. 14 (b), where the “jet ” colormap is

sed to represent data values of reconstruction errors. The radii of re-

onstructed spheres are 25.449 mm and 25.470 mm, with the deviations

f 0.051 mm and 0.067 mm respectively. The measured center-to-center

istance is 100.134 mm with the error of 0.065mm. Further, Figs. 14 (c)
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Fig. 14. Quantitative analysis of the recon- 

struction accuracy of 𝜇DLP. (a) Measured ob- 

jects: a pair of gauge spheres; (b) 3D recon- 

struction with accuracy analysis; (c) histogram 

of the 3D error of sphere A; (d) histogram of 

the 3D error of sphere B. 

and 14 (d) show that the root-mean-square error (RMSE) of the spheres 

are 0.059 mm and 0.067 mm respectively. Since the measured shapes 
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re very close to the ground truth, this experiment validates that our

ethod can provide reliable phase information as well as high-accuracy

D measurements. 

. Conclusion 

In this work, we present a novel high-speed 3D surface imaging ap-

roach 𝜇DLP that can reconstruct dense and precise 3D shapes of tran-

ient events. Different from most of fast 3D imaging techniques using

tructured light illumination, 𝜇DLP can extract phase information from

 single fringe image through a properly trained deep neural network.

ith only several fringe images of slightly different wavelengths, unam-

iguous high-quality 3D reconstructions can be obtained. 

𝜇DLP has three major advantages over the existing high-speed 3D

maging techniques. The first one is the high-accuracy phase retrieval.

rom our experiment, the phase error of 𝜇DLP is smaller than one-third

f those of FT and WFT, and is almost half of that of 𝜇FTP. Moreover,

DLP can preserve details for fine structures or edges of test objects,

esulting in the 3D reconstruction that is even comparable to that of 12-

tep phase-shifting method. Next, the second advantage of 𝜇DLP is the

igh efficiency. According to experimental results, 𝜇DLP leveraged only

alf of the patterns of 𝜇FTP but achieved nearly doubled phase preci-

ion. Also, 𝜇DLP used only three images to produce a high-quality 3D

econstruction that is close to that of 12-step phase-shifting method, by

hich, however, 36 fringe images were employed. Last, 𝜇DLP is easy to

mplement. Unlike the approaches based on Fourier transform, the per-

ormance of which heavily relies on tuning parameters, e.g., the window

ize for FT, the sigma, the sampling intervals, and the frequency thresh-

ld for WFT, 𝜇DLP is fully automatic and does not require a manual pa-

ameter search to optimize its performance once the neural network has

een trained. Owing to these merits, 𝜇DLP can faithfully reconstruct 3D

hapes of fast moving objects at 20,000 fps as demonstrated by the ex-

erimental result. The rate of 3D reconstruction can be further increased

nce more powerful equipment is in use. We believe the proposed 𝜇DLP

ould narrow the gap between the high-speed 3D imaging and the high-

ate 2D photography, providing new insights for extensive studies and

pplications. 
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ppendix A. Architecture and training of the neural network 

The input fringe patterns are handled by three different data-flow

aths, as demonstrated in Fig. 3. In the first path which keeps the orig-

nal size of input data, the fringe images are successively processed by

 convolutional layer, a group of residual blocks and another convo-

utional layer. Meanwhile, the same input data undergoes similar but

ore sophisticated procedures in the second and the third paths where

he data are first downsampled by ×2 and ×4 for high-level perceptions
nd then upsampled to match the original dimensions. The downsam-

ling is achieved through a max-pooling layer [66] . For each channel

f the input, the pooling layer finds the maximum value in a 2 ×2 or
 ×4 neighborhood. It then replaces the pixels in the 2 ×2 or 4 ×4 win-
ow with the found pixel of the maximum value. Therefore, the size of

utput is reduced by half/quarter for both the height and the width. 

In the convolutional layers, the kernel size is 3 ×3 and the convo-
ution stride is one. Zero-padding is used to control the spatial size of

he output data, so that the input and output height and width are the

ame. The output of the convolutional layer is a three-dimensional (3D)

ensor of shape ( H, W, C ), where H and W are the height and width in

ixels of the input fringe pattern. C is the number of filters used in the

onvolutional layer and equals the number of channels of output data.

ach filter is used to extract a feature map (channel) for the output ten-

or. Therefore with more filters, the convolutional network can perceive

ore details of measured surfaces. But the cost is that the network will

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/100014103
https://doi.org/10.13039/501100013058
https://doi.org/10.13039/501100010035
https://doi.org/10.13039/501100010014
https://doi.org/10.13039/501100012226
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Fig. A1. Architecture of the residual block. 

Fig. A2. (a) Architecture of the upsampling block; (b) diagram of the upsam- 

pling process. 

consume more time during training. Thus, we have 𝐶 = 50 filters in the 
work to achieve a balance. Except for the last convolutional layer which 
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Fig. A3. Loss curve of the training and validation set for the neural network. 

where 𝐺 
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𝑡 
and 𝐺 

𝐷 
𝑡 
are the ground-truth numerator and denominator for 

the input fringe image I t . 𝑌 
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s activated linearly, the rest ones use the rectified linear unit (ReLU) as

ctivation function, i.e., 𝑅𝑒𝐿𝑈 ( 𝑥 ) = 𝑚𝑎𝑥 ( 0 , 𝑥 ) . Compared with other ac-
ivation functions, e.g., sigmoid function [67] , it has been demonstrated

o enable better training of deeper networks [68] . 

In our network, we also used residual blocks whose architecture is

hown in Fig. A1 . The residual framework is composed of 2 sets of con-

olutional layer (Conv) activated by ReLU stacked one above the other

69] . It creates a shortcut between the input and output and can solve

he degradation of accuracy as the network becomes deeper, thus easing

he training process. To match the dimension of the original image, we

psample the output data from residual blocks using the upsampling

lock as shown in Fig. A2 (a). The data first passes through a convo-

utional layer with ReLU activation. We then use quadruple filters to

xtract features from the input for providing rich information for the

ollowing upsampling, whose schematic is shown in Fig. A2 (b). For the

psampled channel x , it is generated by original channels from 4 𝑥 − 3 to
 x , thus allowing the output data with ×2 spatial resolution. Next, the
utputs of these three data flow paths are concatenated into a tensor

ith triple channels. Finally, the last convolutional layer yields a six-

hannel output datum which consists of three pairs of numerator M ( x,

 ) and denominator D ( x, y ). The reason why we have the last convolu-

ional layer to be linear is that the neural network is trained to predict

he numerator and the denominator which can be negative. 

To train the network, we minimize the mean-squared-errors of the

utput numerators and the output denominators with respect to the

round truth, which are obtained using the 12-step phase-shifting al-

orithm. The parameters of the network, i.e., the weights, bias and con-

olutional kernels, are trained using the backpropagation [70] . Thus,

he loss function is computed as 

𝑜𝑠𝑠 ( 𝜃) = 

1 
𝐻 ×𝑊 

3 ∑
𝑡 =1 

( ‖‖‖𝑌 𝑀 

𝑡 
( 𝜃) − 𝐺 

𝑀 

𝑡 

‖‖‖2 + 

‖‖‖𝑌 𝐷 𝑡 
( 𝜃) − 𝐺 

𝐷 
𝑡 

‖‖‖2 
) 

(A1)
193
ator predicted by the network with the parameter space 𝜃 that includes

he weights, bias and convolutional kernels. 

During the training, the network uses the score of loss function as a

eedback signal to adjust the parameters in 𝜃 by a little bit, in a direc-

ion that would lower the loss score. To this end, the adaptive moment

stimation (ADAM) is used in our networks to tune the parameters for

nding the minimum of the loss function [71] . In the implementation of

DAM, we start the training with a learning rate of 10 −4 . We drop it by
 factor of 2 if the validation loss has stopped improving for 10 epochs,

hich helps the loss function get out of local minima during training.

o characterize the training, we plot the progression of the training and

alidation loss over training epochs, i.e., the number of iterations in the

ackpropagation over all of the dataset. Fig. A3 shows the loss curves

onverge after 120 epochs. From both curves, we can see there is not

verfitting to our training dataset. As to the time cost, the training over

00 epochs took 3.16 hours. 

ppendix B. Collection of training data 

Prior to practical measurements, the developed neural network

eeds a training process in which the network learns to retrieve the

hase. To obtain the ground-truth data used to train the neural network,

e exploit the N -step phase-shifting method as it allows precise phase

easurements. With this method, the captured phase-shifted fringe pat-

erns with different wavelengths can be written as 

 

𝑡 
𝑛 
( 𝑥, 𝑦 ) = 𝐴 ( 𝑥, 𝑦 ) + 𝐵( 𝑥, 𝑦 ) cos 

[
𝜙𝑡 ( 𝑥, 𝑦 ) − 𝛿𝑛 

]
(B1)

here 𝑛 = 0 , 1 , … , 𝑁 − 1 indicates the step of phase shift, and 𝑡 = 1 , 2 , 3
mplies the used wavelengths. 𝛿n is the phase shift that equals 

2 𝜋𝑛 
𝑁 
. With

he least square method, the ground-truth phase can be calculated by 

𝑡 ( 𝑥, 𝑦 ) = arctan 
∑𝑁−1 
𝑛 =0 𝐼 

𝑡 
𝑛 
( 𝑥, 𝑦 ) sin 𝛿𝑛 ∑𝑁−1 

𝑛 =0 𝐼 
𝑡 
𝑛 
( 𝑥, 𝑦 ) cos 𝛿𝑛 

(B2)

According to Eq. (B2) , the numerator and the denominator can be

xpressed as 

 𝑡 ( 𝑥, 𝑦 ) = 

∑𝑁−1 
𝑛 =0 

𝐼 𝑡 
𝑛 
( 𝑥, 𝑦 ) sin 𝛿𝑛 (B3)

 𝑡 ( 𝑥, 𝑦 ) = 

∑𝑁−1 
𝑛 =0 

𝐼 𝑡 
𝑛 
( 𝑥, 𝑦 ) cos 𝛿𝑛 (B4)

Equations (B3) and (B4) are used to calculate the ground-truth nu-

erator and denominator that are exploited to train the neural network.

In our experiments, three sets of 12-step phase-shifting fringe pat-

erns with wavelengths 
{
𝜆1 = 9 , 𝜆2 = 11 , 𝜆3 = 13 

}
were generated ac-

ording to Eq. (B1) . These patterns were then projected onto different

easured objects. The camera captured the reflected fringe patterns si-

ultaneously at a different viewpoint and transferred them to our com-

uter. In our experiment, we collected the training data from 45 differ-

nt scenes including simple and complex objects. For each scene, we

ecorded 12 ×3 phase-shifting fringe patterns. Thus, 1620 fringe im-
ges were collected for all of the scenes. The captured training data are
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Fig. B1. The collected training data. The first 

column shows different tested scenarios. For each 

of them, we captured three sets of 12 phase- 

shifting fringe patterns and totally obtained 540 

training input images for fringe images with 

three different wavelengths, as demonstrated in 

the second to the fourth column. 

Fig. B2. Ground truth of the collected training data. The first column shows the tested scenarios. Within each set of fringe patterns of the same wavelengths, 

we calculated the ground-truth numerator and denominator by the 12-step phase-shifting algorithm. The second to the fourth columns displays the ground-truth 

numerator computed through Eq. (B3) . The fifth to the seventh column shows the ground-truth denominator obtained through Eq. (B4) . 

demonstrated in Fig. B1 . The first column shows the measured scenes. 

The second to the fourth column shows the captured fringe images with 
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ifferent wavelengths, respectively. Within each set of fringe patterns

f the same wavelength, we calculated the corresponding ground-truth

ata by the 12-step phase-shifting algorithm. The results are shown in

ig. B2 , where the second to the fourth column displays the ground-

ruth numerator, and the fifth to the seventh column shows the ground-

ruth denominator. It is noted that before being fed into the networks,

he raw fringe images { I 1 ( x, y ), I 2 ( x, y ), I 3 ( x, y )} were divided by 255

or normalization, which can make the learning process easier for the

etwork. Moreover, for a preferable selection of training objects, one

s suggested choosing objects without very dark or shiny surfaces to en-

ure captured fringe images with enough signal-to-noise ratio or without

aturated points. 
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ABSTRACT
Fringe projection profilometry (FPP) has become a more prevalently adopted technique in intelligent manufacturing, defect detection,
and some other important applications. In FPP, efficiently recovering the absolute phase has always been a great challenge. The stereo
phase unwrapping (SPU) technologies based on geometric constraints can eliminate phase ambiguity without projecting any additional
patterns, which maximizes the efficiency of the retrieval of the absolute phase. Inspired by recent successes of deep learning for phase
analysis, we demonstrate that deep learning can be an effective tool that organically unifies phase retrieval, geometric constraints, and
phase unwrapping into a comprehensive framework. Driven by extensive training datasets, the neural network can gradually “learn”
to transfer one high-frequency fringe pattern into the “physically meaningful” and “most likely” absolute phase, instead of “step by
step” as in conventional approaches. Based on the properly trained framework, high-quality phase retrieval and robust phase ambigu-
ity removal can be achieved only on a single-frame projection. Experimental results demonstrate that compared with traditional SPU,
our method can more efficiently and stably unwrap the phase of dense fringe images in a larger measurement volume with fewer cam-
era views. Limitations about the proposed approach are also discussed. We believe that the proposed approach represents an important
step forward in high-speed, high-accuracy, motion-artifacts-free absolute 3D shape measurement for complicated objects from a single
fringe pattern.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0003217., s

I. INTRODUCTION

Optical non-contact three-dimensional (3D) shape measure-
ment techniques have been widely applied for many aspects, such
as intelligent manufacturing, reverse engineering, and heritage dig-
italization.1 The fringe projection profilometry (FPP)2 is one of

the most popular optical 3D imaging techniques due to its sim-
ple hardware configuration, flexibility in implementation, and high
measurement accuracy.

With the development of imaging and projection devices, it
becomes possible to realize the high speed 3D shape measurement
based on FPP.3–7 Meanwhile, the acquisition of high-quality 3D
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information in high-speed scenarios is increasingly crucial to many
applications, such as online quality inspection, stress deformation
analysis, and rapid reverse molding.8,9 To achieve 3D measurement
in high-speed scenarios, efforts are usually carried out by reduc-
ing the number of images required per reconstruction to improve
the measurement efficiency. The ideal way is to obtain 3D data in a
single frame. Recently, we have realized high-accuracy phase acqui-
sition from a single fringe pattern by using deep learning.10,11 How-
ever, these works just obtain a single-shot wrapped phase. To realize
3D measurement, phase unwrapping is required, which is one of
the operations in FPP that affects the measurement efficiency the
most. The most commonly used phase unwrapping methods are
temporal phase unwrapping (TPU) algorithms,12,13 which recover
the absolute phase with the assistance of Gray-code patterns or
multi-wavelength fringes. However, the requirement of additional
patterns decreases the measurement efficiency. The stereo phase
unwrapping (SPU)14 method based on geometric constraints can
solve the phase ambiguity problem through the spatial relationships
between multiple cameras and one projector without projecting any
auxiliary patterns. Although requiring more cameras (at least two)
than traditional methods, SPU, indeed, maximizes the efficiency of
FPP. However, conventional SPU is generally insufficient to robustly
unwrap the phase of dense fringe images, while increasing the fre-
quency of fringes is essential to the measurement accuracy. To solve
this trade-off, some auxiliary algorithms are proposed, which usu-
ally focus on four directions. (1) The first direction utilizes spatial
phase unwrapping methods15 to reduce phase unwrapping errors of
SPU.14,16 As the disadvantages of spatial phase unwrapping, these
methods cannot handle discontinuous or disjoined phases. (2) The
second direction enhances the robustness of SPU by embedding the
auxiliary information in the fringe patterns.17,18 Since the assistance
based on the intensity information is provided, the sensitivity of
intensity to ambient light noise and large surface reflectivity vari-
ations of objects will cause them to fail. (3) The third aspect is to
increase the number of perspectives and recover the absolute phase
through more geometric constraints.19 This method is more adap-
tive for the complex scene measurement but comes at the increased
cost. Besides, simply increasing the number of views is insufficient
to unwrap the phase of dense fringe images, which needs to be com-
bined with (4) the depth constraint strategy.20–22 However, the con-
ventional depth constraint strategy can only unwrap the phase in a
narrow depth range, and setting a suitable depth constraint range
is also difficult. The adaptive depth constraint (ADC)5,23 strategy
can enlarge the measurement volume and automatically select the
depth constraint range but only if the correct absolute phase can be
obtained for the first measurement. In addition, since the stability
of SPU relies on the similarity of the phase information of match-
ing points in different perspectives,19 on the one hand, SPU requires
high-quality system calibration and is more difficult to implement
algorithmically than other phase unwrapping methods, such as TPU;
on the other hand, it has high demand for the quality of the wrapped
phase so that the wrapped phase in SPU is usually acquired by the
phase-shifting (PS) algorithm,24 which is a multi-frame phase acqui-
sition method with a high spatial resolution and high measurement
accuracy. However, the use of multiple fringe patterns reduces the
measurement efficiency of SPU. The other commonly used phase
acquisition technologies are Fourier transform (FT) methods25,26

with single-shot nature, which are not suitable for SPU due to

the poor imaging quality around discontinuities and isolated areas
in the phase map.

From the above discussion, it is not difficult to know that
although SPU is the best suitable for 3D measurement in high-
speed scenes, it still has some defects, such as limited measure-
ment volume, inability to robustly achieve phase unwrapping of
high-frequency fringe images, loss of measurement efficiency due
to reliance on multi-frame phase acquisition methods, complexity
of algorithm implementation, and so on. Inspired by successes of
deep learning in FPP10,11,27,28 and the advance of geometric con-
straints, on the basis of our previous deep-learning-based works,
we further push deep learning into phase unwrapping and incor-
porate geometric constraints into the neural network. In our work,
geometric constraints are implicit in the neural network rather than
directly using calibration parameters, which simplifies the entire
process of phase unwrapping and avoids the complex adjustment
of various parameters. With extensive data training, the network
can “learn” to obtain the “physically meaningful” absolute phase
from the single-frame projection without the conventional “step-
by-step” calculation. Compared with traditional SPU, our approach
more robustly unwraps the phase of the higher frequency with
fewer perspectives in a larger range. In addition, the limitations
of the proposed approach are also analyzed in the Sec. IV.

II. PRINCIPLE
A. Phase retrieval and unwrapping with PS and SPU

As shown in Fig. 1, a typical SPU-based system consists of one
projector and two cameras. The fringe images are projected by the
projector, then modulated by the object, and finally captured by two
cameras. For the N-step PS algorithm, the fringe patterns captured
by camera 1 can be expressed as:

In(uc, vc) = A(uc, vc) + B(uc, vc) cos (Φ(uc, vc) + 2πn/N), (1)

FIG. 1. The principle of SPU.
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where In represents the (n + 1)th captured image, n = 0, 1, . . ., N − 1,
(uc, vc) is the camera pixel coordinate, A is the average intensity
map, B is the amplitude intensity map, Φ is the absolute phase map,
and 2πn/N is the phase shift. With the least square method,29 the
wrapped phase φ can be obtained as

φ = arctan
M
D
= arctan ∑

N−1
n=0 In sin (2πn/N)
∑N−1

n=0 In cos (2πn/N)
, (2)

where (uc, vc) is omitted for convenience, and M and D repre-
sent the numerator and denominator of the arctangent function,
respectively. The absolute and wrapped phases satisfy the following
relation:

Φ = φ + 2kπ, (3)

where k is the fringe order, k ∈ [0, K − 1], and K denotes the
number of the used fringes. The fringe order k can be obtained by
using SPU based on geometric constraints. For an arbitrary point
oc1 in camera 1, there are K possible fringe orders correspond-
ing to K absolute phases with which K 3D candidate points can
be reconstructed by the calibration parameters between camera 1
and the projector. The retrieved 3D candidates can be projected
into camera 2 to obtain the corresponding 2D candidates. Among
these 2D candidates, there must be a correct matching point that
has a more similar wrapped phase to oc1 than other candidates.

With this feature, the matching point can be determined through
the phase similarity check, and then the phase ambiguity of oc1 can
be eliminated. However, due to calibration errors and ambient light
interference, some wrong 2D candidates may have a more similar
phase value to oc1 than the correct matching point. Furthermore,
the higher the frequency of the used fringes, the more candidates
there are, and the more likely such a situation will happen. There-
fore, in order to alleviate this issue, a multi-step PS algorithm with a
higher measurement accuracy and robustness toward ambient illu-
mination is preferred, and high-frequency fringe patterns are not
recommended.

To enhance the stability of SPU, the common methods adopted
are to either increase the number of views or apply the depth
constraint strategy. The former, at increased hardware costs, fur-
ther projects 2D candidates of camera 2 into the third or even
the fourth camera for the phase similarity check to exclude more
wrong 2D candidates. The latter, at the cost of increased algo-
rithm complexity, can eliminate some wrong 3D candidates outside
the depth constraint range in advance. However, the conventional
depth constraint algorithm is only effective in a narrow volume.
Generally, the SPU with at least three cameras assisted with ADC
(the most advanced and complex depth constraint algorithm) can
achieve robust phase unwrapping on the premise that the cor-
rect absolute phase is obtained for the first measurement.5,23 How-
ever, complex systems and algorithms make such a strategy difficult
to implement.

FIG. 2. The flowchart of our method.
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B. Phase retrieval and unwrapping
with deep learning

The ideal SPU should be to use only two cameras and a
single frame projector to achieve robust phase unwrapping of
dense fringe images in a large measurement volume without
any complicated auxiliary algorithms. To this end, inspired by
recent successes of deep learning techniques in phase analysis, we
combine deep neural networks and SPU to develop a deep-learning-
enabled geometric constraints and phase unwrapping method. The
flowchart of our approach is shown in Fig. 2. We construct two four-
path convolutional neural networks (CNN1 and CNN2) with the

same structure (except for different inputs and outputs) to learn to
obtain the high-quality phase information and unwrap the wrapped
phase. The detailed architectures of the networks are provided
in Appendix A.
Next, we will discuss our algorithm steps. Step 1: To achieve high-
quality wrapped phase information retrieval, the physical model of
the conventional PS algorithm is considered. We separately input
the single-frame fringe images captured by camera 1 and camera 2
into CNN1 and the outputs are the numerators M and denomina-
tors D of the arctangent function corresponding to the two fringe
patterns instead of directly linked wrapped phases, since such a
strategy bypasses the difficulties associated with reproducing abrupt

FIG. 3. Measurement results of four static scenes. (a), (e), (i), and (m) The results measured by the first method (taken as the ground-truth data). (b), (f), (j), and (n) The
results measured by the second method. (c), (g), (k), and (o) The results measured by the third method. (d), (h), (l), and (p) The results measured by our method.
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2π phase wraps to provide a high-quality phase estimate.10 Step
2: After predicting the numerator and denominator terms, high-
accuracy wrapped phase maps of camera 1 and camera 2 can be
obtained according to Eq. (2). Step 3: To realize the phase unwrap-
ping, enlightened by the geometry-constraint-based SPU described
in Sec. II A, which can remove phase ambiguity through spatial rela-
tionships between multiple perspectives, the fringe patterns of two
perspectives are fed into CNN2. Meanwhile, we integrate the idea
of assisting phase unwrapping with the reference plane informa-
tion30 to our network and add the data of a reference plane to the
inputs to allow CNN2 to more effectively acquire the fringe orders
of the measured object. Thus, the raw fringe patterns captured by
two cameras, as well as the reference information (containing two

fringe images of the reference plane captured by two cameras, and
the fringe order map of the reference plane in the perspective of cam-
era 1) are fed into CNN2. It is worth mentioning that the reference
plane information is obtained in advance and subsequent experi-
ments do not need to obtain it repeatedly, which means there is just
one extra reference information for the whole setup necessary. The
output of CNN2 is the fringe order map of the measured object in
camera 1. Step 4: Through the wrapped phases and the fringe orders
obtained by the previous steps, high-quality unwrapped phase can
be recovered by Eq. (3). Step 5: After acquiring the high-accuracy
absolute phase, the 3D reconstruction can be carried out with the
calibration parameters31 between the two cameras (see Appendix B
for details).

FIG. 4. Measurement results of four dynamic scenes. (a), (e), (i), and (m) The results measured by the first method. (b), (f), (j), and (n) The results measured by
the second method. (c), (g), (k), and (o) The results measured by the third method. (d), (h), (l), and (p) The results measured by our method (Multimedia view:
https://doi.org/10.1063/5.0003217.1; https://doi.org/10.1063/5.0003217.2; https://doi.org/10.1063/5.0003217.3; https://doi.org/10.1063/5.0003217.4, see Visualization 1,
Visualization 2, Visualization 3, and Visualization 4 for the whole process of the first scene).

APL Photon. 5, 046105 (2020); doi: 10.1063/5.0003217 5, 046105-5

© Author(s) 2020

201

https://scitation.org/journal/app
https://doi.org/10.1063/5.0003217
https://doi.org/10.1063/5.0003217
https://doi.org/10.1063/5.0003217
https://doi.org/10.1063/5.0003217


APL Photonics ARTICLE scitation.org/journal/app

III. EXPERIMENTS
To verify the effectiveness of the proposed approach, we

construct a dual-camera system, which includes a LightCrafter
4500Pro (912 × 1140 resolution) and two Basler acA640-750 μm
cameras (640 × 480 resolution). 48-period PS fringe patterns are
used in our experiments. The size of the measuring field is about
240 mm × 200 mm.

To train our networks, we collect training datasets from
1001 different scenarios. With training of hundreds of epochs,
the training and validation loss of the networks converge with-
out overfitting. We provide further details of collection of train-
ing data and the training process of the neural network in
Appendix C.

A. Qualitative evaluation
To test the effectiveness of our approach, we firstly measure

four static scenarios, containing single or multiple isolated objects
with complex shapes, which are not in the training and verifi-
cation datasets. We use four methods to measure these scenes.
The first method is to use PS to obtain the wrapped phase and
use triple-camera SPU and ADC to obtain the absolute phase
(the results obtained by which are taken as the ground-truth
data); the second method is to use PS to obtain the wrapped
phase and use dual-camera SPU and the conventional depth con-
straint strategy to obtain the absolute phase; the third method
is to use PS to obtain the wrapped phase and directly use the
reference phase to unwrap the phase; the fourth method is our
approach. The measurement results are shown in Fig. 3. It can
be seen from the results of the second method that the conven-
tional dual-camera SPU and depth constraints are insufficient to
unwrap the phase of high-frequency fringes. The parts marked
by the black dotted boxes in Fig. 3 show the phase unwrap-
ping errors of the third method, from which we can see that the
reference plane can only unwrap the wrapped phase in a lim-
ited range, which is between −π and π of the absolute phase

of the reference plane, while with our approach, the ambigu-
ity of the wrapped phase can be accurately eliminated in a large
depth range. In addition, our deep-learning-assisted approach can
yield high-quality reconstruction results, almost of the same qual-
ity as those obtained by conventional PS, triple-camera SPU, and
ADC methods.

We also test four continuously moving scenarios to demon-
strate the superiority of our approach in the dynamic target mea-
surement (note that all our training and validation datasets are col-
lected in static scenes). The measurement results are shown in Fig. 4
(Multimedia view). It can be seen from the left three columns of
Fig. 4 (Multimedia view) that the multi-frame imaging character-
istics of the PS algorithm lead to obvious motion-induced artifacts
in the reconstruction results when encountering moving objects. In
addition, due to the sensitivity to phase errors, the results acquired
by SPU obviously perform worse. Because of the single-shot nature
of our approach, the measurement can be performed uninterrupt-
edly without being affected by motion artifacts for dynamic sce-
narios, as shown in the right most column of Fig. 4 (Multimedia
view).

B. Quantitative evaluation
To quantitatively estimate the reconstruction accuracy of our

approach, we measure two standard spheres, whose radii are
25.3989 mm and 25.4038 mm, respectively, and the center-to-center
distance is 100.0532 mm with the uncertainty of 1.1 μm. Their errors
are 1.8 μm and 3.5 μm, respectively. The measurement result is
shown in Fig. 5(b). We perform sphere fitting to measured results of
two spheres, and their errors are shown in Fig. 5(c). The radii of the
reconstructed spheres are 25.4616 mm and 25.4648 mm with devi-
ations of 52.7 μm and 61.0 μm, respectively. The measured center
distance is 99.9878 mm with an error of 65.3 μm. This experiment
validates that our method can provide high-quality 3D measure-
ments with fewer cameras, fewer projection images, and simpler
algorithms.

FIG. 5. Quantitative analysis of our
method. (a) The measured standard
spheres. (b) 3D reconstruction result of
our method. (c) The error distribution of
the measured standard spheres.
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IV. CONCLUSIONS AND DISCUSSIONS
In this work, we present a deep-learning-enabled geomet-

ric constraints and phase unwrapping approach for the single-
shot absolute 3D shape measurement. Our approach avoids the
shortcomings of many traditional methods, such as the trade-
off of efficiency and the accuracy of the conventional phase
retrieval method and the trade-off of SPU in the phase unwrap-
ping robustness, large measurement range, and the use of
high-frequency fringe patterns. On the premise of the single-
frame projection, our method can solve the phase ambigu-
ity problem of dense fringe images in a larger measurement
range with less perspective information and simpler algorithms.
We believe that the proposed approach provides an impor-
tant guidance for high-accuracy, motion-artifacts-free absolute
3D shape measurement for complicated objects in high-speed
scenarios.

For traditional methods, one usually proceeds step by step
based on prior knowledge. For example, for SPU, first find 3D can-
didates, second use depth constraints to remove unreliable candi-
date points, third project to another perspective, and finally, per-
form the phase similarity check. Due to the step-by-step process,
all information, such as spatial information and temporal infor-
mation, is not effectively utilized. The comprehensive utilization
of all valid data requires strong and professional prior knowledge,
which is very difficult to complete. However, deep learning can
make it. Through data training and learning, these problems can be

effectively integrated into a comprehensive framework. In our work,
this framework is a very organic one, which incorporates phase
acquisition, geometric constraints, and phase unwrapping. These
methods in the framework are no longer reproduced step by step
as traditionally but are organically integrated together. However,
since the data sources of our method are 2D images, when the
image itself is ambiguous, deep learning is by no means always reli-
able. For example, when the large depth discontinuity of the object
results in missing order and continuity artifact from the camera
view (Fig. 6), such inherent ambiguity in the captured fringe pattern
cannot be resolved by deep learning techniques without additional
auxiliary information, such as fringe images of different frequen-
cies. In the future, we will further integrate the physical model into
FPP based on deep learning and construct FPP driven by data and
physics.
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FIG. 6. Analysis of the limitations of our method. (a) Image of two flat plates captured by camera 1 (no ambiguity in the 2D image). (b) Absolute phase of two plates in (a).
(c) The result of two plates in (a) obtained by our method. (d) Image of two flat plates captured by camera 1 (the depth discontinuity of the objects results in missing order
[the fringe in the red dotted box in (a)] and continuity artifact from the camera view). (e) Absolute phase of two plates in (d). (f) The result of two plates in (d) obtained by our
method.
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APPENDIX A: ARCHITECTURE OF THE NEURAL
NETWORKS

We take CNN1 as example to reveal the internal structure of
the constructed networks, as shown in the upper right part of Fig. 2.
A 3D tensor with size (H, W, C0) is used as the input of the net-
work, where (H, W) is the size of the input images, and C0 repre-
sents the number the input images. For each convolutional layer,
the kernel size is 3 × 3 with convolution stride one, zero-padding
is used to control the spatial size of the output, and the output is a
3D tensor of shape (H, W, C), where C = 64 represents the num-
ber of filters used in each convolutional layer. In the first path of
CNN1, the input is processed by a convolutional layer, followed
by a group of residual blocks (containing four residual blocks) and
another convolutional layer. Each residual block consists of two
sets of convolutional layer activated by rectified linear unit (ReLU)
stacked one above the other,32 which can solve the degradation of
accuracy as the network becomes deeper and ease the training pro-
cess. In the other three paths, the data are down-sampled by the
pooling layers by two, four, and eight times, respectively, for better

feature extraction, and then up-sampled by the upsampling blocks
to match the original size. The outputs of four paths are concate-
nated into a tensor with quad channels. Finally, two channels are
generated in the last convolution layer (one channel is generated in
CNN2). Except for the last convolutional layer, which is activated
linearly, the rest use the ReLU as activation function. The mean-
squared-errors of the outputs with respect to the ground truth are
used as the loss function, and the adaptive moment estimation33

is utilized to tune the parameters for finding the minimum of the
loss function.

APPENDIX B: SYSTEM CALIBRATION
AND 3D RECONSTRUCTION

After acquiring the high-accuracy absolute phase, the match-
ing points of two cameras can be uniquely identified. Then, the 3D
reconstruction can be carried out with the pre-calibration param-
eters between the two cameras. The reason why we utilize two
cameras for reconstruction instead of one camera and one pro-
jector is that the multi-camera system can automatically cancel

FIG. 7. The relative position of the standard spheres and
the calibration board at the first calibration pose.

FIG. 8. Six representative scenarios from total 1001 training datasets.
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FIG. 9. Loss curves of the training and validation sets for (a)
CNN1 and (b) CNN2.

nonlinearity errors.34 The calibration parameters, which contain the
intrinsic, extrinsic, and distortion parameters of the cameras are cal-
ibrated based on the MATLAB Calibration toolbox and optimized
with bundle adjustment.31,35

The reconstructed 3D coordinates are in the world coordinate
system, the 0-depth plane of which corresponds to the position of the
first calibration pose. For example, when the relationship between
the position of a pair of standard spheres and the first calibration
pose (the 0-depth plane of the world coordinate system) is as shown
in Fig. 7, where Fig. 7(a) is the front view of the standard spheres and
the calibration board in the first calibration pose and Fig. 7(b) is their
top view, the depths of points p1 and p2 are z1 and z2, respectively.

APPENDIX C: TRAINING THE NEURAL NETWORKS
To collect the training datasets, different types of simple and

complex objects are arbitrarily combined and rotated 360○ to gen-
erate 1001 diverse scenes. Figure 8 shows six representative scenar-
ios from total 1001 training datasets, the first of which is the ref-
erence plane. Considering the following comparative experiments
(verifying that our approach using only two perspectives can per-
form better than SPU using three cameras in dynamic scenes), we
collect data from three views, each set of which consists of 3-step
PS fringe patterns captured by three cameras. Within each set of
data, we calculate the ground-truth numerator M and denomina-
tor D by the 3-step PS algorithm and obtain the fringe order maps
by using triple-camera SPU and ADC (note that the fringe orders
can also be acquired through only a single camera, by projecting
multiple fringe patterns of different frequencies and using TPU).
Before being fed into the networks, the fringe images are divided
by 255 for normalization, and the fringe order maps are divided
by the number of the used fringes (48) for normalization, which
make the learning process easier for the network. When training
the CNNs, 800 sets of data are used for training and 200 sets are
used for verification. The training and verification datasets have
been uploaded to the figshare (DOI:10.6084/m9.figshare.11926809;
https://figshare.com/s/f150a36191045e0c1bef).

The constructed neural networks are computed on a GTX Titan
graphics card (NVIDIA). Figure 9 shows the loss curve distributions
of the CNNs. For CNN1, the loss curves converge after about 200
epochs, and the training of 400 epochs takes 25.56 hours; for CNN2,
the loss curves converge after 120 epochs, the training of 300 epochs
takes 19.25 h. It is noted that the loss scales of the two networks are
different because their outputs are not in the same scale: the numera-
tor M and denominator D can reach hundred, while the fringe orders
k are normalized.
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Recovering the high-resolution three-dimensional (3D)
surface of an object from a single frame image has been the
ultimate goal long pursued in fringe projection profilometry
(FPP). The color fringe projection method is one of the
technologies with the most potential towards such a goal
due to its three-channel multiplexing properties. However,
the associated color imbalance, crosstalk problems, and
compromised coding strategy remain major obstacles to
overcome. Inspired by recent successes of deep learning
for FPP, we propose a single-shot absolute 3D shape mea-
surement with deep-learning-based color FPP. Through
“learning” on extensive data sets, the properly trained
neural network can “predict” the high-resolution, motion-
artifact-free, crosstalk-free absolute phase directly from
one single color fringe image. Compared with the tradi-
tional approach, our method allows for more accurate phase
retrieval and more robust phase unwrapping. Experimental
results demonstrate that the proposed approach can provide
high-accuracy single-frame absolute 3D shape measurement
for complicated objects. ©2020Optical Society of America

https://doi.org/10.1364/OL.388994

Fringe projection profilometry (FPP) [1] is one of the most
widely used three-dimensional (3D) measurement techniques
because of its simple hardware facilities, flexible implemen-
tation, and high measurement precision. Recently, with the
increasing demands of 3D information acquisition in various
applications, such as online quality inspection and rapid reverse
engineering, high-speed 3D shape measurement technolo-
gies based on FPP are becoming more and more popular and
essential [2–5].

To achieve high-speed 3D imaging, it is necessary to improve
the measurement efficiency, i.e., to reduce the number of pat-
terns required per reconstruction [6,7]. Ideally, the absolute

3D surface of an object should be recovered from only a sin-
gle image. The color-coded projection methods [8–13] have
great advantages in dynamic scene measurement, since it can
encode three independent patterns in its red, blue, and green
channels. However, few of them can be used for high-accuracy
measurements of complex objects. On one hand, to obtain
high-accuracy phase information, the phase-shifting (PS)
method [14] with high measurement resolution is preferred.
However, PS requires at least three fringe images, which occupy
all channels of an RGB image, so that only the spatial phase
unwrapping method [15] (which will become vulnerable when
encountering isolated or unjoined phase) can remove the phase
ambiguity [9]. On the other hand, to achieve robust phase
unwrapping, the strategies of combining fringe patterns with
the fringe-order-coded information (gray-code patterns or stair
intensities) or combining multi-frequency fringe images are
adopted [10–13]. The former still cannot unwrap the phase
stably due to the difficulty in identifying the edge of gray-code
patterns or the sensitivity of intensity to ambient light noise and
large surface reflectivity variations of the objects [10,11]. The
latter can recover the absolute phase by the three-fringe number
selection method [16] but compromises the accuracy due to
the use of the Fourier transform (FT) method [15,17] (well
known for its single-shot nature but with limited quality around
discontinuities and isolated areas in the phase map) [12,13].
In addition, there are some inherent defects in color-coded
projection methods, such as chromatic aberration and crosstalk
between color channels, which will affect the quality of phase
calculations. Some researchers propose some pre-processing
methods [9,12,18] to compensate for these factors, but only to
some extent reduce their impact.

Recently, the successes of deep learning in FPP [19–23]
have provided new opportunities for color-coded projection
technologies. In this Letter, we propose a deep-learning-
based color fringe projection profilometry. With the help of
a properly trained neural network, a high-accuracy absolute
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phase can be “learned” from a color-coded image without any
pre/post-processing or phase error compensation.

The flowchart of our method is shown in Fig. 1. Notably,
instead of adopting an end-to-end network structure directly
linking fringe images to the absolute phase, our network pre-
dicts a high-quality wrapped phase map along with a “coarse”
absolute phase from the three-channel fringe patterns of dif-
ferent frequencies. There are three basic considerations for
this strategy: (1) due to the inherent depth ambiguities in FPP,
one single fringe pattern is generally insufficient to uniquely
determine the fringe order in the presence of isolated surfaces
or surface discontinuities [5]. Thus, to guarantee absolute 3D
shape measurement independent of any assumptions and prior
knowledge, multi-frequency fringe patterns and temporal phase
unwrapping (TPU) [5] are necessary. (2) Without additional
auxiliary information, a simple input–output network structure
(linking fringe images to the absolute phase directly) usually
produces an estimate with compromised accuracy; especially,
the measured surface contains sharp edges, discontinuities,
or large surface reflectivity variations [23]. Based on this con-
sideration, we incorporate the idea of TPU into our network
to determine the fringe order of the wrapped phase with the
predicted “coarse” absolute phase on a pixel-by-pixel basis.
(3) For the unwrapped phase map, our deep neural network is
trained to predict the intermediate numerator and denominator
of the arctangent function, to bypass the difficulties associated
with reproducing abrupt 2π phase wraps and thus obtain a
high-quality phase estimate [19].

Our pattern design is similar to that of [13], which encodes
three fringe patterns of different wavelengths λR , λG , and λB
into the red, green, and blue channels of one color image. The
color-coded image is projected by a projector, modulated by

the object, and finally captured by a color camera. The captured
image can be represented as I c

RG B , and the gray images of its
three channels can be expressed as I c

R , I c
G , and I c

B , respectively.
Since three fringe images with different wavelengths are used,
the phase unwrapping can be achieved by the projection dis-
tance minimization (PDM) approach [24], which obtains the
pixel-wise qualified fringe order according to wrapped phase
distribution in three fringe images. Because the wrapped phase is
encoded in the fringe pattern and the deep learning can organi-
cally synthesize the spatial and temporal information [23], we
can expect that the properly trained neural network can directly
obtain the absolute phase from the fringe patterns of three
frequencies. However, only the low-accuracy absolute phase
can be predicted. To obtain high-quality phase information,
the physical model of the traditional PS method is considered.
For the N-step PS algorithm, the N fringe patterns can be
expressed as

In = A+ B cos(8+ 2πn/N), (1)

where In represents the (n + 1)th fringe image, n ∈ [0, N − 1],
A is the average intensity, B is the amplitude,8 is the absolute
phase, and 2π/N is the phase shift. The wrapped phaseφ can be
obtained by [14]

φ = arctan
M
D
= arctan

∑N−1
n=0 In sin(2πn/N)∑N−1
n=0 In cos(2πn/N)

, (2)

where M and D represent the numerator and denominator
of arctangent function, respectively. If the network predicts
M and D, the phase information can be obtained by Eq. (2).
Such an operation provides higher phase accuracy than the
network structure of directly linking fringe pattern to phase

Fig. 1. Flowchart of our method. Step 1: input three gray fringe images I c
R , I c

G , and I c
B of the color image channels, and output the numerator and

denominator terms Mc
G and Dc

G and the low-accuracy absolute phase P c
l in the green channel. Step 2: obtain the high-accuracy absolute phase P c

h by
Eqs. (2) and (3). Step 3: reconstruct the 3D information by the calibration parameters.
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[19]. Therefore, I c
R , I c

G , and I c
B are fed into the constructed

neural network, and the outputs are the numerator Mc
G and

denominator Dc
G , and a rough absolute phase map P c

l (whose
error is between−π andπ ) in the green channel. In addition, to
enable the network to resist crosstalk and chromatic aberration
problems, the data without these factors are used as labels to
train our network. After the network predicts Mc

G , Dc
G , and

P c
l , the wrapped phase P c

w of wavelength λG can be obtained
by Eq. (2). Then the high-quality absolute phase P c

h can be
acquired by

P c
h = P c

w + 2πRound[(P c
l − P c

w)/2/π], (3)

where Round represents the rounding function. Finally, the 3D
reconstruction can be performed by utilizing the pre-calibrated
parameters [25] of the system.

The upper right part of Fig. 1 reveals the internal structure of
our network, which is a five-path convolutional neural network
(CNN) and is more powerful than our previous CNNs [19,21–
23]. For each convolutional layer, the kernel size is 3× 3 with
convolution stride one, and the output is a 3D tensor of shape
(H,W,C), where (H,W) is the size of the input pattern, and
C represents the number of filters used in each convolutional
layer (C = 64). In the first path of the CNN, the inputs are pro-
cessed by a convolutional layer, followed by four residual blocks
and another convolutional layer. Also, implementing shortcuts
between residual blocks contributes to the convolution stability
[22]. In the other four paths, the data are down-sampled by the
max-pooling layers by two times, four times, eight times, and
16 times, respectively, for better feature extraction, and then
up-sampled by the up-sampling blocks to match the original
size. The outputs of all paths are concatenated into a tensor with
five channels. Finally, three channels are generated in the last
convolution layer.

We construct an FPP system, which includes a LightCrafter
4500 (912× 1140 resolution) and a Basler acA640-750uc

camera (640× 480 resolution), to test the effectiveness of our
method. The wavelengths of three color channels are selected as
λR = 9, λG = 11, and λB = 13, which provide unambiguous
3D reconstructions for the whole projection range. During
the training session, 600 groups of images are captured. Each
group contains a color-coded fringe pattern [Fig. 2(a)], the three
channels of which are used as inputs of the network, as well as
the 12-step PS fringe patterns of three frequencies [Figs. 2(b)–
2(d)], which are used for the calculation of the ground-truth
data (the three frequencies of the latter are consistent with those
of the three channels of the former). To avoid crosstalk and
chromatic aberration problems at the source, when collecting
the PS images, the green non-composite fringe patterns are pro-
jected, and only the green channels of the captured images are
utilized for the label. The numerator and denominator terms are
calculated by Eq. (2). The absolute phase is obtained based on
PDM. When training, 450 groups of data are used for training,
and 150 groups are used for verification.

To verify the superiority of our method over traditional meth-
ods, we measure two scenarios with our method and the method
of [13]. The measured results are shown in Fig. 3. The shadow-
noised regions, with B smaller than a pre-defined threshold, are
excluded in the subsequent processing [14]. Figures 3(b) and
3(f ) are results of the method of [13], from which we can see that
despite the crosstalk compensation in advance, the resolution
of the details is limited due to the use of FT method. Also, the
phase errors lead to the phase unwrapping errors at the edges.
In contrast to the traditional method, our method produces
more accurate absolute reconstruction, whose quality is even
comparable to that obtained by PS and PDM methods.

Next, we apply our approach to the dynamic 360-deg 3D
model reconstruction. A metallic workpiece is continually
rotated for one cycle on a mechanical stage and measured with
our approach (note that there are no objects of such type in our
training and verification set). The measured results from two

…
(a) (b)

… …
(c) (d)

Fig. 2. Group of data sets. (a) Color image. (b)–(d) 12-step PS images of λR , λG , and λB .
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Fig. 3. Measurement results of two scenes. (a), (e) Captured color images. (b), (f ) Results measured by the method of [13]. (c), (g) Results of our
method. (d), (h) Ground truth obtained by 12-step PS and the projection distance minimization.
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Fig. 4. Measured results of a 360-deg rotated workpiece with our
method. (a), (b) Color images of different times. (c), (d) Results cor-
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Fig. 5. Quantitative analysis of the accuracy of our method.
(a) Measured standard spheres. (b) Measured results of our method.
(c) Error distribution of the measured result.

different perspectives are shown in Figs. 4(a)–4(d). Due to the
single-shot nature of our approach, the measurement can be
performed uninterruptedly without being affected by motion
artifacts. We register all the independent measurements into an
integral 3D model, which is shown in Figs. 4(e) and 4(f ). This
experiment demonstrates the potential of our method for rapid
reverse engineering applications.

Finally, to quantify the accuracy of our method, two standard
spheres as shown in Fig. 5(a) are measured. The measured result
is shown in Fig. 5(b). We perform sphere fitting to the results,
and the error distribution is shown in Fig. 5(c). The radii of
reconstructed spheres are 25.372 mm and 25.427 mm, with
errors of 27 µm and 23 µm. The measured center distance is
100.0178 mm, with an error of 35.4 µm. This experiment
validates the high measurement accuracy of our method.

In this Letter, we have presented a deep-learning-based color
FPP. With deep learning, color-coded projection technologies
are rejuvenated in single-frame, high-precision 3D imaging.
Deep learning breaks the dependence of traditional methods
on prior knowledge and can more efficiently utilize the raw
information “hidden” in the original fringe pattern. However,
it should be mentioned that for some other disadvantages of

color-coded projection methods, such as being unsuited for
measuring color objects, the proposed depth learning approach
is still inadequate because the information cannot “come out of
thin air.” The fringe in a certain channel will be blended onto
the object surface with the same color, leading to extremely poor
fringe contrast and information lost. One possible solution is
to create “invisible fringes” with infrared or ultraviolet light
sources, which is an interesting direction for future work.
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Abstract: Speckle projection profilometry (SPP), which establishes the global correspondences
between stereo images by projecting only a single speckle pattern, has the advantage of single-shot
3D reconstruction. Nevertheless, SPP suffers from the low matching accuracy of traditional stereo
matching algorithms, which fundamentally limits its 3D measurement accuracy. In this work,
we propose a single-shot 3D shape measurement method using an end-to-end stereo matching
network for SPP. To build a high-quality SPP dataset for training the network, by combining
phase-shifting profilometry (PSP) and temporal phase unwrapping techniques, high-precision
absolute phase maps can be obtained to generate accurate and dense disparity maps with high
completeness as the ground truth by phase matching. For the architecture of the network, a
multi-scale residual subnetwork is first leveraged to synchronously extract compact feature tensors
with 1/4 resolution from speckle images for constructing the 4D cost volume. Considering that
the cost filtering based on 3D convolution is computationally costly, a lightweight 3D U-net
network is proposed to implement efficient 4D cost aggregation. In addition, because the disparity
maps in the SPP dataset should have valid values only in the foreground, a simple and fast
saliency detection network is integrated to avoid predicting the invalid pixels in the occlusions
and background regions, thereby implicitly enhancing the matching accuracy for valid pixels.
Experiment results demonstrated that the proposed method improves the matching accuracy by
about 50% significantly compared with traditional stereo matching methods. Consequently, our
method achieves fast and absolute 3D shape measurement with an accuracy of about 100µm
through a single speckle pattern.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical 3D measurements based on structured light projection have become a prevalent non-contact
3D shape measurement technique [1]. With the advantages of simple hardware configuration,
high measurement accuracy, and high 3D point cloud density, it has been proven one of the most
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promising techniques and is extensively applied in industry inspection and scientific research
[2–5]. Essentially, the structured light-based 3D measurement methods can be regarded as an
improved form of stereo vision, which is achieved by introducing an additional light source
generator (such as a projector) in the system configuration [6]. The light source generator projects
a series of specifically coded patterns onto the measured scenes [7]. Compared with stereo
vision-based methods, the structured light-based 3D measurement methods can easily overcome
the problem of low matching accuracy caused by weak texture regions.

Among the 3D shape measurement methods based on structured light projection, two commonly
used structured light patterns are fringe patterns and speckle patterns. Correspondingly, there are
two mainstream methods: fringe projection profilometry (FPP) [8–11] and speckle projection
profilometry (SPP) [12–14]. In FPP, the projector projects a series of fringe patterns onto
the measured scenes. The fringe images modulated by the measured objects are captured
synchronously by the camera and then processed to obtain the phase information by using
various phase retrieval techniques, such as Fourier transform profilometry (FTP) [15–17] and
phase-shifting profilometry (PSP) [18]. However, these methods both adopt the arctangent
function which can only provide a wrapped phase with 2π phase jumps. Therefore, it is necessary
to perform phase unwrapping to eliminate the phase ambiguity and convert the wrapped phase
to the absolute phase [19–25]. To address this issue, several composite phase-shifting schemes
(e.g, dual-frequency PSP [26], bi-frequency PSP [27], and 2+2 PSP [28]) have been proposed,
which can solve the phase ambiguity problem without significantly increasing the number of
projected patterns. However, these methods still require a certain number of projection patterns.
As a result, it is difficult to obtain high-precision and absolute phase information from a single
fringe image in FPP, which limits its applications in dynamic 3D measurement [29,30].

Different from FPP, the projector in SPP projects a speckle pattern onto the measured scenes.
The speckle images modulated by the measured objects are captured synchronously by the
stereo camera and then processed to obtain the disparity map by using various stereo matching
techniques. The projected speckle pattern designed using a spatial encoding strategy has
inherently global uniqueness, which makes the SPP-based 3D measurement methods have the
advantage of single-shot 3D reconstruction. Therefore, the key idea of the design method for
the speckle pattern is how to ensure that the local speckles are globally unique with respect
to the whole projection pattern [31]. These design methods for projection patterns can be
grouped into three main classes based on various spatial encoding strategies [7,32,33]: strategies
based on non-formal codification [34,35], strategies based on De Bruijn sequences [36–38], and
strategies based on M-arrays [39]. In the last few decades, researchers have proposed numerous
design methods for the speckles. However, due to the measured objects with complex reflection
characteristics and the perspective differences between the stereo camera, it is still difficult to
ensure the global uniqueness of each pixel in the whole measurement space by only projecting one
speckle pattern [12,14,40], which leads to the common mismatching in actual measurements. In
order to solve this problem in SPP, some robust stereo matching algorithms such as SGM [41–43]
and ELAS [44] are proposed to acquire dense disparity maps, thus enabling robust absolute
3D measurement. However, these methods achieve reliable stereo matching by smoothing the
disparity map, at the cost of matching accuracy. It is easy to understand that projecting multiple
speckle images will improve the accuracy of 3D measurement, because more constraints can
be exploited to completely guarantee the global uniqueness of the measured scenes. Following
this idea, Zhou etal. [14] proposed a high-precision 3D surface profile measurement scheme
by only projecting a single-shot color binary speckle pattern (CBSP) and a temporal-spatial
correlation matching algorithm, which can be applied to measurements of dynamic and static
objects. In order to improve the 3D measurement speed, Schaffer etal. [12,13] used laser speckles
as projected patterns which are switched using an acousto-optical deflector. Its projection rate is
more than 10 times higher than the common projection systems. Capturing images of encoded
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objects through two synchronized high-speed cameras, this proposed system achieves high-speed,
dense, and accurate 3D measurements of spatially separated objects at 350 frames per second.
These proposed SPP methods can achieve high-performance 3D measurement based on speckle
projection, but it is impossible to obtain accurate 3D data from a single speckle image. For
SPP, it still lacks a stereo matching algorithm using a single speckle pattern that can achieve
high-robustness and high-accuracy 3D measurement for the recovery of the fine details of complex
surfaces.

Compared with traditional stereo matching methods, recently, many deep learning methods for
stereo vision are proposed and have achieved excellent performance of stereo matching [45–52].
There is generally a four-step pipeline for stereo matching, including matching cost calculation,
cost aggregation, disparity computation, and disparity refinement, while traditional stereo
matching methods perform all four steps using non-learning techniques. Existing learning-based
stereo matching methods attempt to exploit deep learning to implement one or multiple of the
four steps to obtain better matching results. LeCun etal. [45] first adopted the Siamese network
to perform block matching for obtaining the initial matching cost and then exploited typical
stereo matching procedures, including SGM-based cost aggregation, disparity computation,
and disparity refinement to further improve matching results. Luo etal. [46] inputted left and
right image patches with different sizes into the CNNs for computing the initial matching cost,
which will convert the binary classification problem into a multi-classification task, enabling
high-efficiency stereo matching. Currently, some end-to-end stereo matching networks have been
developed to predict whole disparity maps without post-processing. Kendall etal. [49] proposed to
generate a 4D cost volume of size C × D × H × W (i.e., Features × Disparity × Height × Width)
by combining the features of all pixels from the reference image and all candidates among
disparity ranges along the epipolar line of the target image. The 4D cost volume is filtered through
a series of 3D convolutional layers. The final disparity maps are regressed from the filtered
cost volume using a differentiable soft argmin operation, which allows it to achieve matching
results with sub-pixel accuracy without any additional post-processing or regularization. Later,
Chang etal. [51] proposed a pyramid stereo matching network (PSMNet) to further improve the
matching accuracy by using the spatial pyramid pooling and multiple hourglass networks based
on the 3D CNN. Zhang etal. [52] introduced SGM-based cost aggregation and local guided
filter into the existing cost aggregation subnetwork to obtain better matching accuracy and the
generalization ability of the network.

In this work, we propose a single-shot 3D shape measurement method using an end-to-end
stereo matching network for speckle projection profilometry. In supervised learning, the use of
high-quality datasets, including input data and ground truth, is very important for learning-based
methods. KITTI is a prominent stereo dataset, which promoted the development of deep learning
in stereo vision [53]. It is worth noting that KITTI is very challenging because its labels obtained
by 3D Lidar are extremely sparse and low-precision. In our method, different from KITTI, by
combining 12-step PSP [18] and multi-frequency temporal phase unwrapping techniques [22],
high-precision absolute phase maps with high completeness can be obtained to generate dense
disparity maps with subpixel precision by phase matching, which will be as the high-quality
ground truth for our stereo matching network. For the architecture of our proposed network,
a multi-scale residual subnetwork is first leveraged to synchronously extract compact feature
tensors with 1/4 resolution from speckle images for constructing the 4D cost volume. Considering
that the cost filtering operation using 3D convolutional layers is computationally expensive, a
lightweight 3D U-net network is proposed to implemented efficient 4D cost aggregation for
achieving higher matching performance. In addition, because the disparity maps (as the ground
truth) in the SPP dataset has valid values only in the foreground, a simple and fast saliency
detection network is integrated into our end-to-end network to avoid predicting the invalid pixels
in the disparity maps including occlusions and backgrounds, thereby implicitly enhancing the
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matching accuracy for valid pixels. Based on the proposed method, the matching accuracy is
improved by about 50% significantly compared with traditional stereo matching methods. The
experiment results demonstrated that the proposed method can achieve fast and absolute 3D
shape measurement with an accuracy of about 100µm through a single speckle pattern.

2. Principle

In this section, a single-shot 3D shape measurement method using an end-to-end stereo matching
network for speckle projection profilometry will be presented. In our method, a speckle pattern
and a series of fringe patterns need to be projected by the projector onto the measured scenes and
captured synchronously by the stereo camera. The acquired speckle image pair is first processed
by epipolar rectification, and then fed directly into the proposed end-to-end stereo matching
network to obtain the corresponding disparity map without the background. The disparity map
is converted into the final 3D results after disparity-to-height mapping as shown in Fig. 1. It
is clear that the projected speckle pattern and the end-to-end stereo matching network together
determine the actual 3D measurement performance of the proposed method.

Fig. 1. The diagram of the proposed single-shot 3D shape measurement method using an
end-to-end stereo matching network for speckle projection profilometry.

For the speckle pattern, we follow a simple and effective design and evaluation method
proposed in our previous work [31]. By introducing epipolar rectification and depth constraint,
the only thing the stereo matching algorithms need to do is to search the corresponding pixel
within the pre-defined local 1D range rather than the traditional global 2D range, which means
that our optimized design method of the speckle pattern just requires the local speckles in the
speckle patterns are unique with respect to the local 1D projection space. Based on this idea, the
projected speckle pattern is designed and evaluated to assist in improving the 3D measurement
performance.

For the proposed end-to-end stereo matching network, there are two aspects that affect its
final stereo matching performance. First, for the deep learning-based network approach, the
datasets, including input data and ground truth, are very important to efficiently train the stereo
matching network. In our method, a series of acquired fringe images are used to generated dense
disparity maps with subpixel precision as the high-quality ground truth for our SPP datasets,
which potentially determines the trained network’s highest matching accuracy and robustness
when measuring objects with complex surfaces. In the next subsection, we will discuss in detail
how to construct a high-quality SPP dataset using phase-shifting methods and multi-frequency
temporal phase unwrapping techniques in FPP. Secondly, for the architecture of our proposed
network, although a large number of high-performance learning-based stereo matching networks
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exist, these networks are generally trained and validated on the KITTI stereo dataset and cannot
be directly applied to SPP. KITTI is a prominent stereo dataset, which promoted the development
of deep learning in stereo vision [53]. It is worth noting that KITTI is very challenging because
its labels obtained by 3D Lidar are extremely sparse and low-precision. Specifically, KITTI is a
dataset in the field of autonomous driving, in which the data has the properties of large scale and
sparse texture, and its 3D reconstruction accuracy is millimeter precision. In contrast, our stereo
matching network aims to achieve high-precision and robust 3D measurements with micron-level
accuracy by matching the objects with strong speckle texture information. The specific structure
of the proposed network will be presented in detail according to Section 2.2.

2.1. High-quality SPP dataset constructed by using FPP

To build a high-quality SPP dataset, fringe projection profilometry (FPP) is used to obtain
high-precision and dense disparity maps as the ground truth. In a common FPP system, there are
three main processing steps in FPP: phase extraction, phase unwrapping, and phase-to-height
mapping. During phase recovery, sinusoidal fringe-based FPP methods are more prevalent
to retrieval the wrapped phase using Fourier transform methods in frequency domain [15] or
phase-shifting methods in time domain [18]. Fourier transform profilometry (FTP) has the
advantage of single-shot phase extraction but suffers from the spectrum overlapping problem.
These methods generally produce coarse wrapped phases with low quality, making it difficult to
achieve high-precision 3D acquisition. Different from FTP, phase-shifting profilometry (PSP)
can realize pixel-wise phase measurements with higher accuracy unaffected by ambient light, but
it needs to project at least three fringe patterns to obtain a phase map theoretically.

In this work, the standard 12-step phase-shifting fringe patterns with shift offset of 2π/12 are
adopted because it is quite robust to ambient illumination and varying surface properties:

Ip
n (x, y) = 0.5 + 0.5 cos(2πfx − 2πn/12), (1)

where Ip
n (x, y)(n = 0, 1, 2, . . . , 11) represent fringe patterns to be projected, f is the frequency of

fringe patterns. Then the fringe images captured by the camera can be described as

Ic
n(x, y) = Ac(x, y) + Bc(x, y) cos(ϕc(x, y) − 2πn/12), (2)

where Ic
n(x, y) represent the intensity of captured fringe images, Ac(x, y), Bc(x, y), and ϕc(x, y) are

the average intensity, the intensity modulation, and the phase distribution of the measured object.
According to the least-squares algorithm, the wrapped phase ϕc(x, y), Bc(x, y), and Maskc

v(x, y)
can be obtained:

ϕc(x, y) = tan−1
∑︁11

n=0 Ic
n(x, y) sin(2πn/12)∑︁11

n=0 Ic
n(x, y) cos(2πn/12)

, (3)

Bc(x, y) =
2
12

⌜⃓⃓⎷[︄ 11∑︂
n=0

Ic
n(x, y) sin(2πn/12)

]︄2

+

[︄ 11∑︂
n=0

Ic
n(x, y) cos(2πn/12)

]︄2

, (4)

Maskc
v(x, y) = Bc(x, y)/255>Thr1, (5)

where Thr1 is the preset threshold for the tested object, Maskc
v(x, y) can be used to identify the

valid points in the whole image. The threshold Thr1 should be changed for object surfaces with
different reflectivity, theoretically. In most cases, Thr1 = 0.01 is acceptable for various objects
in our measurement. In our method, Maskc

v(x, y) is exploited to preprocess the ground truth for
enhancing the learning ability of the network to the valid information of the measured scenes.
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Due to the truncation effect of the arctangent function in Eq. (3), the obtained phase ϕc(x, y) is
wrapped within the range of (−π, π], and its relationship with Φc(x, y) is:

Φ
c(x, y) = ϕc(x, y) + 2πkc(x, y), (6)

where kc(x, y) represents the fringe order of Φc(x, y), and its value range is from 0 to f − 1.
In our method, multi-frequency temporal phase unwrapping method (MF-TPU) is exploited to

obtain kc(x, y) for each pixel in the phase map accurately. In MF-TPU, the wrapped phase ϕc(x, y)
is unwrapped with the aid of one (or more) additional wrapped phase map with different frequency.
For instance, two wrapped phases ϕc

h(x, y) and ϕc
l (x, y) are both retrieved from phase-shifting

algorithms by using Eq. (3), ranging from −π to π. It is easy to find that the two absolute phases
Φc

h(x, y) and Φc
l (x, y) corresponding to ϕc

h(x, y) and ϕc
l (x, y) have the following relationship:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Φ
c
h(x, y) = ϕc

h(x, y) + 2πkc
h(x, y),

Φ
c
l (x, y) = ϕc

l (x, y) + 2πkc
l (x, y),

Φ
c
h(x, y) = (fh/fl)Φc

l (x, y),
(7)

where fh and fl are the frequency of high-frequency fringes and low-frequency fringes. Based on
Eq. (7), kc

h(x, y) can be calculated by the following formula:

kc
h(x, y) =

(fh/fl)Φl(x, y) − ϕh(x, y)
2π

. (8)

Since the fringe order kc
h(x, y) is integer, ranging from 0 to fh - 1, Eq. (8) can be adapted as

kc
h(x, y) = Round

[︃
(fh/fl)Φc

l (x, y) − ϕc
h(x, y)

2π

]︃
, (9)

where Round() is the rounding operation. When fl is 1, there will be no phase ambiguity so
that ϕc

l (x, y) is inherently an unwrapped phase. Theoretically, for MF-TPU, this single-period
phase can be used to directly assist phase unwrapping of ϕc

h(x, y) with relatively higher frequency.
However, the phase unwrapping capability of MF-TPU is greatly constrained due to the influence
of noise in practice. For a normal FPP system, MF-TPU can only reliably unwrap the phase with
about 16 periods due to the non-negligible noises and other error sources in actual measurement.
Thus, it generally exploits multiple (>2) sets of phases with different frequencies to hierarchically
unwrap the wrapped phase step by step, and finally arrives at the absolute phase with high
frequency instead of only using the phase with a single period. In our method, three wrapped
phases with different frequencies (including 1, 8 and 57) are used to obtain high-precision and
dense (57-period) absolute phase.

Finally, phase matching based on the phase information is implemented to obtain the disparity
map with integer-pixel precision by minimizing the difference between absolute phases from two
perspectives:

∆Φ(i) = abs(ΦL(x, y) − ΦR(x + i, y)), (10)
∆Φmin(Dint) = min

i
∆Φ(i), (11)

where i is the candidate disparity value locally in our SPP system based on epipolar rectification
and depth constraint, the disparity Dint represents the pixel-to-pixel correspondence between
two camera views. Then, the disparity refinement is realized to obtain the disparity map with
subpixel precision by a simple linear interpolation:

Dsub = Dint +

⎧⎪⎪⎨⎪⎪⎩
ΦL(x,y)−ΦR(x+Dint ,y)

ΦR(x+Dint+1,y)−ΦR(x+Dint ,y) , ΦL(x, y) − ΦR(x + Dint, y)>0,
ΦL(x,y)−ΦR(x+Dint ,y)

ΦR(x+Dint ,y)−ΦR(x+Dint−1,y) , ΦL(x, y) − ΦR(x + Dint, y)<0.
(12)

By phase matching, the high-precision and dense disparity map Dsub can be obtained as the
ground truth of our high-quality SPP dataset in Fig. 2.
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Fig. 2. The diagram of constructing high-quality SPP dataset by using FPP.

2.2. End-to-end stereo matching network

In this subsection, an end-to-end stereo matching network, which is used to solve the stereo
matching problem in SPP, is proposed to substantially promote the matching accuracy compared
with the state-of-the-art stereo matching methods. Existing high-performance learning-based
stereo matching networks are generally trained and validated on the KITTI stereo dataset. In
the KITTI stereo dataset, the data has the properties of large scale and sparse texture, and the
corresponding 3D reconstruction results have only millimeter precision. In contrast, based on our
high-quality SPP dataset, our stereo matching network aims to achieve robust 3D measurements
with micron-level accuracy using a speckle image pair. In addition, for the ground truth of our
SPP dataset, the disparity map of the sample data has valid values only in the foreground as
shown in Fig. 2. Thus, it is difficult to naively exploit these existing end-to-end networks [50–52]
to directly obtain the final disparity map, but a simple and fast saliency detection network is
integrated into our network to avoid predicting the invalid pixels in the disparity maps including
occlusions and backgrounds. Specifically, the schematic diagram of the proposed stereo matching
network is shown in Fig. 3.
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Fig. 3. The schematic diagram of the proposed end-to-end stereo matching network. The
whole stereo matching network is composed of a multi-scale residual subnetwork (as the
shared feature extraction subnetwork), construction of the 4D cost volume, cost aggregation
using 3D convolutional layers, disparity regression, and a saliency detection subnetwork.

In Fig. 3, the whole stereo matching network is composed of a multi-scale residual subnetwork
(as the shared feature extraction subnetwork), construction of the 4D cost volume, cost aggregation
using 3D convolutional layers, disparity regression, and a saliency detection subnetwork. It is
worth noting that before stereo matching epipolar rectification is first executed to simplify the
two-dimensional search problem to a one-dimensional matching problem [54]. Then, in feature
extraction for matching cost calculation, different from the traditional methods that directly
exploit the gray information or color value of the pixel for correspondence matching, our purpose
is to calculate the feature representation of each pixel to be matched for the subsequent matching
process. Specifically, learning-based methods usually implement feature extraction on the input
stereo images simultaneously to obtain rich feature information, which is used to construct a 4D
cost volume as the initial matching cost. Therefore, the initial matching accuracy corresponding
to the initial matching cost strongly depends on the quality of the extracted feature information.

For the feature extraction subnetwork in our work, a multi-scale residual network is proposed
to process the input stereo image pair to obtain rich multi-scale feature information. In this
subnetwork, speckle images are first processed by a 2D convolution layer and four residual blocks
to obtain 64-channel feature tensors. Considering that the high-resolution matching costs in the
subsequent cost aggregation will consume a lot of computational overhead and take up expensive
GPU memories, it is necessary to perform a 1/4 downsample operation on the feature tensors. It
is worth noting that the extraction of low-resolution feature tensors is not so much a compromise
to the expensive computational cost but to keep the feature tensors more compact and achieve
high-efficiency feature extraction. Then, the low-resolution feature tensors successively go
through six residual blocks for further expanding the receptive field of each pixel of output tensors.
It is crucially important that each pixel of feature tensors yielded by the network must have a
larger receptive field so that the network will not ignore any important feature information during
the prediction period [55]. And then, the multi-scale pooling layers are introduced to downsample
the input tensors by 1/4, 1/16, 1/64, and 1/256, which can further compress and extract the main
features of the tensors to reduce computation complexity and prevent over-fitting. For these
four downsample paths, the feature tensors are all processed sequentially by a convolutional
layer, a group of residual blocks, and an upsample layer implemented by bilinear interpolation.
After the feature tensors from these six paths are gathered, the concatenate layer is applied for
the feature combination along the channel axis. Finally, the feature tensors are processed by a
2D convolution layer, two residual blocks, and a 2D convolution layer without ReLU to obtain
32-channel feature tensors with 1/4 resolution.
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At the next stage, for constructing the 4D cost volume, feature tensors of each pixel in the left
image and all corresponding candidates in the local disparity range on the epipolar line of the
right image are concatenated. The initial 4D cost volume of dimensionality H × W × D × F (i.e.,
Height × Width × Disparity × Features) is built as shown in Fig. 4:

Cost(:, 1 : (W − Di), Di − Dmin + 1, 1 :
F
2
) = Featureleft(:, 1 : (W − Di), :),

Cost(:, 1 : (W − Di), Di − Dmin + 1, (
F
2
+ 1) : F) = Featureright(:, (Di + 1) : W, :)

, (13)

where Featureleft and Featureright represent the feature tensors with 1/4 resolution from two per-
spectives output by the feature extraction subnetwork, their size (H × W × F/2) is 240 × 320 × 32
for the 480 × 640 resolution of the cameras. [2Dmin, 2Dmax] is the disparity range of our SPP
system. For feature tensors with 1/4 resolution, the initial 4D cost volume is built based on
the range [Dmin, Dmax]. Di is a candidate disparity in the range [Dmin, Dmax]. D is the absolute
disparity range (Dmax − Dmin + 1).

Fig. 4. The schematic diagram of the construction of the 4D cost volume. Based on the
disparity range of our SPP system, the initial 4D cost volume is built by combining feature
tensors of each pixel in the left image and all corresponding candidates along the epipolar
line of the right image.

In cost aggregation, the initial 4D cost volume will be further optimized using 3D convolutional
layers. Although some downsample operations have been done during feature extraction, in
fact, the 4D cost volume with 1/4 resolution still occupies a lot of GPU memories. Therefore, a
lightweight 3D U-net network is proposed to achieve efficient 4D cost aggregation. First of all,
three sets of 3D convolutional layers are adopted to realize cost filtering and downsample the
4D cost volume by 1/4. Then, the ConvTranspose3d layer is used to upsample the cost volume,
and combined with shortcut operations to achieve residual aggregation. According to the output
of the residual operations, three 3D convolutional layers are used to acquire a 4D cost volume
with a single-channel feature, and subsequently obtain the final full-resolution 4D cost volume
through an upsample layer.

Disparity regression in [49] is introduced to estimate the disparity map based on the final 4D
cost volume with a single-channel feature. The probability of each candidate disparity Di is first
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calculated using the softmax operation for the predicted cost volume. The predicted disparity
map Disparity(x, y) is procured by the weighted sum of the normalized probability for each
candidate disparity Di:

Disparity(x, y) =
2Dmax∑︂

Di=2Dmin

Di × softmax(Cost(x, y, Di)). (14)

The traditional stereo matching network directly calculates the loss between the predicted
disparity map and the ground-truth for training. But for the dataset built in our SPP system,
the disparity map of the sample data has valid values only in the foreground. Therefore, it
is necessary to integrate an additional saliency detection network into our existing network.
Currently, the learning-based saliency detection method has been widely investigated with its
advantages of high accuracy, high efficiency, and low cost. Among them, fully convolutional
network (FCN) is one of the most promising network architectures and has achieved significant
results on various well-known datasets [56]. However, given the dataset of SPP that the spatial
structure of the tested scenes is relatively simple and the saliency objects have strong speckle
texture information, a saliency detection network based on a simple network structure can also
achieve good detection results. In order to avoid extracting redundant features, the feature tensors
from two perspectives output by the feature extraction subnetwork are directly stacked through
a concatenate layer. And then, through a group of residual blocks, a ConvTranspose2d layer,
another group of residual blocks, and a convolutional layer, the feature tensors are sequentially
filtered and upsampled to obtain a single-channel feature tensor with full resolution. Finally, the
sigmoid function is used to achieve the regression of the saliency detection mask Mask(x, y),
enabling the prediction of the disparity map without the background:

Disparitytrain(x, y) = Disparity(x, y) × Mask(x, y). (15)

During training, we used Adam to minimize the joint loss, thereby updating the weights that
parameterize the network. The joint loss consists of a smooth L1 loss for the disparity map and a
binary cross-entropy loss for the saliency mask:

Loss = LossMask + LossDisparity, (16)

LossMask = −
1
N

N∑︂
n=1

[Maskc
v(n) ln Mask(n) + (1 − Maskc

v(n)) ln(1 − Mask(n))], (17)

LossDisparity =
1
N

N∑︂
n=1

smoothL1 (Dsub(n) − Disparitytrain(n)), (18)

smoothL1 (x) =
⎧⎪⎪⎨⎪⎪⎩

0.5x2, if |x|<1,

|x| − 0.5, otherwise.
(19)

where Maskc
v and Dsub are the corresponding ground truth of the saliency mask and the disparity

map according to Section 2.1.
During testing, the saliency detection mask Mask(x, y) needs to be binarized to distinguish the

foreground from the background, and the final disparity map is obtained:

Disparityfinal(x, y) = Disparity(x, y), if Mask(x, y)>=0.75. (20)

To verify the actual impact of the saliency detection network, the comparison of the 3D
reconstruction results without/with the saliency detection network is presented as shown in Fig. 5.
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It can be found in Fig. 5 that our measurement results without the saliency detection network have
serious mismatches in the background, which will affect the convergence of the network during
training and reduce the actual performance of the network. Therefore, the saliency detection
network is an additional but necessary module in our approach, implicitly enhancing the matching
accuracy for valid pixels.

Fig. 5. Comparison of the 3D reconstruction results without/with the saliency detection
network. (a) the 3D reconstruction results without the saliency detection network. (b) the
3D reconstruction results with the saliency detection network. (c) the ground truth.

3. Experiments

To verify the actual 3D measurement performance of the proposed method, a common stereo
vision-based SPP system with a wide baseline is built as shown in Fig. 1, which consists of
two monochrome cameras (Basler acA640-750um with the resolution of 640 × 480) and a DLP
projector (LightCrafter 4500Pro with the resolution of 912 × 1140). Since the baseline between
the stereo cameras is about 270mm, the disparity constraint of our system should be suitably set
to -100 to 59 pixels to measure objects with a depth range of −100mm to 100mm. The distance
between the measurement system and the objects to be tested is about 900mm. In addition, the
projected speckle pattern has been designed and evaluated based on our previous work [31] to
obtain the best 3D measurement performance.

In our experiment, we collected the dataset including 1200 different scenes, which are randomly
composited of 30 simple and complex objects. The whole dataset has 1200 image pairs, which
are divided into 800 image pairs for training, 200 image pairs for validation, and 200 image pairs
for testing. During training, to monitor the accuracy of the neural networks for samples that
they have never seen, the scenes in these training, verification, and testing datasets are separate
from each other. In addition, to achieve high-robustness and high-accuracy stereo matching,
the proposed stereo matching network can only process a pair of stereo images at a time during
training, which occupies about 23GB graphic memories. The training epoch is set as 200 which
takes about 5 days. The proposed network takes 0.95 seconds for disparity prediction.

3.1. Experimental comparison of different methods

A comparative experiment is first carried out to reveal the high performance of the proposed
method compared with two traditional methods (ZNCC [57] and SGM_Census [41,42]) and two
learning-based methods (Luo’s method [46] and BM_DL proposed in our previous work [55]).
Measuring the objects with ridged, complex, or discontinuous surfaces is a challenging task
for a single-shot SPP. To verify the reliability of these methods for scanning these challenging
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surfaces, two different objects are measured including the David model and the statue of Voltaire.
The corresponding 3D reconstruction results obtained by ZNCC, SGM_Census, Luo’s method,
BM_DL, and our method are shown in Figs. 6(a) and (c).

Fig. 6. Comparison of the 3D reconstruction results using different methods. (a) the 3D
reconstruction results of the David model, (b) the matching errors of the David model, (c)
the 3D reconstruction results of the statue of Voltaire, (d) the matching errors of the statue
of Voltaire.

The ZNCC criterion is highly common for practical use, as it is insensitive to the offset and
scale changes in the intensity of the local matched block and provides the most accurate and
reliable displacement estimations compared with other criteria [57]. In ZNCC, block matching is
performed to calculate the matching costs and acquire the integer-pixel disparity maps, which then
can be refined to obtain the sub-pixel disparity maps by a five-point quadratic curve fitting model
[14]. In order to enhance the matching performance of ZNCC, the block size in block matching
is determined as 19 × 19 after an exhaustive empirical search. However, the fundamental
assumption made by block matching is that all the pixels in the matching window have similar
disparities. As a consequence, this assumption does not hold at disparity discontinuities, causing
the corresponding 3D results with the edge-fattening issue [58,59] in object boundaries and thin
structures as shown in Fig. 6.
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Compared with ZNCC, SGM_Census can provide dense 3D measurement results. In
SGM_Census, the census transform with the same block size of 19 × 19 is applied to calculate
the initial matching costs, which are then processed to obtain the 3D results using a series of
post-processing operations including 1D cost aggregation from 8 paths, Winner-Take-All (WTA),
and a quadratic curve fitting [41]. However, SGM_Census avoids mismatching by smoothing the
disparity map for achieving reliable stereo matching, at the cost of 3D measurement accuracy as
shown in Fig. 6. It can be found that there are some obvious mismatch areas and low-precision
3D measurement results using ZNCC and SGM_Census, which proves that these non-parametric
matching methods are so difficult to provide reliable and high-precision matching results on the
SPP system with a wide baseline.

Different from these traditional methods, two learning-based methods (Luo’s method and
BM_DL) are also implemented for comparison. In the two methods, matching cost calculation is
implemented using the network. In Luo’s method, a pair of block data (centered on the point
to be matched in the left image and its all corresponding candidate points in the right image)
is inputted into the network at the same time to search the correct candidate point within the
pre-defined local disparity range. To realize the high performance of stereo matching, a block
matching network based on the Siamese structure is adopted to generate better initial matching
costs. Similar to SGM_Census, a series of same post-processing operations are used to obtain
the 3D results as shown in Fig. 6. Furthermore, BM_DL proposed in our previous work is an
enhanced version of Luo’s method. In the block matching network of BM_DL, some additional
but necessary convolutional layers and residual blocks are stacked at the head of the network
to further enhance the ability of feature extraction. Besides, the fully connected layers with
shared weights are used instead of the original inner product to improve the accuracy of the
network’s similarity measurement. It is easy to find in Fig. 6 that BM_DL can output more
accurate and dense disparity results compared with SGM_Census and Luo’s method. However,
the measurement accuracy achieved by BM_DL cannot meet the requirements of high-precision
3D measurement applications. It is important that how to leverage the end-to-end network to
achieve more efficient three-dimensional matching is worth investigating.

Obviously, in Fig. 6, the proposed end-to-end stereo matching network yields the highest-
quality 3D reconstruction by the single-shot measurement. Compare with the ground truth using
the 12-step phase-shifting fringe patterns as shown in Fig. 6, due to the inherent characteristics
of local smoothness for stereo matching, there are some local details with slight distortion and
blurred surfaces in our 3D reconstruction results. However, it can be found that our method can
obtain high-precision 3D results that are closer to the ground truth. It is easy to conclude based
on these experimental results that our matching network can achieve 3D measurements with the
best performance among several SPP methods.

Besides, compared with the ground truth, the matching errors for different methods are shown
in Figs. 6(b) and 6(d) and the corresponding quantitative analysis results can be found in Table
1. To ensure the objectivity of the analysis results, the differences between the disparity results
obtained using these methods and the ground truth are used to make an accurate judgment.
The number of points is the sum of valid points in the ground truth. The missing ratio means
the proportion of points that are valid points in the ground truth but invalid points in these
disparity results. For ZNCC, SGM_Census, Luo’s method, and BM_DL, the 4-connected image
segmentation method is used to process the disparity maps to identify and remove segments with
fewer pixels [41]. For our method, the mask generated by the saliency detection subnetwork is
exploited to directly remove the invalid pixels in the disparity maps including occlusions and
backgrounds. Then the error ratio is easily obtained by counting the number of valid points where
their absolute disparity difference between the ground truth and these disparity results are more
than 1 pixel. All remaining valid points are regarded as correct points and then further subdivided
according to different disparity accuracies including 1 pixel, 0.5 pixels, and 0.2 pixels. It can
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be seen from Table 1 that the missing ratio and the error ratio using our method are lower than
2% and 6%. The correctness ratio achieved by our method is higher than 93%, and most of the
pixels have a disparity accuracy of lower than 0.5 pixels. The results illustrated that the matching
accuracy using the proposed method is improved by about 50% significantly compared with
traditional stereo matching methods. Our method can achieve robust 3D shape measurement with
a high correctness ratio and high completeness for objects with complex surfaces and geometric
discontinuities.

Table 1. Quantitative analysis results for different methods

Object Nopa Method Mmrb(%) Emrc(%)
Cmrd(%)

≤ 1e ≤ 0.5f ≤ 0.2g

David 62337

ZNCC 16.92 34.77 48.31 33.98 16.93

SGM_Census 10.09 22.18 67.73 49.21 23.73

Luo’s method 7.91 18.26 73.83 52.36 25.05

BM_DL 3.44 13.24 83.32 64.26 33.18

Our method 1.57 5.34 93.09 83.67 56.79

Voltaire 75403

ZNCC 10.91 28.07 61.02 45.92 22.63

SGM_Census 6.11 18.51 75.38 56.96 28.13

Luo’s method 6.97 14.71 78.32 59.06 39.31

BM_DL 2.29 9.69 88.02 72.11 39.48

Our method 0.68 2.84 96.48 89.48 62.64

aNop = Number of points,
bMmr =Missing matching rate,
cEmr = Error matching rate,
dCmr = Correct matching rate,
e≤ 1 = Less than 1 pixel,
f≤ 0.5 = Less than 0.5 pixels,
g≤ 0.2 = Less than 0.2 pixels.

3.2. Precision analysis

Further, to quantitatively evaluate the accuracy of our system using the proposed end-to-end
stereo matching network, a ceramic plane and a pair of standard ceramic spheres with a diameter
of 50.8mm are measured. Figures 7(a) and 7(b) show the corresponding 3D reconstruction results.
And then, based on the obtained 3D reconstruction data, the plane fitting is performed to acquire
the ideal plane as the ground truth. The difference between the measured plane and the ideal
plane is calculated to obtain the 3D measured errors as shown in Fig. 7(c). The quantitative
histograms of the differences are displayed as shown in Fig. 7(f). It can be easily found that the
major measured errors are less than 200µm with the RMS of 101.65µm, respectively. Likewise,
for the 3D measurement of a pair of standard ceramic spheres as shown in Fig. 7(b), the sphere
fitting is used to obtain the actual measurement error as shown in Figs. 7(d) and 7(e). Then, the
RMS of the 3D measurement accuracy is about 100µm as shown in Figs. 7(g) and 7(h).

In addition, the precision analysis results for different methods are presented in Table 2. For
the ceramic plane, the measurement errors achieved using ZNCC are less than 200µm with the
RMS of 103.04µm. The reason for this result is that based on the basic assumption of block
matching all pixels in the matching window have similar disparities. However, this assumption
does not hold for measuring objects with ridged, complex, or discontinuous faces. For the
standard ceramic spheres, ZNCC can only generate coarse 3D measurement results with many
matching errors as shown in Fig. 8. It is noted that by the sphere fitting the actual measurement
errors are greater than 1mm. After outlier removal, the measurement accuracy has been improved
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Fig. 7. Precision analysis for measuring a ceramic plane and a pair of standard ceramic
spheres using our method. (a) The 3D reconstruction results of a ceramic plane, (b) the
3D reconstruction results of a pair of standard ceramic spheres, (c)-(e) the corresponding
distributions of the measured errors of (a)-(b), and (f)-(h) the corresponding quantitative
histograms of the measured errors of (a)-(b).

significantly but is still greater than 300µm. And the radius error of the tested ceramic spheres
using ZNCC is greater than 1mm in Table 2. In contrast, SGM_Census provides measurement
results with similar accuracy for measuring planes and spheres. Similarly, Luo’s method and
BM_DL can also realize robust and more accurate measurements for measuring planes and
spheres. However, these methods all use the same post-processing operations to achieve reliable
stereo matching by smoothing the disparity map, at the cost of matching accuracy. Unlike these
methods, whether the planes or spheres are measured, and whether RMS or radius errors of
the spheres are calculated, our method can achieve robust 3D shape measurement with the best
accuracy. This result verifies that the proposed method can significantly increase the matching
accuracy of SPP and achieve high-precision 3D reconstruction results.

Table 2. Precision analysis results for different methods

Method
Ceramic plane Ceramic sphere A Ceramic sphere B

RMS RMS Radius error RMS Radius error

ZNCC 103.04µm 340.62µm 1.31mm 367.25µm 1.02mm

SGM_Census 279.39µm 332.11µm 244.35µm 345.76µm 260.72µm

Luo’s method 240.12µm 292.65µm 213.05µm 274.82µm 229.35µm

BM_DL 189.85µm 213.66µm 172.85µm 207.79µm 166.57µm

Our method 101.65µm 104.11µm 117.85µm 108.74µm 114.13µm
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Fig. 8. Precision analysis for measuring a pair of standard ceramic spheres using ZNCC.
(a) The 3D reconstruction results of ceramic spheres A, (b) the corresponding distributions
of the measured errors of (a), (c) the corresponding distributions of the measured errors
of (a) after outlier removal, (d) the 3D reconstruction results of ceramic spheres B, (e)
the corresponding distributions of the measured errors of (d), and (f) the corresponding
distributions of the measured errors of (d) after outlier removal.

Fig. 9. The 3D reconstruction results for a dynamic scene: a moving David model
(Visualization 1). (a)-(c) The David model moves along the Z axis and (d)-(f) the David
model rotates around the Y axis.
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3.3. Fast 3D surface imaging

Last of all, our system is applied to record a dynamic scene for fast 3D shape measurement: a
moving David model as shown in Fig. 9. In this experiment, the exposure time of cameras is set
39.2ms to capture the speckle images at the speed of 25Hz for achieving 3D reconstruction at
25fps. Figure 9 shows the color-coded 3D reconstruction results at different time points. During
the whole dynamic measurement, the David model first moves forward along the Z axis, and
arrives at the boundary of the predefined measurement space at 2.8 seconds. Then, the David
model moves in reverse along the Z axis to another boundary of the predefined measurement
space at 5.76 seconds. Furthermore, the David model returns to the initial position and starts to
rotate around the Y axis. Finally, it is back to the origin position again in 15.8 seconds. The
whole 3D measurement results can refer to Visualization 1. In the whole measuring procedures,
the 3D surfaces of the David model are correctly and high-quality reconstructed, verifying the
reliability of the proposed method to perform the absolute 3D shape measurement with high
completeness at high speed.

4. Conclusion

In summary, we proposed a single-shot 3D shape measurement method using an end-to-end
stereo matching network based on a common stereo vision-based SPP system. To efficiently train
the stereo matching network, a high-quality SPP dataset is first built by combining phase-shifting
profilometry (PSP) and temporal phase unwrapping techniques in FPP. High-precision absolute
phase maps obtained using FPP are used to generate accurate and dense disparity maps with high
completeness as the ground truth of the dataset by phase matching. For the architecture of the
network, the proposed network first leverages a multi-scale residual subnetwork to synchronously
extract compact feature tensors with 1/4 resolution from speckle images for constructing the 4D
cost volume. Although some downsample operations have been done during feature extraction,
in fact, the 4D cost volume with 1/4 resolution still occupies a lot of GPU memories. Therefore,
a lightweight 3D U-net network is proposed to implemented efficient 4D cost aggregation for
achieving higher matching performance. Considering that the disparity maps (as the ground truth)
in the SPP dataset has valid values only in the foreground, a simple and fast saliency detection
network is proposed and integrated into our network to avoid enhancing the invalid pixels in the
disparity maps including occlusions and backgrounds, thereby implicitly enhancing the matching
accuracy for valid pixels. The experimental comparison of different methods illustrated that
compared with traditional methods our method can achieve robust 3D shape measurement with a
high correctness ratio and high completeness for objects with complex surfaces. Besides, the
quantitative analysis results proved again that the matching accuracy using the proposed method
is improved by about 50% significantly compared with traditional stereo matching methods.
The experiment results of the precision analysis demonstrated that the proposed method can
achieve absolute 3D shape measurement with an accuracy of about 100µm through only a single
speckle pattern. The dynamic measurement experiment has verified the success of the proposed
method in its ability to effectively achieve fast and accurate 3D shape measurements with high
completeness for complex scenes at 25fps.

Finally, there are several aspects that need to be further improved in the proposed method.
First, since there are many costly 3D convolutions for cost aggregation in the proposed network,
the initial cost volume is 1/4 downsampled in advance, which undoubtedly reduces the accuracy
of stereo matching significantly. Therefore, how to achieve more efficient cost aggregation is
still a problem to be solved. Second, it is easy to understand that projecting multiple speckle
images will improve the accuracy of 3D measurement, because more constraints can be exploited
to completely guarantee the global uniqueness of the measured scenes. How to improve the
measurement accuracy of the stereo matching network by inputting multiple speckle images
at the same time is another interesting direction for further investigation. Third, the proposed
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network takes 0.95 seconds for disparity prediction that is slower compared with most of the
existing algorithms running on GPU. How to achieve fast stereo matching should be considered.
It can be found that cost aggregation in the proposed network take accounts for most of the total
run time. Similarly, the cost aggregation sub-network should be further optimized to improve
the accuracy of stereo matching and reduce the run time. At last, different from traditional
non-learning methods, it is noted that the generalization ability of learning methods needs to
be further researched and discussed for measuring different objects with complex reflection
characteristics or high reflectivity, enabling more reliable 3D shape measurement. Based on the
above analysis, we will explore more other methods to design a single-shot SPP system with
higher performance.
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Abstract: Single-shot fringe projection profilometry (FPP) is essential for retrieving the absolute
depth information of the objects in high-speed dynamic scenes. High-precision 3D reconstruction
using only one single pattern has become the ultimate goal in FPP. The frequency-multiplexing
(FM) method is a promising strategy for realizing single-shot absolute 3D measurement by
compounding multi-frequency fringe information for phase unwrapping. In order to solve the
problem of serious spectrum aliasing caused by multiplexing schemes that cannot be removed
by traditional spectrum analysis algorithms, we apply deep learning to frequency multiplexing
composite fringe projection and propose a composite fringe projection deep learning profilometry
(CDLP). By combining physical model and data-driven approaches, we demonstrate that the
model generated by training an improved deep convolutional neural network can directly perform
high-precision and unambiguous phase retrieval on a single-shot spatial frequency multiplexing
composite fringe image. Experiments on both static and dynamic scenes demonstrate that
our method can retrieve robust and unambiguous phases information while avoiding spectrum
aliasing and reconstruct high-quality absolute 3D surfaces of objects only by projecting a single
composite fringe image.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Structured light (SL) projection is one of the most representative 3D optical imaging technologies
for macroscopic objects due to its non-contact, high-resolution, and easy-to-implement measure-
ment capabilities [1–4]. Among them, fringe projection profilometry (FPP), has become one of
the most prevalent SL methods with the advantages of full-field scanning and high-precision
measurement [5–7], which has been widely applied in multiple fields, such as intelligent manufac-
turing [8] and reverse engineering [9]. For FPP, the projector projects a series of fringe patterns
onto the target object, and then the camera captures these images modulated and deformed by the
objects. The measured objects’ absolute phases and related depth information can be retrieved
with the captured fringe patterns by processing the following three steps: fringe analysis, phase
unwrapping, and phase-to-height mapping. With the rapid development of optoelectronic infor-
mation technology [10–12], people subsequently set higher expectations on FPP, requiring both
higher precision and higher speed. However, these two aspects seem contradictory in nature. Due
to the increasing demand for dynamic scene measurement (such as online industrial inspection,
stress deformation analysis, fast reverse modeling, etc. [13]), “speed” has gradually become
a fundamental factor that must be taken into account when using FPP. There are two factors
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determining the 3D measurement speed of FPP: (1) the speed of hardware devices: optoelectronic
devices (e.g., digital light projectors, spatial light modulators, and high-speed image sensors) and
digital signal processing units (e.g., high-performance computers and embedded processors);
and (2) the number of patterns required per 3D reconstruction of the software algorithms. From
the perspective of hardware, Lei and Zhang et al. [14,15] has achieved speed breakthroughs by
developing the binary defocusing techniques, where the binary defocusing methods coincide with
the inherent operation mechanism of the digital-light-processing (DLP) technology, and permit
tens of kHz fringe projection speed by using a digital micromirror array device (DMD). Heist et
al. [16] introduced a GOBO projector that projects aperiodic sinusoidal fringe patterns with high
frame rates and high radiant flux, which can generate more than 1,000 independent point clouds
per second. In addition, Zuo et al. [17] proposed micro Fourier profilometry (µFTP), which
used high-speed fringe projection hardware as well as the number of patterns reduction strategy
to achieve 3D shapes reconstruction at 10,000 fps. From the perspective of algorithms, several
composite phase-shifting methods have been proposed to reduce the number of projected patterns
required per unambiguous 3D reconstruction [8,17–24]. Liu et al. [18] proposed a dual-frequency
pattern strategy that embedded low and high frequency components into a single pattern, at least
five patterns were required to reconstruct the 3D point cloud. Zuo et al. [20] employed two
π/2 phase-shifting sinusoidal patterns and two linear increasing/decreasing ramp patterns to
reduce the number of patterns required per 3D reconstruction from five to four. Zhang et al. [21]
embedded the speckle-like signal in three sinusoidal phase-shifted fringe patterns for absolute
depth recovery, which can eliminate the phase ambiguity without reducing the fringe amplitude
or frequency. Feng et al. [22] presented a two-frame fringe projection technique for real-time 3D
measurement, using a speckle image and a speckle-embedded fringe image. Tao et al. [23] used
three composite fringe patterns embedded with the triangular wave into a multi-view system to
strengthen the robustness of phase unwrapping. Qian et al. [8] further established a complete
multi-view fringe projection system, which can achieve real-time high-precision 360-degree 3D
model measurement with only three high-frequency fringe patterns. Nevertheless, high-precision
3D reconstruction using only one single pattern is a considerable challenge and has been the
ultimate goal of structured light 3D imaging in perpetual pursuit. In 1983, Takeda et al. [25,26]
proposed Fourier transform profilometry (FTP), which decoded the wrapped phase by Fourier
filtering in the spatial frequency domain and achieved the phase demodulation from a single fringe
pattern. Afterwards, a series of influential and improved single-shot fringe analysis methods
were proposed, such as windowed Fourier transform (WFT) [27–30] and wavelet transform (WT)
methods [31]. Particularly, Su et al. [32] applied a single high-frequency fringe projection image
for drumhead vibration at a speed of kHz level. However, the key to the success of FTP is that the
high-frequency fringe information modulated by the object surface can be well separated from
the background intensity in the frequency domain. As a result, the FTP technique [33] is limited
to measuring smooth surfaces with limited height variations. Besides, the phase distribution
retrieved by FTP, ranging between −π to π, suffers from 2π periodic ambiguity. Consequently,
the wrapped phases require phase unwrapping algorithms to further obtain the absolute phase
distribution [34].

To achieve single-shot phase unwrapping, Takeda et al. [35] further introduced frequency
multiplexing (FM) to FPP to encode two fringe patterns with different spatial carriers into a single
snapshot measurement. The projected composite fringe pattern and its spectrum and intensity
calculation function are illustrated in Fig. 1(a). After performing the Fourier transform on the FM
composite fringe pattern, the spatial frequencies in two orthogonal directions can be extracted
from the spectrum simultaneously, with which the periodic phase ambiguity can be removed.
Although this method solved the spectrum aliasing problem to some extent and can measure 3D
objects with discontinuous and isolated surfaces, the residual phase errors still lead to phase
unwrapping errors. Guan et al. [36] used four high-frequency carrier information to convolve
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the single-frequency phase-shifting fringe patterns to different positions of the Fourier spectrum
(Fig. 1(b)), by which the absolute phase maps can be directly recovered from these modulated
single-frequency signals through the temporal phase-shifting algorithm [37]. However, due to the
weak anti-noise ability of low-frequency image and residual spectrum aliasing, this method cannot
be applied to highly precision measurment fields. Yue et al. [38] designed another composite
structured light pattern formed by modulating two fringe patterns with π phase difference along
the orthogonal direction of two distinst carrier frequencies (Fig. 1(c)). Lu et al. [39] proposed
a fast modulation measuring profilometry based on a single-shot cross grating projection to
reconstruct the 3D shape of the objects (Fig. 1(d)). In addition some other single-shot composite
coding strategies, such as spatial neighborhood coding schemes [40] (e.g., De Bruijn sequences),
color channels multiplexing methods [41], and directly coding methods [42] can also solve the
problem of motion. Although the above methods achieve high measurement efficiency, they
suffer from compromised measurement accuracy due to the spectrum aliasing problem of FTP.
In recent years, deep learning technology has been applied to FPP as a new tool to solve the
measurement efficiency and phase/or depth retrieval accuracy [43,44], such as fringe analysis
[44–46], fringe enhancement [47], phase demodulation [48,49], phase unwrapping [50–52], and
3D data acquisition [53–55]. These studies have given us an inspiration-whether it is possible to
combine fringe projection profilometry with deep learning techniques to achieve higher precision
and more robust phase retrieval and 3D reconstruction from only a single composite fringe image.

Fig. 1. Spatial frequency multiplexing composite fringe patterns and their corresponding
spectrum.

In this work, we present a novel composite fringe projection deep learning profilometry
(CDLP), which construct a one-to-three convolutional neural network to analyze the single-shot
spatial frequency multiplexing fringe pattern, to reconstruct high-quality 3D shape information in
transient scenes. The main contributions of this work are as follows. (1) Under supervised learning,
the use of high-quality data sets (including input data and ground truth labels) significantly
affects the quality of network model training. In this regard, we first propose a fringe encoding
scheme based on spatial frequency multiplexing, which takes into account both unambiguity and
multi-spatial information fusion to enhance the training abilities of the deep learning network.
Meanwhile, through the N-step phase-shifting (PS) method and multi-frequency temporal phase
unwrapping (TPU) combined with the projection distance minimization (PDM) algorithm [17],
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we have successively obtained the high-quality wrapped phase numerator, denominator term, and
unambiguous unwrapped phase. They serve as three sets of high-quality ground truth labels for
our one-to-three single-shot phase retrieval network. (2) For our proposed network framework,
we use an improved one-to-three deep convolution neural network to simultaneously achieve
high-quality phase analysis and robust phase retrieval. The specific network architecture will be
elaborated in subsequent sections. Experimental results validated that the proposed single-shot
composite fringe projection deep learning profilometry can directly perform the single-shot
robust and unambiguous phase retrieval process and high-quality absolute 3D surface information
of the objects under fast, dynamic, and even transient scenes, with a reconstruction accuracy
of 60 µm. The remainder of this paper is organized as follows. In Section 2., we start with the
basic principles of composite fringe projection deep learning profilometry (CDLP). In Section 3.,
experimental verifications and comparison results are presented in detail. In the final Section 4.,
we draw conclusions.

2. Principle of composite fringe projection deep learning profilometry (CDLP)

2.1. Single composite fringe pattern (CFP) coding scheme

To incorporate multiple patterns in an image as the unique input of a deep learning network to
achieve a single-shot fast and robust phase retrieval, we consider the following considerations for
the composite fringe coding strategy. (1) It is hard to directly use a absolute single-frequency
fringe pattern as a deep learning input to predict the high-precision phase. The reason is that
when the single-frequency fringe pattern is projected and captured, the camera resolution is
inconsistent with the projector’s resolution. Thus only one single-frequency fringe cannot obtain
complete sinusoidal intensity information and accurate phase information within a sinusoidal
period. (2) Although the absolute phase information of the objects can be obtained directly by
using the single-frequency N-step phase-shifting fringe images without phase unwrapping [56],
the phase accuracy demodulated by the single-frequency fringe is poor; besides, this strategy
always needs to project N fringe images, so the speed cannot exceed the single-frame projection.
(3) If we consider combining N single-frequency fringe patterns into an image with a complete
sine period, we cannot directly superimpose these N single-frequency phase-shifting images into
one image, because the final composite result is a white image. (4) Guan’s coding strategy [36],
which separated the four single-frequency phase-shifting patterns in the frequency spectrum
through four high-frequency carrier frequencies, can directly retrieve the unambiguous phase
distributions from a single composite image and avoid the complicated unwrapping process;
however, due to the low frequencies lack of high-frequency detail information of the objects, this
method cannot fulfill the requirements of high-precision 3D shape measurement. To sum up, we
propose a novel three short-wavelength superimposed three carrier-frequency composite fringe
pattern coding strategy.

The composite fringe pattern (CFP) and its generation process are shown in Fig. 2(a). Firstly,
we generate three sets of sinusoidal fringe patterns with different short wavelengths (or high
frequencies), which are recorded as fringe patterns to be modulated:

Ip
φn
(xp, yp) = a + b cos

(︃
2πxp

λφn

)︃
, (1)

where (xp, yp) is the projector pixel coordinate. The constants a and b are the background intensity
and the modulation of the short-wavelength fringe patterns, and their values should strictly meet
the following constraints: on the one hand, the cos term of Ip

φn
after compensation by a and

b is non-negative, on the other hand, they must ensure that the patterns can be made to reach
the maximum contrast ratio. The wavelengths λφn are changed in the phase direction (the xp

dimension). Constant n represents the nth short-wavelength fringe pattern index, n = 1, 2, 3.
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Then, the short-wavelength fringe patterns Ip
φn

are respectively multiplied by three standard
cosine fringe patterns Icarrin with different carrier frequencies along the orthogonal direction to
produce three composite sub-images. By superimposing these three composite sub-images of
each channel, a frequency-multiplexed CFP is generated:

Ip
cp(xp, yp) = A + B ·

3∑︂
n=1

Ip
φn
(xp, yp) ◦ Icarrin (x

p, yp)

=A + B ·

3∑︂
n=1

[︃
a + b cos

(︃
2πxp

λφn

)︃]︃
· cos

(︁
2πfcarriny

p)︁ ,

(2)

where Ip
φn

is the intensity of the projected CFP, A and B are the mean intensity and the amplitude
constants to make value of the 8-bit CFP Ip

φn
between 0 and 255. The operator ◦ represents the

Hadamard product operation, which is a pixel-level calculation process, shown in Fig. 2(b). The
frequencies fcarrin that change in the orthogonal direction (the yp dimension) are recorded as the
carrier frequency. The designed CFP contains three short wavelengths (modulation frequencies)
λφn and three carrier frequencies fcarrin . The directions between the short-wavelength fringes
Ip
φn

and the carrier-frequency fringes Icarrin are orthogonal, so that the modulation frequencies
corresponding to the short wavelengths can be modulated at different positions of the Fourier
spectrum through different carrier frequencies. Appropriate short wavelengths and carrier
frequencies have to be carefully assigned. The selection conditions of the three short-wavelength
λφn we will discuss in the next section. For the selection of carrier frequency fcarrin combinations,
in order to expand the bandwidth of each modulation channel and minimize channel leakage,
the selected carrier frequencies should be separated as much as possible and far away from zero
frequency. However, limited by the spatial resolution of the projector and camera, they have to
be restricted within a certain range to ensure reliable phase retrieval.

Fig. 2. The composite fringe pattern (CFP) generation process and details. (a) A CFP is
formed by modulating and superimposing three short-wavelength fringe patterns with three
carrier-frequency fringe patterns along with orthogonal directions. (b) Hadamard product
operation between the images of the first channel. (c) A simulation composite fringe image
and its spectrum. (d) Conversion between CFP and three fringe patterns.
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It should be noted that the intensity range of the projected CFP should be controlled at [0,255],
so the intensity of the originally generated CFP needs to be normalized

Ip
cp(xp, yp)′ =

Ip
cp(xp, yp) − Imin

Imax − Imin
· 255, (3)

where [Imin, Imax] is the intensity range of the original CFP. Ideally, after illuminating the object
with the composite fringe pattern Ip

cp through a digital projector, the intensities of the captured
image can be expressed as:

Ic
cp(xc, yc) = α(xc, yc) ·

[︄
A + B ·

3∑︂
n=1

Ic
φn
(xc, yc) · Icarrin (x

c, yc)

]︄
, (4)

where the fringe maps to be demodulated are

Ic
φn
(xc, yc) = a + b cosΦn(xc, yc), (5)

and (xc, yc) is the pixel coordinate in the camera space, α(xc, yc) is the surface reflectivity of the
measured object, and Φn(xc, yc) is the absolute phase. Due to perspective distortion between the
projector and the camera, the actual carrier frequencies f c

carrin of the captured image in the camera
view may be different from fcarrin . Thus, the relative position of the projector and the camera
should be aligned to share about the same world coordinates both in orthogonal direction and the
depth direction.

From Eqs. (4) and (5), we can see that the composite fringe image contains three short-
wavelength fringe maps (Fig. 2(d)): the three different wavelength fringe patterns can be encoded
as one pattern, and the composite fringe pattern can also be decoded to recover these three
different wavelength fringe patterns. The phase information of the three fringe maps can be
demodulated separately, and then the absolute phase of the object can be retrieved by the phase
retrieval algorithm. Therefore, how to accurately demodulate the phase information of one of the
short-wavelength fringe images from the obtained distorted composite fringe images is one of
the focuses of this work.

2.2. Construction of high-quality network datasets

In order to keep the extracted phase information free from spectrum aliasing, we use deep
learning-based methods instead of traditional Fourier transform methods to perform phase
demodulation and absolute phase recovery. To begin with, we need to build a high-quality
network dataset. The network model learned based on the simulation data may not realistically
and comprehensively reflect the actual physical imaging process, and it may not obtain the
ideal imaging results. Therefore, we collect and label actual experimental training data rather
than simulation data in the deep learning task. In this work, we use a non-composite standard
N-step phase-shifting algorithm (PS) for high-quality phase analysis, and use temporal phase
unwrapping (TPU) combined with the projection distance minimization (PDM) method to obtain
high-precision absolute phase information. The complete process of constructing a high-quality
network dataset is shown in Fig. 3.

For the standard N-step phase-shifting algorithm, the fringe images captured by the camera
can be expressed as:

Ic
n(i)(x

c, yc) = A(xc, yc) + B(xc, yc) cos (Φn(xc, yc) + 2πi/N ) , (6)

where Ic
n(i) represents the (i + 1)th n-frequency captured image, i = 0, 1, . . . , N − 1, Φn is the

n-frequency absolute phase map, and 2πi/N is the phase shift. Then, the phase can be calculated
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Fig. 3. The process of generating training data. (a) The projected sequence consists of three
sets of 12-step phase-shifting fringe patterns with different frequencies/wavelengths. (b)
The generation process includes projecting and capturing three sets of fringe images, phase
analysis to obtain the wrapped phase, and phase unwrapping to retrieve the absolute phase
distribution.

through the least-squares algorithm:

ϕ = arctan

∑︁N−1
i=0 Ic

(i) sin(2πi/N )∑︁N−1
i=0 Ic

(i) cos(2πi/N )
= arctan

M
D

, (7)

where the subscripts (xc, yc) and n are omitted for convenience, M and D represent the numerator
and denominator of the actangent function, respectively. In addition, to improve the image
quality and enhance the learning ability of the deep learning network, the image Mask function
constructed by the modulation function B (Eq. (8)) is used to remove the invalid points of the
entire captured image (Eq. (9)).

B(xc, yc) =
2
N

√︁
M2 + D2, (8)

Mask(xc, yc) =

⎧⎪⎪⎨⎪⎪⎩
B(xc, yc), B(xc, yc) ≥ Thr

0, B(xc, yc)<Thr
. (9)

The value of threshold Thr is set to 8, which is suitable for most of our measurement
scenarios in this work. The initial phase φ we obtained is the relative/wrapped phase within
(−π, π) due to the truncation of the arctangent function. Thus, we need to perform phase
unwrapping to remove the ambiguities and correctly extract the absolute phase contribution.
In this work, through the obtained multi-frequency fringe wrapped phase maps, we use the
temporal phase unwrapping method to eliminate the phase ambiguity in the time domain pixel by
pixel. Projection distance minimization (PDM) is an optimal method for solving multi-frequency
temporal phase unwrapping. Assuming that three groups of fringe patterns with fringe wavelength
λ = [λ1, λ2, λ3]

T are obtained by the phase-shifting method, the corresponding relative phase is
ϕ = [ϕ1, ϕ2, ϕ3]

T , and the absolute phase Φ = [Φ1,Φ2,Φ3]
T and the wrapped phase satisfy the
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following relationship:
Φ = ϕ + 2kπ, (10)

where k = [k1, k2, k3]
T is the integer fringe order vector, k1,2,3 ∈ [0, K − 1], and K denotes the

number of used fringes. The task of phase unwrapping is to determine the unique fringe orders k
of the wrapped phase, and then obtain the absolute phase maps Φ from Eq. (10). To achieve
the goal that the relative phase ϕ can be successfully unwrapped without ambiguities within the
desired measurement range, the fringe wavelength combination should be selected appropriately.
On the one hand, given that the projection pattern has W pixels along the horizontal axis wherein
the sinusoidal fringe intensity change, on the other hand, considering the fact that the least
common multiple of the wavelength combination determines the maximum range of unambiguous
phase wrapping along the absolute phase axial direction [17,57], the selected three different
wavelengths λ1, λ2, λ3 should satisfy the following inequality to exclude phase ambiguous:

LCM(λ1, λ2, λ3) ≥ W, (11)

where LCM() represents the least common multiple function. Refer to the optimal wavelength
selection strategy [17,58], the wavelengths λn should be sufficiently small to allow more higher
accuracy measurement. In particular, we also select the same wavelength combination as the
three high-frequency modulation wavelength of the generated CFP (refer to Section 2.1).

λn = λφn , (12)

After examining that the pairs of wrapped phase values are unique, the fringe orders k1, k2, and
k3 of the three phase maps can be determined, then we can acquire the high-accuracy absolute
phase as part of the high-quality network training datasets.

2.3. One-to-three single-shot phase retrieval network

The crucial step of FPP is to retrieve high-precision and unambiguous phase distribution. Ideally,
a monocular FPP system (as shown in Fig. 4) can use only one dense fringe image to robustly
achieve high-quality phase unwrapping and absolute 3D reconstruction for complex scenes.
However, limited by the number of fringe projection patterns required for 3D imaging, the current
traditional FPP methods are still unable to robustly complete high-quality phase recovery under
the premise of one projection. To this end, inspired by the recent successful applications of
deep learning techniques on FPP, we combine a deep convolutional neural network with a single
composite fringe image to develop a one-to-three single-shot phase retrieval network. The flow
chart of the proposed method is shown in Fig. 5, which mainly includes: data preprocessing and
network model construction, phase analysis and phase recovery based on deep convolutional
neural network, phase-to-height mapping.

After training and testing different networks, such as ResNet [59], U-Net [60], and U-Net
derivative networks (such as MultiResUNet [61], etc.), we finally choose the U-Net network
that takes into account versatility and practicability for model training, and make the following
fine-tuning of the network based on the prototype structure of the U-Net network: (1) In order
to prevent overfitting caused by the bigger network, the designed U-Net network is reduced
by one layer, changed from 5 layers to 4 layers, and we use Dropout which is one of the most
effective and most commonly used regularization techniques for neural networks to further fight
overfitting. (2) We set the network as a one-to-three convolutional neural network with single
input and three outputs, the input channel is a composite fringe image designed in Section 2.1,
and the three output channels are the numerator term and the denominator term of the wrapped
phase arctangent function, and the coarse absolute phase term.

The improved U-Net network architecture is illustrated in Fig. 5(b). It consists of a contracting
path (left side) and an expansive path (right side) [60]. The contracting path (also called Encoder)

238



Research Article Vol. 30, No. 3 / 31 Jan 2022 / Optics Express 3432

Fig. 4. Hardware system and the middle column distribution of the frequency spectrum
generated by the Fourier transform of the designed composite fringe pattern (CFP).

Fig. 5. Flowchart of our proposed approach. (a) Input the test data, output the numerator Mdl,
denominator Ddl and the low-accuracy absolute phase Φcoarse through the trained network
model, then obtain the high-accuracy absolute phase by post-processing and reconstruct the
3D information by the calibration parameters. (b) The improved U-Net network architecture.
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follows a typical convolutional network architecture, including two convolutional layers (“SAME”
padding) that are repeatedly applied, and each convolution is followed by a rectified linear unit
(ReLU) and a 2×2 max pooling layer. In each convolution layer of the network, the size of the
convolution kernel is 3 × 3, which is used for feature extraction, and the padding is set to “same”
to ensure that the size of the feature map (H, W) remains the same after each convolution. After
the max pooling layer, the size of the feature map will be downsampled with a stride of 2, the
size of the feature map will become (H/2, W/2), and the number of feature channels will be
doubled. It should be noted that the linear rectification unit (ReLU) in each convolutional layer
is one of the important factors to ensure that the deep learning network can be trained, and its
operation is as follows:

r (ξ) = max(0, ξ) =
⎧⎪⎪⎨⎪⎪⎩

0, if ξ ≤ 0

ξ, otherwise
, (13)

where ξ represents an independent variable. The above process needs to be performed 4 times.
Especially in the last execution, max pooling is no longer performed, but the feature map is
directly sent to the expansion path.

Each step in the expansion path (also called Decoder) includes an upsampling layer followed by
a 2×2 convolutional layer, a concatenate, and two 3×3 convolutional layers followed by a ReLU.
The upsampling layer used for feature mapping halves the number of feature channels and doubles
the size of the feature map. A concatenate merges the upper layer and the corresponding feature
map from the contracting path through skip connection to retain more dimensional/location
information. This critical step will facilitate the subsequent layers to freely choose between
shallow and deep features, which is more advantageous for the semantic segmentation task of
deep neural networks. At the final layer, a 1×1 convolutional layer (“SAME” padding) is used to
map the required three 3D tensors. The improved U-Net network has a total of 18 convolutional
layers.

Next, we will discuss the specific procedures of our algorithm.
Step 1: In order to retrieve high-quality wrapped phase and absolute phase information, we

input the three phase-wavelength and three carrier-frequency composite fringe images captured
by the camera different test scenarios into the trained improved U-Net network, where the three
short wavelengths of the composite fringe pattern are λφ1 = 9, λφ2 = 11, λφ3 = 13 (satisfying
Eq. (11)), and the three carrier frequencies are set to fcarri1 = 32, fcarri2 = 48, fcarri3 = 64,
respectively. From the perspective of the robustness and accuracy of phase recovery in our
algorithm, we finally chose the wrapped phase numerator term M2, denominator term D2, and
absolute phase Φ2 corresponding to the second wavelength λφ2 as the network label to train our
network. Considering the physical model of the traditional phase-shifting algorithm, we choose
to predict the numerator and denominator terms instead of directly predicting the wrapped phases.
Compared with the network structure that directly connects the fringe pattern to the phase, this
strategy bypasses the difficulty of the wrapped phase with the 2π phase truncation and effectively
removes the influence of the surface reflectivity variations, so as to achieve higher quality phase
analysis to predict the high-quality wrapped phase. Inspired by the traditional composite fringe
projection profilometry described in Section 2.1, three coprime short-wavelength fringes that
can achieve unambiguous phase retrieval in the time domain are combined into one pattern
through three carrier frequency. Compared with a single-frequency fringe pattern as the network
input, the three-phase-wavelength and three-carrier-frequency composite fringe pattern ensures
the unambiguity of the network input, and at the same time ensures that the phase can be
unambiguously unwrapped during the absolute phase retrieval process.

Step 2: After predicting the numerator Mdl
2 , denominator Ddl

2 , and coarse absolute phaseΦdl
coarse

of the composite fringe image through the trained improved U-Net network, the high-quality
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wrapped phase map of the second wavelength ϕdl
2 can be calculated:

ϕdl
2 = arctan

Mdl
2

Ddl
2

. (14)

Then, high-quality absolute phase Φdl
2 can be obtained:

Φ
dl
2 = ϕ

dl
2 + 2π · round[(Φdl

coarse − ϕ
dl
2 )

/︂
(2π)], (15)

where round represents the rounding function. Although the existence of the objects’ surface
reflectivity α makes the deep learning training model can only predict “coarse” absolute phase
with low-precision, its accuracy is sufficient to provide the correct fringe order of the high-quality
wrapped phase. The final high-precision absolute phase can be obtained through the high-quality
wrapped phase and the correct fringe order.

Step 3: After acquiring the high-accuracy absolute phase, the 3D information of the objects
can be reconstructed by utilizing the phase-to-height mapping relationship and the calibration
parameters of the FPP system [62]. The relation between the phase and the height coordinates
can be written as ⎧⎪⎪⎨⎪⎪⎩

xp = Φ
dl
2 W/(2πNλ2 )

Zw = Mz + Nz/(Cxp + 1)
, (16)

where xp is the projector x coordinate, W is the horizontal resolution of the projection pattern,
Nλ2 is the fringe density, Mz and Nz, and C are the constants derived from calibration parameters.

3. Experiments

To verify the performance of our method, we construct a monocular fringe projection system
(Fig. 4), which consists of a digital light processing (DLP) projector (Texas Instruments
DLP LightCrafter 4500) with an WXGA resolution (912 × 1140) DMD and an industrial
camera (Basler ace acA640-750 µm) with 640 × 480 resolution. The camera with the ON
Semiconductor PYTHON 300 CMOS sensor delivers 751 fps Frame Rate at VGA resolution.
Under the condition of satisfying the above Eq. (11) and Eq. (12), we select {9, 11, 13}
wavelength combinations to provide unambiguous phase unwrapping for the whole projection
range (LCM(9, 11, 13) = 1287>912). The field of view (FOV) of the measurement system is
about 210 mm×160 mm, and the distance between the camera and the region of interest is 400
mm approximately.

In the supervised training mode, the unambiguous inputs and the corresponding accurately
known outputs are required. Figure 6 shows some typical shooting scenes of the training datasets.
As mentioned above, a set of input and output network training data includes composite fringe
images Ic

cp, as well as the numerators M2, denominators D2 and the absolute phases Φ2, where
M2 and D2 are calculated by the 12-step PS method, and Φ2 is obtained by the three-frequency
TPU with PDM method. We collect 1000 sets of data for different scenarios including simple,
complex, and isolated objects, and divide them into training sets, validation sets and test sets at
a ratio of 8:1:1. The training data sets are used to determine the network weight (Fig. 6); the
validation data sets are used to determine when to stop training; after training, the performance is
evaluated by test data set that have never been trained.

The constructed neural network is computed on a desktop with Intel Core i7-7800X CPU and
a GeForce GTX 1080 Ti GPU (NVIDIA) under the Python deep learning framework Keras with
the TensorFlow platform (Google). The optimizer chooses the Adam optimization scheme, which
is used to update the network weights with the loss value and achieve better gradient propagation,
and its default initial learning rate lr is set to 0.0001. Batch Normalization is adopted mini-batch
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Fig. 6. Part of training datasets. Each row shows the network training scenario and labels.
The training dataset includes the input image Icp and three output terms of the second
(modulated) frequency fringe: numerator M2, denominator D2, and absolute phase Φ2.
The composite fringe images as input are captured in different scenes, including objects
with simple or complex surfaces, continuous surfaces or isolated objects, and objects with
different materials. These scenes shown in turn are an icosahedral triangle, a customised
notebook with “SCILab” logo, Beethoven and a harp girl, as well as a plastic toy and
earphone case. The ground-truth data is calculated by 12-step PS and three-frequency TPU
with PDM method.

gradient descent scheme (mini-batch size = 2). The loss function we select in this neural network
is mean squared error (MSE), which compares the predicted value with the target value after each
batch in each epoch and generates a loss value. At the same time, the root mean squared error
(RMSE) is calculated after each epoch to help visually monitor the training process. After 200
epochs were trained on the NVIDIA graphics card, the training loss and validation loss of the
network converged. Moreover, due to data enhancement (background removal and normalization
of input images) and the improvement of the network structure, the entire training time of our
network only takes about 3 hours. We can directly put the captured and processed composite
fringe image into the trained network model to retrieve the absolute phase map of target object
and complete the offline 3D measurement. The network model prediction speed of our approach
is about 15 fps.

3.1. Qualitative evaluation

Through “learning” from a large number of data sets, the properly trained neural network can
“de-multiplex” high-resolution, spectrum-crosstalk-free phases from the multiplexing composite
fringe and directly reconstruct a high-accuracy absolute phase map for single-shot, unambiguous
3D surface imaging. We conducted static and dynamic experiments in several different scenarios
to test the trained deep convolutional neural network and verify the superiority of the proposed
method over traditional methods.
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After analyzing different coding schemes of single-shot structured light illumination (see
Sec.1 for detailed analysis), we designed a three-carrier three-frequency composite fringe pattern.
Here, we respectively projected the designed composite fringe pattern and the direct composite
three-frequency fringe pattern to the scenes. Figure 7 shows the comparison between the designed
composite fringe image (Fig. 7(a)) and the direct composite three-frequency fringe image
(Fig. 7(b)), and the spectrum distribution of these two kinds of frequency-multiplexing-coded
images are shown in Fig. 7(c) and (d), from which we can see that: (1) the directly composite
image has serious spectrum aliasing, while our designed composite pattern can separate three
close high-frequency information through three carrier frequencies; (2) although the designed
fringe pattern avoids spectrum aliasing to some extent, its spectrum is easily affected by the
system parameters between the projector and the camera, which results in a slight unknown
variation of the three carrier frequencies fcarrin in the orthogonal direction. Therefore, it is
difficult to demodulate the high-precision phase information through the traditional FT method
that uniformly filters three high-frequency channels of the captured composite image by the
band-pass filters at the center of fcarrin . Our deep learning-based method will solve these obstacles
at once through a trained convolutional neural network.

Fig. 7. Comparison of two kinds of frequency-multiplexing-coded schemes. (a) Image of a
flat plate obtained by projecting the designed three short-wavelength superimposed three
carrier-frequency composite fringe image. (b) Image of a flat plate obtained by projecting
the direct composite three-frequency fringe image. (c) Spectrum distribution of (a). (d)
Spectrum distribution of (b).

To test the performance of the trained neural network, we measured two static scenarios that
include single and multiple isolated objects with different surface roughness. The captured row
input composite fringe images Ip

cp(x, y) are shown in the first colunms of Fig. 8. Note that our
neural network has never seen these scenarios during the training phase. After preprocessing
these captured composite fringe images, we directly input them into the trained neural network to
predict the numerators Mdl

2 , denominators Ddl
2 and coarse absolute phaseΦdl

coarse of the input fringe
images. The results are shown in the second to fourth columns of Fig. 8, where the estimated
numerator and denominator are fed into Eq. (14) to obtain the wrapped phase map, and then the
unwrapped phase Φdl

2 distribution shown in the fifth column can be retrieved from the calculated
wrapped phase and the estimated coarse absolute phase according to Eq. (15). As we can see,
the phase ambiguity has been completely eliminated. Furthermore, through the pre-calibrated
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parameters of the camera-projector FPP system and the phase-heigth mapping (Eq. (16)), we
converted the unwrapped phase maps into 3D rendered geometries. In Fig. 9, we compared 3D
reconstruction results for the traditional FT method using Guan’s coding scheme [36], and our
learning-based frequency multiplexing-coded method to ground truth. And to quantitatively
analyze the phase quality, Figs. 9(c), (e), (h), and (j) show the corresponding unwrapped phase
error maps of the entire measurement area. In the investigation, the phases calculated by the
12-step phase-shifting and three-frequency temporal phase unwrapping with projection distance
minimization are serve as ground truth phase maps. Due to the influence of severe spectrum
aliasing and frequency shift transform, the phase error of the traditional phase retrieval method
using Guan’s coding scheme is more obvious than our proposed CDLP method. Specifically,
to further quantify this trend, we report the mean absolute error (MAE) of unwrapped phase in
Fig. 9. Compared with the tradition FT method, our proposed method reduces the projection
mode from three to one without losing the accuracy of phase recovery, improving the time
resolution without changing the spatial resolution. Compared with the traditional method with
Guan’s coding scheme, the proposed method improves the phase recovery accuracy by nearly an
order of magnitude.

Fig. 8. The prediction results of the two static test scenarios. Each row shows the input
composite image Ip

cp(x, y), the estimated results of numerator Mdl
2 , denominator Ddl

2 , coarse
absolute phase Φdl

coarse, and the final absolute/unwrapped phase Φdl
2 .

Although Guan’s method avoided a significant degree of spectrum loss, but the slight frequency
shifts error brought considerable loss to the 3D reconstruction. From the results of our method, it
can be seen that the deep learning-based frequency-multiplexing-coded method obtains a higher
quality 3D reconstruction, which is almost comparable to the reference 3D model reconstructed
by 12-step PS method (the Ground truth). Moreover, our method only needs one composite
fringe image to reconstruct absolute 3D information, and the reconstruction efficiency is 36 times
higher than that of the reference method. This experiment verified that the deep learning-based
frequency-multiplexing-coded method can not only effectively overcome the adverse effects, such
as spectrum aliasing, spectrum leakage, and channel crosstalk, but also achieve high-precision
absolute phase retrieval and high-quality absolute 3D surface reconstruction from a single-frame
fringe image.

In the second experiment, we measured two sets of moving objects. a rotating bow girl model
and a moving Voltaire plaster model, to verify the ability of our method in dynamic scenes.
Figures 10(a) and (d) respectively show the raw image of a certain frame in the two captured
videos, Figs. 10(b) and (e) are the corresponding 3D reconstruction results using our method in
the selected moments, and Figs. 10(c) and (f) further show the 360-degree point cloud registration
results. During the measurement, a single-frame composite fringe pattern was continuously
projected on the surface of the object, meanwhile, a monochrome camera simultaneously captured
the gray fringe image of each frame. We can see that our method is fundamentally immune to
phase-shifting errors induced by object motion thanks to its single-shot nature. Consequently, it
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Fig. 9. 3D reconstruction results of Ground truth, traditional method, and our proposed
CDLP method in two measurement scenes. (a), (f) 3D reconstruction result of the Ground
truth (12-step PS with number-theoretical method). (b) (c), (g) (h) 3D reconstruction result
and its corresponding absolute phase error map of traditional method (FT method with
Guan’s coding scheme). (d) (e), (i) (j) 3D reconstruction result and its corresponding
absolute phase error map of CDLP method (composite fringe projection deep learning
profilometry).

is suitable for dynamic 3D imaging of rapidly moving objects. The whole measurement process
of the rotating statues are shown in Fig. 10 (Multimedia views).

Fig. 10. The dynamic 3D measurement results of a rotating bow girl model and a moving
Voltaire plaster model. (a), (d) The captured composite fringe images at two different
moments. (b), (e) The corresponding 3D results reconstructed by our method. (c), (f)
Registration results. (Multimedia views: see Visualization 1 and Visualization 2 for the
whole measurement process of these two scenes)
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3.2. Quantitative evaluation

Last but not least, we respectively measured a standard ceramic plate (Fig. 11) and a pair of
standard ceramic spheres (Fig. 12) to quantitatively evaluate the 3D reconstruction precision of
the proposed method. It is noted that the structural parameters of the standard ceramic balls have
been calibrated by the coordinate measuring machine, and their radii are RA = 25.3999 mm and
RB = 25.3983 mm, respectively. The center-to-center distance of the standard ceramic balls is
D = 100.1563 mm with an uncertainty of 1.0 µm. We produced the measurement results of
the plate and two spheres and performed plane and spherical fitting on the measurement results.
Their errors are shown in Figs. 11(b), (c), Figs. 12(c1), (c2), and Figs. 12(d1), (d2). The radii of
reconstructed spheres are RAdl = 25.5246 mm and RBdl = 25.2901 mm, with the mean absolute
error (MAE) of 0.0531 mm and 0.0506 mm. The measured center distance is Ddl = 100.2027
mm with the deviation of ∆d = 0.0464 mm. Additionally, the root mean square (RMS) error of
sphere A and sphere B are respectively 0.066 mm and 0.062 mm, as shown in Figs. 12(c2) and
(d2). This experiment proves that our method can provide high-quality 3D measurements using
only a single fringe image.

4. Conclusions

In this work, we have proposed a deep learning-based single-shot composite fringe projection
profilometry (CFPP), which combines a deep learning technology with a specially designed spatial
frequency multiplexing coding strategy to achieve single-frame, high-precision, unambiguous 3D
shape reconstruction. According to experimental results, this deep learning-based method can
perform high-quality 3D shape measurements on discontinuous and/or mutually isolated objects
in fast motion. Compared with the existing high-speed 3D imaging method based on multi-frame
images, our method is fundamentally immune to motion errors. Compared with the traditional
FT and frequency multiplexing FT methods, our approach can effectively overcome the adverse
effects, such as spectrum aliasing, spectrum leakage, and channel crosstalk. Using only a single
composite fringe pattern, the 3D imaging quality of the proposed method is comparable to the
performance of the traditional 12-step PS method. Besides, the trained network model can be
fully automatic to achieve high-quality 3D measurement without tuning parameters.

Fig. 11. Precision analysis of standard ceramic plate. (a) 3D reconstruction results by our
method. (b) Error distribution. (c) RMS error.

Deep learning technology has thoroughly “permeated” into almost all tasks of optical metrology
and has delivered some pretty impressive results. This paper intends to point out that with its
powerful learning capabilities, deep learning technology can break the limitations of various
influencing factors in traditional single-frame 3D imaging algorithms and achieve impressive
results for single-shot, instantaneous absolute 3D shape measurement of discontinuous and/or
isolated objects. However, the underlying reasons behind these successes of deep learning
prediction remain unclear at this stage. Many researchers are still skeptical and maintain a wait-
and-see attitude towards its applications in high-risk scenarios, such as industrial inspection and
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Fig. 12. Precision analysis of a pair of standard ceramic spheres. (a), (b) 3D reconstruction
results by our method. (c1), (c2) The error distribution and corresponding RMS error of
sphere A. (d1), (d2) The error distribution and corresponding RMS error of sphere B.

medical care. But it can be envisaged that with the further development of artificial intelligence
technology, the continuous improvement of computer hardware performance, and the further
development of optical information processing techniques, these challenges will gradually be
solved in the near future. Deep learning will thus play a more significant role and make a more
far-reaching impact in optics and photonics.
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The transport-of-intensity equation (TIE) enables quantitative phase imaging (QPI) under partially coherent
illumination by measuring the through-focus intensities combined with a linearized inverse reconstruction algo-
rithm. However, overcoming its sensitivity to imaging settings remains a challenging problem because of the
difficulty in tuning the optical parameters of the imaging system accurately and because of the instability to
long-time measurements. To address these limitations, we propose and experimentally validate a solution called
neural-field-assisted transport-of-intensity phase microscopy (NFTPM) by introducing a tunable defocus param-
eter into neural field. Without weak object approximation, NFTPM incorporates the physical prior of partially
coherent image formation to constrain the neural field and learns the continuous representation of phase object
without the need for training. Simulation and experimental results of HeLa cells demonstrate that NFTPM
can achieve accurate, partially coherent QPI under unknown defocus distances, providing new possibilities
for extending applications in live cell biology. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.521056

1. INTRODUCTION

Quantitative phase imaging (QPI) has gained increased interest in
optical microscopy research for its capability to quantify optical
thickness and morphologies of unlabeled samples [1–3]. The QPI
approach can be categorized into iterative and deterministic meth-
ods [4–6], where the deterministic method requires the establish-
ment of an analytical expression for the object phase with respect
to the measured intensity images. Given that the image formation
process in QPI is inherently non-linear, linearization approaches
are commonly invoked to facilitate solving for phase as a function
of intensity measurements. For example, as a well-established
deterministic phase retrieval approach, the transport-of-intensity
equation (TIE) applies paraxial approximation and slowly-varied
approximation to linearize the phase retrieval problem and can
recover the quantitative phase by utilizing intensity images at
multiple axially defocused planes [6,7]. Under partially coherent
illumination, TIE is expected to achieve improved spatial resolu-
tion beyond the coherent diffraction limit [8]. Nevertheless, in a
conventional microscope with circular illumination, partial coher-
ence tends to diminish the phase contrast, resulting in compro-
mised imaging resolution [9].

To achieve high-resolution and high-contrast QPI, the an-
nular illumination (AI) matching objective numerical aperture
(NA) has been employed in deconvolution-based TIE, referred
to as AI-TIE [10]. AI-TIE strongly boosts the phase contrast
and significantly improves the practical imaging resolution to a
2-fold objective NA. The strong phase contrast is ultimately
transformed to the quantitative phase images by WOTF (weak
object transfer function) inversion, yielding high-quality results
with enhanced resolution. However, AI-TIE is usually limited
to weak scattering samples since it linearizes the image forma-
tion model by invoking weak object approximation with ignor-
ing higher-order terms in the complex transmittance of the
sample. In addition, WOTF is a function directly related to
the light source distribution, objective pupil function, and de-
focus distance. Once WOTF is determined, AI-TIE is not
capable of adaptively adjusting optical parameters such as the
defocus distance during the imaging process. Therefore,
such TIE-based methods may result in degraded quality of
phase retrieval due to the inaccurate inverse reconstruction
for nonweak objects or cases where optical parameters are
incorrect.
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In contrast to the aforementioned physics-based approaches
[6,10], data-driven deep learning methods can establish the
nonlinear pseudo-inverse mapping relation between the defo-
cused intensity and the object phase [11–14], bypassing the
obstacle of “solving nonlinear ill-posed inverse problems.”
Essentially, the major reason for the success of deep learning
is the abundance of training data and the explicit agnosticism
from a priori knowledge of how such data are generated [15].
However, high-quality paired data acquisition in experiments
requires professional supervision and extensive labor. Further-
more, the lack of data diversity will restrict its generalization to
out-of-domain cases with dissimilar optical parameters. Thus,
the data-driven deep learning methods tend to fail in situations
where it is difficult to obtain a large amount of high-quality
paired data from a variety of different imaging systems.

To overcome the above limitations, researchers have devel-
oped untrained network approaches by incorporating physical
priors into deep neural networks, such as the deep phase
decoder [16] and PhysenNet [17]. These methods aim to
achieve nonlinear optimization by minimizing the error be-
tween the prior model-generated image and the actual measure-
ment. Their superiority lies in introducing neural networks as
advanced regularization for automatic tuning. For instance,
deep image prior (DIP) method can use a randomly initialized
neural network as a prior to solve inverse problems such as pixel
super-resolution [18]. Especially, the BlindNet method takes
distance uncertainty into account and further addresses the
phase retrieval problem with unknown defocus distance
[19]. Additionally, we have witnessed the rise of neural field
(NF), which has become a prominent self-supervised learning
method [20]. NF can represent a three-dimensional (3D) scene
as a continuous field, which is parameterized by a lightweight
multilayer perceptron (MLP, i.e., fully connected network) and
trained without ground truth data. In conjunction with com-
putational imaging techniques, NF typically dispenses with
training on a dataset and iterates the MLP network directly
on the test data until the desired physical quantities are recov-
ered, similar to physics-driven untrained network approaches.
For example, NF can be incorporated into 3D diffraction
tomography [21] or two-dimensional (2D) microscopy such
as lensless microscopy [22] and Fourier ptychographic imaging
[23]. However, these physics-driven deep learning methods
only involve coherent imaging and are unsuitable for partially
coherent imaging scenarios. In fact, considering partial coher-
ence in phase retrieval helps to yield accurate results thanks to
its better alignment with the actual situation [24]. Nevertheless,
it needs to introduce additional parameters (such as coherence
parameter) to establish a more complete forward model.
Consequently, it remains a challenge to achieve stable partially
coherent QPI under varying optical parameters.

In this work, we present a partially coherent QPI approach
by using a neural field and taking the Abbe imaging model
[25] as the physical prior. The proposed method, termed
neural-field-assisted transport-of-intensity phase microscopy
(NFTPM), is actually a gradient-based iterative algorithm. It
drives a coordinate-based MLP through the physical prior to
represent the phase distribution as a neural field and optimizes
the MLP using the gradient computed by backpropagation in

both the physical model and the MLP model. This framework
empowers NFTPM to concurrently adjust the defocus distance
of the physical model by introducing a tunable defocus param-
eter, enabling stable QPI under unknown defocus distance.
Moreover, NFTPM is applicable to non-weak phase objects,
since the weak object approximation is not applied to the for-
ward image formation. Instead of an image-to-image 2D CNN,
NFTPM forms a point-to-point mapping function from spatial
coordinates to phase values, which effectively constrains the sol-
ution space and renders single-shot QPI possible. Unlike un-
trained networks based on coherent imaging systems, NFTPM
can adapt to various partially coherent illuminations, which
is validated by simulations under circular illumination and
annular illumination. Furthermore, based on a bright-field mi-
croscope equipped with annular NA-matched illumination
[26,27] formed by sparsely distributed light-emitting diode
(LED) elements, we realize stable QPI of unstained Henrietta
Lacks (HeLa) cells, demonstrating that NFTPM is a valid
approach for adaptive correction of defocus aberration during
the long-term phase microscopy. Given the simplicity and ef-
fectiveness of the NFTPM method, it promises to advance the
integration of partially coherent imaging with physics-driven
deep learning and open new possibilities for robust non-
interferometric QPI in dynamic optical environments.

2. METHODS

A. Reconstruction Algorithm of NFTPM
The schematic diagram of NFTPM is outlined in Fig. 1(a), and
Fig. 1(b) illustrates the image formation process in a partially
coherent microscope, which corresponds to the physics prior
used to drive NFTPM to perform phase recovery. The pipeline
of NFTPM comprises a radial encoding module [21] and a
5-layer MLP (W is the weights) that maps 2D spatial coordi-
nate r � �x, y� to phase value ϕ�r�, which can finally represent
the phase as a neural field ΦW�r�. We adopt M × N grid co-
ordinates R � f�xi, yi�gM×N−1

i�0 for the field of view (FOV) of
interest (generally −1 ≤ x ≤ 1, − 1 ≤ y ≤ 1), and the coordi-
nates correspond to pixels on the image sensor. Initially, we
utilize the radial encoding module to map densely distributed
two-dimensional coordinate points to sparsely distributed
high-dimensional space, thus allowing the MLP to better
discriminate between different coordinate positions in order
to characterize high-frequency information. For r � �x, y� ∈
R1×2, radial encoding can be expressed as

rrad � T f fcos�TLrTR�, sin�TLrTR�g, (1)

where rrad is the encoded feature, and TL is the transformation
matrix used for frequency expansion, which can be defined as

TL � �20π; 21π, � � � ; 2L−1π�T, (2)

where L is the number of the expanded frequencies. The pur-
pose of introducing L frequencies is to characterize features at
various scales in the radial positions. TR contains multiple
rotation matrices, and it can be specified as

TR �
�
1 0
0 1

� � � cos θi sin θi
− sin θi cos θi

� � �
�
, (3)
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where θi � 2πi∕N θ �i � 0,1,…,N θ − 1�, and N θ is the
number of rotation intervals. The rotation θi further enables
the MLP to respond to features at diverse orientations, allowing
for better feature representation and avoiding noise [21]. T f f·g
is applied to flatten concatenated matrices into a vector, which
for matrices A and B can be defined as

T f f�A,B�g � T f

8>>><
>>>:

2
6664
a11 a12 � � � a1N b11 b12 � � � b1N
a21 a22 � � � a2N b21 b22 � � � b2N
..
. ..

. . .
. ..

. ..
. ..

. . .
. ..

.

aM1 aM2 � � � aMN bM1 bM2 � � � bMN

3
7775

9>>>=
>>>;

� �a11, a12, � � � , a1N , b11, b12, � � � , b1N , � � � , aM1, aM2, � � � , aMN, bM1, bM2, � � � , bMN�:

(4)

Here, we simplify the radial encoding module by replacing Eq. (3) with

TR �
�
1
0

� � � cos θi
sin θi

� � �
�
, (5)

and including r � �x, y� into the encoded feature. Hence, r � �x, y� can be processed like the 2D Fourier series expansion

rrad � �x, y, � � � cos�2π�ul ,ix � vl ,iy��, sin�2π�ul ,ix � vl ,iy��, � � ��l :0≤l≤L−1, (6)

where rrad ∈ R1×�2�2LN θ�, ul ,i � �2l−1 cos�θi��i:0≤i≤N θ−1, and
vl ,i � �2l−1 sin�θi��i:0≤i≤N θ−1. To retrieve the phase distribu-
tion, we input rrad into the K -layer MLP of the neural field
ΦW (K � 5), incorporating the following processing modules.
(1) Linear moduleW0 ∈ R�2�2LN θ�×C , converting rrad into hid-
den features with C channels (C � 128). (2) Linear module for
hidden features W i ∈ RC×C (i � 1, 2,…,K − 2). (3) The last
linear transformation WK −1 ∈ RC×1. (4) Leaky rectified linear
unit (LeakyReLU) σi (i � 0,…,K − 2). (5) Sigmoid activation

function σK −1. Specifically, let the ith feature be denoted as f i,
and then the �i � 1�th feature is given by

f i�1 � σi�f iW i�, (7)

where i � 0,…,K − 1, and f 0 � rrad. The phase value can be
represented as ϕ�r� � ΦW�r� � 2πfK (fK is the output of the
K -layer MLP), and ϕ�R� can be reshaped as an image of phase
distribution. For most biological samples, the complex trans-
mittance can be expressed as t�r� � ejϕ�r�. In a typical 6f op-
tical imaging system, the source with distribution Spc�u� at the
aperture diaphragm plane (u corresponds to the 2D coordinates
in Fourier space) provides partially coherent illumination, re-
sulting in an image captured at the image plane,

I�r� �
ZZ

T �u1�T 	�u2�TCC�u1, u2�ej2πr�u1−u2�du1du2,

(8)

where T �u� is the Fourier transform of t�r�, and TCC (trans-
mission cross-coefficient) [10,28] satisfies the following rela-
tion:

TCC�u1, u2� �
Z

Spc�u�P�u� u1�P	�u� u2�du, (9)

where P�u� � jP�u�jejkz
ffiffiffiffiffiffiffiffiffiffiffiffi
1−λ2juj2

p
represents the complex pupil

function of the imaging system, z is the defocus distance along
the optical axis, k is the wavenumber, and jP�u�j is a circular
function determined by the objective NA and wavelength λ.
The TCC formula is an abstraction for the spectral coupling
of a light source to an objective pupil, intrinsically character-
izing the imaging system compatible with partially coherent il-
lumination. When the illumination distribution Spc�u� of the

imaging system is specified, the captured image is determined
by the sample’s inherent property (phase delay ϕ) and the de-
focus distance z. Therefore, we can use a function Hfϕ, zg to
represent the image formation model of I .

In order to achieve phase retrieval with defocus distance pre-
diction, the uncertain defocus distance can be incorporated into
the computational graph as a tunable parameter z to be opti-
mized along with the MLP. The trade-off in determining the
optimal solution of NFTPM is to ensure the accuracy of the

Fig. 1. (a) Schematic diagram of our proposed NFTPM method.
(b) The physics prior (forward image formation model) of NFTPM.
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predicted defocus distance while minimizing the error between
the generated intensity image and the measurement. Given a
captured intensity I, the spatial coordinates R � frigM×N−1

i�0

are fed into ΦW to obtain the phase, which is then processed
through the physical model Hfϕ, zg to generate intensity Ĩ for
comparison with I using the mean square error (MSE) loss
function. The above operations can be abstracted into an opti-
mization problem

W†, z† � arg min
W, z

X
r∈R

���HfΦW�R�, zg − I
���2
2
, (10)

where ΦW†�R� is the retrieved phase, and z† is the predicted
defocus distance. The optimization is executed based on back-
propagation and the gradient descent algorithm [29], and the
specific optimization process is described in Section 7 of
Ref. [30]. It is worth mentioning that the samples are assumed
as pure phase objects in NFTPM, so the phase contrast pro-
vided by a single-shot defocused intensity is sufficient for pre-
cise phase recovery based on the principle of deep image
prior [18,31].

B. Experimental Setup
Neural-field-assisted transport-of-intensity phase microscopy
can be easily implemented on a commercial inverted
bright-field microscope (IX83, Olympus, Japan) assisted by
programmable LED array illumination due to the advantage
of non-interferometric measurements. The LED array provides
quasi-monochromatic illumination with a center wavelength of
525 nm and spectral bandwidth of 20 nm. These LED ele-
ments can be controlled to turn on to form point, circle, or
annulus patterns by a field-programmable gate array (FPGA)
unit (EP4CE10E22C8N, Intel, US). Twelve annularly distrib-
uted LED elements were selected in the array, with the center of
the circle coinciding with the optical axis to provide matched
annular illumination with a maximum illumination NA of 0.4.
We utilized a Bertrand lens, positioned in an eyepiece obser-
vation tube in place of the normal eyepiece, to examine the rear
focal plane of the objective lens. This examination is crucial for
confirming that the circular illumination is centered precisely in
the field of view or that the annular illumination is accurately
inscribed within the objective lens’s pupil. A CMOS camera
(Hamamatsu ORCA-Flash 4.0 C13440) with a resolution of
2048 × 2048 and a pixel size of 6.5 μm was used to record
the intensity information under a detection objective (10×/
0.4 UPLSAPO, Olympus). This study was conducted on a
workstation equipped with an Intel i9-10900K 3.70 GHz CPU
and an NVIDIA GeForce RTX 3090 GPU. The proposed
algorithm was operated by Python 3.7.16 and PyTorch 1.12.1.

3. RESULTS

A. Comparison with TIE, AI-TIE, BlindNet, and GS
Algorithms
To validate the effectiveness of NFTPM in partially coherent
QPI, we conducted simulations to compare the proposed
NFTPM with TIE, AI-TIE, BlindNet [19], and GS algorithms
[4,5] under both coherent illumination and circular illumina-
tion with a coherence parameter (denoted by S, illumination
NA/objective NA) of 0.85. It is noteworthy that AI-TIE here

refers to all deconvolution-based TIE methods, adapted to
coherent (point), partially coherent illuminations and not lim-
ited to annular illumination case. As shown in Figs. 2(a1) and
2(b1), the phase distribution of a HeLa cell (0–1 rad) was used
to simulate an intensity image at a defocus distance of 5 μm,
defined within a grid of 256×256 pixels (pixel size is 6.5 μm).
The objective NA is 0.4 (20× magnification), and the wave-
length of monochromatic illumination is 550 nm. The compre-
hensive comparison under coherent illumination is detailed
in Figs. 2(a2)–2(a6). Except for BlindNet and NFTPM
(randomly given an initial value as the defocus distance,
e.g., z � 2 μm), other methods were provided with the correct
defocus value (z � 5 μm). It can be observed that all methods
achieve accurate phase recovery due to the exact match of
the physical model and the optical parameters. Specifically,
NFTPM and BlindNet show the ability to correctly predict
the defocus distance, enabling robust QPI even with incor-
rect initialization of the defocus parameter. However, since
BlindNet, TIE, and GS methods ignore the effect of partial co-
herence on the forward image formation process, the physical
priors used by these methods do not accurately apply to the
circular illumination situation, leading to a significant loss of
high-frequency information in the partially coherent QPI
[Figs. 2(b2)–2(b4)].

In contrast, AI-TIE and NFTPM demonstrate better perfor-
mance at S � 0.85 [Figs. 2(b5) and 2(b6)], as they establish a
nonlinear forward model that conforms to partially coherent
illumination by considering illumination distribution in mod-
eling. Besides, we extended the simulated phase range to
0–6 rad (non-weak object) to validate that NFTPM is beyond
weak object approximation. The results in Fig. 2(c) show
that AI-TIE suffers from low-frequency underestimation,
and Fig. 2(e) quantitatively reflects the inaccuracy of the phase
image recovered by AI-TIE, while the result of NFTPM is
consistent with the ground truth. It is worth noting that
NFTPM, with a parameter count of 6 × 104 (MLP) and the
inference time of 3 × 10−4 s, outperforms BlindNet in terms
of speed, which requires a much larger parameter count of
3.0063 × 107 (UNet) and a comparatively longer inference
time of 5.8 × 10−3 s. Furthermore, when the network size is
reduced (fewer channels C per layer), the representational
capacity of 2D UNet (1.786 × 106) is significantly weaker, re-
sulting in the deterioration of phase retrieval in BlindNet
[Fig. 2(d)] and the mismatch profile [Fig. 2(f )], while
NFTPM (6 × 103) remains robust. In addition, as shown in
Fig. S1 in Ref. [30], we also discuss the impact of hyperpara-
meter tuning (K , L,N θ) on NFTPM, elucidating the stability
of NFTPM against the layer changes in the MLP as well as the
significance of radial encoding for the high-frequency charac-
terization (see Section 1 in Ref. [30] for detailed analysis).

B. Verification of QPI at Unknown Defocus
Distances for Different Illuminations
Further simulations are shown to verify that NFTPM can ac-
curately recover the phase without prior knowledge of the de-
focus distance in different partially coherent illuminations. In
Figs. 3(a1)–3(a4), we simulated intensity images at z � 7 μm
under circular illuminations (S � 0.10, 0.40, and 0.75) and
annular NA-matched illumination. We randomly provided
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an incorrect initial value of the defocus distance (10 μm) for the
AI-TIE and NFTPM (the robustness of NFTPM to defocus
distance initialization is verified in Fig. S2 and Section 2 of
Ref. [30]) and evaluated the quality of the retrieved phase using
the root mean square error (RMSE). In Figs. 3(b1)–3(b4), se-
vere artifacts appear in the results of AI-TIE, as the phase trans-
fer function (PTF) is mis-estimated due to the uncorrected z
value. In contrast, NFTPM achieves high-precision phase
retrieval (RMSE < 0.06) in diverse illuminations and accu-
rately predicts the defocus value based on the tunable defocus
parameter z. We also supplement simulations under other spe-
cial illuminations (e.g., asymmetric semicircular illumination)
to display the adaptability of NFTPM to arbitrary source dis-
tribution (see Fig. S3 and Section 3 of Ref. [30] for details). As
depicted in Figs. 3(c1)–3(c4), the RMSE of the phase recovered
by NFTPM progressively decreases with the increasing maxi-
mum illumination angle, demonstrating that NFTPM has
higher imaging accuracy at large illumination angles in the ab-
sence of noise. However, under noisy conditions (Gaussian
noise with a standard deviation of 0.005), as the increase in
the illumination angle reduces the response amplitude of the
PTF [see Figs. S4(a)–S4(c) in Ref. [30]], the sensitivity to noise

instead leads to an escalation in the RMSE, as illustrated in
Figs. 3(d1)–3(d3). Although the annular NA-matched illumi-
nation has a larger illumination angle compared to the circular
illumination with S of 0.4 and 0.75, it has a relatively smaller
RMSE in the presence of noise [Fig. 3(d4)], owing to its im-
proved spatial frequency response that allows for higher robust-
ness to noise [see Figs. S4(e) and S4(f ) in Ref. [30]]. Essentially,
NFTPM can be regarded as an iterative process that simultane-
ously seeks the optimal solutions for defocus distance prediction
and phase retrieval. As shown in Figs. 3(f1)–3(f4), the loss func-
tion exhibits a steady decline along with a converging trend of
defocus distance z (towards 7 μm in all cases), indicating
the parallel optimization of the model parameters and the defo-
cus parameter. Additionally, simulations under annular illumi-
nation for various z (5 μm, 8 μm, 12 μm, and 17 μm) in Fig. 3(g)
validate the stability of NFTPM for defocus distance prediction.

C. QPI Experiments for Live HeLa Cells
In the actual experiment, the long-time imaging of living HeLa
cells [Fig. 4(a)] was performed using the inverted microscope
(IX83) without motor drive adjustment or manual correction.
Under the influence of temperature fluctuation and other

Fig. 2. Comparison of phase (0–1 rad) reconstruction results of a simulated cell sample using NFTPM, BlindNet, TIE, AI-TIE, and GS methods
under different illumination settings and a defocus distance of 5 μm. (a) Results under coherent illumination. (b) Results under partially coherent
illumination (S � 0.85). (c) Comparison between AI-TIE and NFTPM for the large phase (0–6 rad) under partially coherent illumination
(S � 0.85). (d) Comparison between BlindNet and NFTPM after downsizing the network under coherent illumination. (e), (f ) Phase line profiles
corresponding to (c), (d).
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factors that lead to focal drift, NFTPM shows its stability of
phase recovery by correctly predicting the unknown defocus
distance. Figure 4(b) demonstrates the iterative process of pre-
dicting the defocus distance using the NFTPM in Area 1 and
Area 2 at different moments. Taking 1 μm as the initial value,
we recovered the phase of the first frame measurement by
NFTPM with the predicted defocus value of 6.522 μm and
adopted 6.5 μm as the defocus distance for AI-TIE. Since
the defocus distance was fixed at all moments, the retrieved re-
sults of AI-TIE, as depicted in Figs. 4(c1) and 4(c2), gradually
deteriorated over time due to the model mismatch induced by
the time-varying defocus distance. On the contrary, NFTPM
dynamically reconstructed the phase information at different
moments through adaptive defocus parameter correction,
revealing distinct subcellular details such as nuclei and lipid
droplets [Figs. 4(d1) and 4(d2)]. Once NFTPM reconstructs
the phase for the measurement at a given moment using ran-
dom initialization, the QPI of subsequent frames can be accel-
erated by initializing NFTPM with the MLP model and the
predicted z corresponding to the present frame, which utilizes
the correlation between frames in the same FOV. Additionally,
the efficiency of full FOV phase retrieval can be improved

fivefold by utilizing the pre-iterated model of the subregion
to initialize the neural field.

4. DISCUSSION AND CONCLUSION

In summary, we have proposed a new partially coherent QPI
method called NFTPM using the neural field. NFTPM, a
single-shot non-interferometric iterative method, employs a
straightforward MLP model for continuous phase representa-
tion and can accurately predict the defocus distance without
prior knowledge, which eliminates the necessity for precise
motor drive adjustment or manual correction for focus drift.

The rough defocus distance provided by the focusing device
can be manually adjusted to reduce the WOTF error and thus
improve the reconstruction results of AI-TIE. But with the lim-
ited time and manpower required, AI-TIE still cannot be ap-
plied as an effective method for long-term live cell imaging.
In contrast, NFTPM replaces the costly manual operation
with gradient-based tuning, which is based on the backpropa-
gation algorithm in the prior model and the MLP. Therefore,
NFTPM can adaptively obtain reconstruction results without
defocus artifacts.

Fig. 3. Comparison between AI-TIE and NFTPM with an incorrect initial value of the defocus distance in various illuminations. (a) Intensity
images under circular illuminations (S � 0.10, 0.40, and 0.75) and annular NA-matched illumination. (b) The results of AI-TIE. (c) The results of
NFTPM. (d) The results of NFTPM in the presence of noise. (e) Ground truth. (f ) Convergence curves of the defocus value and loss value (in
logarithmic form). (g) The defocus distance prediction process of NFTPM for intensity images simulated at other defocus distances under annular
illumination.
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For circular illumination, high-resolution reconstruction
results from large-angle illumination, providing more high-
frequency information. However, this comes at the expense
of a steadily diminishing PTF response with increasing illu-
mination angle, making noise more detrimental to the phase
reconstruction of NFTPM. In contrast, annular illumination
exhibits strong noise immunity due to a uniformly high re-
sponse in its pass-band over a large illumination angle. To
obtain high-quality QPI results, the defocus distance also
needs to be selected appropriately. The low-frequency re-
sponse of the PTF becomes weak when the defocus distance

is too small, which is not conducive to the recovery of low-
frequency information. Besides, the PTF obtained at excessive
defocus distance has a low response in its pass-band and con-
tains multiple deep dips and zero-crossings, rendering this
part of information susceptible to noise (see Figs. S5 and
S6 in Section 4 of Ref. [30]). Remarkably, NFTPM can also
be applied in pixel-aliasing conditions by additionally intro-
ducing pixel binning as a prior. Its capability of pixel super-
resolution QPI is validated in Fig. S7 (Section 5 of Ref. [30])
by simulating a pixel-aliased defocused intensity of a USAF
resolution test target.

Fig. 4. Experimental observation of HeLa cells via NFTPM under annular NA-matched illumination (see Visualization 1). (a) The full FOV of
the reconstruction result of NFTPM. (b) The defocus distance prediction process. (c1), (c2) The phase retrieved by AI-TIE. (d1), (d2) The phase
retrieved by NFTPM.
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Although our method incorporates partially coherent illumi-
nation into the forward image formation model, other optical
parameters that are beneficial for improving reconstruction
quality are still overlooked. Therefore, in the future, more op-
tical parameters will be considered in the physical model to fur-
ther promote the quality of phase reconstruction. For instance,
it is possible to achieve prediction of unknown illumination by
a grid search in a preset series of coherence parameters.
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A B S T R A C T   

Photoacoustic dermoscopy (PAD) is an emerging non-invasive imaging technology aids in the diagnosis of 
dermatological conditions by obtaining optical absorption information of skin tissues. Despite advances in PAD, 
it remains unclear how to obtain quantitative accuracy of the reconstructed PAD images according to the optical 
and acoustic properties of multilayered skin, the wavelength and distribution of excitation light, and the 
detection performance of ultrasound transducers. In this work, a computing method of four-dimensional (4D) 
spectral-spatial imaging for PAD is developed to enable quantitative analysis and optimization of structural and 
functional imaging of skin. This method takes the optical and acoustic properties of heterogeneous skin tissues 
into account, which can be used to correct the optical field of excitation light, detectable ultrasonic field, and 
provide accurate single-spectrum analysis or multi-spectral imaging solutions of PAD for multilayered skin tis-
sues. A series of experiments were performed, and simulation datasets obtained from the computational model 
were used to train neural networks to further improve the imaging quality of the PAD system. All the results 
demonstrated the method could contribute to the development and optimization of clinical PADs by datasets 
with multiple variable parameters, and provide clinical predictability of photoacoustic (PA) data for human skin.   

1. Introduction 

Skin is the largest organ of the human body, whose health is closely 
related to the whole body. Skin diseases, one of the most common ail-
ments among humans, are characterized by structural and functional 
changes in the tissue components of the skin. Imaging technologies play 
an essential role in dermatology, providing non-invasive means of 
observation and diagnosis, and offering valuable information for clinical 
practitioners [1,2]. Traditional optical dermoscopy, such as confocal 
microscopy and optical coherence tomography, is limited to observing 
only the conformation of the epidermis and superficial dermis due to 
imaging depth constraints. Ultrasound imaging enables visualization of 
the entire skin structure through deep penetration, but its spatial reso-
lution and ability to visualize microvasculature are poor, and it is unable 

to obtain metabolism-related biochemical information [3–5]. Photo-
acoustic imaging (PAI), an emerging imaging technology with both high 
spatial resolution and deep tissue imaging capabilities, has received 
widespread attention from the biomedical research community [6]. PAI 
is expected to bring more opportunities for the maintenance of skin 
health and the treatment of diseases. 

As an effective application mode of PAI, photoacoustic dermoscopy 
(PAD), an emerging non-invasive imaging technique, can directly 
measure the optical absorption characteristics of tissues, thus facilitating 
the diagnosis of skin diseases [7]. PAD combines the advantages of op-
tical and ultrasound imaging. By illuminating short-pulsed laser onto the 
skin, and then receiving the ultrasound signals generated by endogenous 
chromophores (hemoglobin, melanin, lipids, collagen, glucose, etc.), 
PAD can provide clinical practitioners with high-contrast and 
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high-resolution morphological, functional, and pathological informa-
tion of the skin, which has great potential in biomedical research and 
clinical applications [8]. In recent years, several PAD systems have been 
developed for imaging melanoma [9,10], café-au-lait macules [11], 
psoriasis [12], and skin blood vessels [13–15]. Despite the progress 
made in PAD research, there is still a lack of research on realistic 
modeling of the optical and acoustic properties of multilayered skin 
tissues for the quantitative accuracy of reconstructed PAD images 
caused by the wavelength and distribution of the excitation light, and 
the acoustic properties of the ultrasound transducer. The reliable 
computational methods can benefit the optimization design of the op-
tical and acoustic parameters of PAD equipment. 

Although deep learning has been used for PAI, most deep learning- 
based photoacoustic imaging needs thousands pairs of labeled input- 
output data to train the neural network, especially those applications 
in clinical skin imaging, which requires even larger amounts of data. It 
also should be noted that in many cases the ground truth corresponding 
to the experimental data is inaccessible. In such cases, an efficient 
“learning from computational model” scheme is urgently needed to 
obtain matching datasets. In addition, human skin tissues are multi-
layered physiopathological structures with variability in optical ab-
sorption and acoustic impedance, which requires a rigorous 
computational model of the physical process of PAI. 

The computational model of PAI, which encompasses both optical 

and acoustic simulations, plays a vital role. Various methodologies such 
as the radiative transfer equation [16], the finite element method [17], 
and the Monte Carlo (MC) method have been employed to simulate the 
scattering and absorption of light in tissues and to capture the distri-
bution of luminous flux in tissues. Of these, the Monte Carlo method 
stands out as the gold standard, which is widely used to calculate the 
propagation of light in complex tissue structures [18–20]. However, 
many existing MC algorithms are for simpler layered tissue models 
[21–24]. Most models resort to representing skin as a single or 
triple-layered homogeneous medium, a simplification that often over-
looks the intricate optical characteristics of multi-layered skin structures 
[25]. For the simulation of acoustics, tools such as the k-Wave toolbox 
[26] and the finite element method, with platforms like COMSOL, are 
predominant. The k-Wave, in particular, has gained traction due to its 
efficiency and simplicity [27–32]. Despite these advances, the current 
literature has limitations in certain aspects of photoacoustic dermoscopy 
(PAD) simulations, especially models that incorporate the intricate in-
teractions between excitation optical fields and detectable ultrasonic 
fields. Furthermore, while multi-spectral PAI computational models 
have been explored [33,34], there is still molecular information on the 
depth- and wavelength-dependent multispectral PAD imaging that has 
not been studied enough for us to make authoritative statements. 

In this study, we propose a photoacoustic hybrid 4D spectral-spatial 
computational model aimed at in-depth analysis of PAD skin structure 

Table 1 
The parameters of skin layers used in the computational model [23,35,43].  

Layer Thickness 
(mm) 

Wk 

(%) 
Bk 

(%) 
Mk 

(%) 
μsRk 

(cm− 1) 
Velocity 
(m/s) 

Density 
(kg/m3) 

Stratum corneum  0.01  0  0  1  80  1540  1500 
Living epidermis  0.08  60  0  10  80  1720  1190 
Papillary dermis  0.1  75  3  1  80  1650  1200 
Upper blood plexus  0.08  75  3.8  0  40  1650  1200 
Reticular dermis  1.2  75  3  0  40  1790  1200 
Deep blood plexus  0.07  75  2.3  0  40  1540  1116 
Subcutaneous fat  3  5  2.1  0  42  1450  971  

Fig. 1. 4D spectral-spatial computational model of skin. (a) Schematic diagram of a seven-layer skin model. SC: stratum corneum, LE: living epidermis, PD: papillary 
dermis, UBP: upper blood plexus, RD: reticular dermis, DBP: deep blood plexus, SF: subcutaneous fat. (b) Flowchart of key steps. (c) 2D simulation diagram. (d) 
Focused Gaussian beam, Bessel beam, collimated Gaussian beam photon distribution. (e) Photoacoustic signals along the dotted lines position in (c). 
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and functional imaging for system optimization. Our model prioritizes 
the simulation of experimental scenarios as much as possible, adopts a 
point-by-point scanning mode based on photoacoustic microscopy, the 
model integrates forward propagation of light based on the Monte Carlo 
method and backward propagation of ultrasound computed based on k- 
Wave, and takes into account the multilayered heterogeneous structure 
of the skin as well as a specific vascular model, which makes the pho-
toacoustic physical process of our proposed model on the more accurate. 
Furthermore, we have also incorporated the spectral dimension, 
achieving multispectral PAD imaging and unmixing with multiple beam 
types at varying wavelengths and energy levels. This allows for quan-
titative measurement of component intensities, which has the potential 
to greatly aid in disease diagnostic applications [10,34]. In addition, the 
model helps to accurately calibrate subcutaneous optical and acoustic 
distributions, providing a precise and optimized solution for imaging 
multilayered skin tissues using a PAD system. Finally, this study illus-
trates how the dataset obtained from our computational model can be 
utilized for neural network training to further break through hardware 
and biological constraints to improve the imaging quality of PAD 
experimental images. 

The remainder of the paper is organized as follows: Section II de-
scribes the structure of the 4D spectral-spatial computational model, 
including the optical and acoustic properties of the tissue, the workflow 
of the computational model, the structure of the network model, the 
PAD experimental system and its quantitative optimization method. 
Section III presents a series of experimental results related to the reli-
ability of the computational model. Also, the conclusion is summarized 
in Section IV. 

2. Methodology 

2.1. Simulation geometry 

Here, the model defines a three-dimensional voxel grid with a size of 
1 mm × 1 mm × 2 mm and a voxel count of 200 × 200 × 400 in each 
direction. A seven-layer skin model based on the anatomical structure of 
human skin (The skin model consists of seven layers: stratum corneum, 

living epidermis, papillary dermis, upper blood plexus, reticular dermis, 
deep blood plexus, and subcutaneous fat, respectively. The thickness of 
each layer is shown in Table 1.) is constructed, which is modeled as a 
multilayered planar medium [35]. The thermal and optical parameters 
of the multilayered skin tissues do not vary with temperature is assumed. 
Based on the physical, optical, and physiological properties of the cells, 
and the pigmentation content, the skin is subdivided into sublayers on 
the basis of a three-layer skin model [36]. The epidermis can be sub-
divided into two sublayers: the stratum corneum and the living 
epidermis. The stratum corneum is thin and flat, composed of dead 
squamous cells, with a high degree of keratinization, high fat and pro-
tein content, and relatively low water content. The living epidermis 
contains most of the skin pigments, mainly melanin [37]. The dermis is a 
vascularized layer, with the main absorbers in the visible spectrum 
being hemoglobin, carotenoids, and bilirubin. It can be subdivided into 
four layers: the papillary dermis, the upper vascular plexus, the reticular 
dermis, and the deep vascular plexus [38]. These subdivided layers and 
the subcutaneous adipose tissue layer constitute the seven-layer model, 
which is illustrated in Fig. 1a. The epidermis layer contains no blood 
tissue, and a three-dimensional vascular model publicly available from 
Tetteh et al. [39] is inserted beneath the epidermis layer of the model, as 
an approximation of the skin vasculature. Fig. 1b shows the flowchart of 
the key steps of the model, which is based on photoacoustic microscopy 
to realize PAD imaging, and Fig. 1c shows a two-dimensional (2D) 
schematic of the scanning process. Fig. 1d illustrates the three types of 
beams used in the study and their photon distributions, including 
focused Gaussian beam, Bessel beam, and collimated Gaussian beam. 
Imaging under the focused beam corresponds to confocal 
optical-resolution photoacoustic microscopy while imaging under the 
collimated Gaussian beam corresponds to acoustic-resolution photo-
acoustic microscopy. Fig. 1e shows the simulated photoacoustic signals 
along the position of the dashed line in Fig. 1c. 

2.2. Optical properties of tissue 

Skin is a complex multilayered heterogeneous tissue, and the depth 
and direction of light propagation within the skin are determined by the 

Fig. 2. The optical properties of each layer of the skin. (a) The absorption spectra of blood, melanin, and water, as well as the scattering spectra of blood [36,44–47]. 
(b) The absorption spectra of each layer of the seven-layer skin model. (c) Scattering spectrum. (d) Anisotropic factors. 
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optical properties of the various layers of tissue and blood vessels in the 
skin, which are wavelength dependent and vary according to the 
random inhomogeneous distribution of various chromophores and pig-
ments [38]. For simplicity, each layer is typically treated as a homoge-
neous structure in the computational model, and the optical properties 
vary between layers but remain constant within each layer [28–33]. 
Typically, the optical properties of each skin layer include the absorp-
tion coefficient (μa), scattering coefficient (μs), anisotropy factor (g), and 
refractive index (n). The refractive index does not vary significantly 
between layers, and therefore, the refractive index can be set to a fixed 
value of 1.4 for all wavelengths and under all skin layers [40–42]. 

The absorption coefficient of each skin layer is mainly contributed by 
three basic chromophores: blood, melanin, and water. The variation of 
absorption coefficients with wavelength for these three components is 
illustrated in Fig. 2a. Table 1 lists the thickness of each layer and the 
relative amount of the three chromophores. The absorption coefficient 
of each layer μa_k can be calculated by Eq. 1 [23]: 

μa k(λ) = Bkμa blood(λ) + Mkμa melanin(λ) + Wkμa water(λ) + (1 − Bk − Mk

− Wk)μa background

(1)  

Where, k represents the number of layers, λ is the wavelength at which 
the absorption coefficient is being calculated, Bk, Wk, Mk are the volume 
fractions of blood, water, and melanin in the layer, respectively. μa_blood, 
μa_water, μa_melanin and μa_background represent the absorption coefficients of 
blood, water, melanin, and background tissue, respectively. It can be 
considered that μa_background is independent of wavelength and is set as a 
fixed value of 0.15 cm− 1 in the model. The calculated absorption spectra 
of each layer are presented in Fig. 2b. 

The scattering coefficient of each skin layer in the model is mainly 
determined by blood. The variation of the scattering coefficient of blood 
with wavelength is illustrated in Fig. 2a. The scattering coefficient of 
each layer μs_k can be calculated using Eq. 2: 

μs k(λ) = BkCkμs blood(λ) + (1 − Bk)μsTk(λ) (2) 

Where, the correction coefficient Ck is related to the diameter of 
blood vessels, it is assumed that the blood vessels in each skin layer have 
the same diameter, assuming Ck = 0.2. μs_blood represents the scattering 
coefficient of blood. The scattering coefficient μsΤk(λ) of bloodless tissue 
varies with wavelength. In this study, Eq. 3 was used to calculate: 

μsTk(λ) = μsRk

(
577nm

λ

)

(3) 

Where, μsRk is the scattering coefficient at the reference wavelength 
of 577 nm as shown in Table 1. The calculated scattering spectra of each 
layer are presented in Fig. 2c. The anisotropy factor gk(λ) can be 
expressed as Eq. 4: 

gk(λ) =
BkCkμs blood(λ)gblood + (1 − Bk)μsTk(λ)gT(λ)

μs k(λ)
(4) 

Where, gT(λ) is the anisotropy factor of bloodless tissue, obtained 
through Eq. 5: 

gT(λ) = 0.7645 + 0.2355
[

1 − exp
(

−
λ − 500nm
729.1nm

)]

(5) 

The calculated anisotropy factors of each layer are presented in 
Fig. 2d. 

2.3. Computational flowchart 

This section describes the workflow of the 4D spectral-spatial 
computational PAD (Fig. 1b). The first step of the computation is to 
calculate the forward propagation of light in the tissue and the distri-
bution of light energy deposition. We use the open-source Monte Carlo 

toolkit MCmatlab to solve this problem. The input beam is simulated by 
emitting photon packets and calculating their paths in the simulated 
body [47]. There are three beams available in the model: focused 
Gaussian beam, Bessel beam, and collimated Gaussian beam (Fig. 1d). 
The beam is incident vertically along the Z-axis of the model, when 
photon packets propagate from one voxel to another, some energy is 
deposited into the voxel based on its absorption coefficient. The 
deposited energy is numerically accumulated in a three-dimensional 
matrix, which is the light energy deposition distribution. The light en-
ergy deposition distribution is then converted into an initial pressure 
distribution matrix using Eq. 6: 

p0(r, λ) = Γ(r)μa k(λ)ϕ(r, λ) (6) 

Where, Γ is the Gruneisen parameter, which measures the conversion 
efficiency from light absorption to sound pressure. In the research 
conducted in this article, it is assumed that the homogeneity value of Γ is 
0.2 [48]. μa_k(λ) is the absorption coefficient of the corresponding 
dielectric layer k at position r at wavelength λ. ϕ(r, λ) is the luminous 
flux at position r at wavelength λ. Using the equation, the initial pressure 
values for each grid position in the model are obtained, and the prop-
agation of photoacoustic waves to the transducer at each grid position is 
implemented using k-Wave [26]. 

The speed and density of ultrasound for each skin layer related to the 
acoustic computation are recorded in Table 1. The attenuation of 
acoustic waves plays a pivotal role in determining the acoustic proper-
ties of tissues. One of the primary contributors to this attenuation is 
acoustic absorption. This frequency (f) dependent attenuation is char-
acterized using a power-law model. In the computational model of this 
paper, the acoustic attenuation coefficient of the tissue is taken as 1 f 
1.5dB/cm/MHz1.5. This signifies that the acoustic attenuation escalates 
in proportion to the frequency raised to the power of 1.5 [49,50]. A 
bowl-shaped focused ultrasound transducer is used in k-Wave with its 
focusing direction on the same axis as the center of the incident beam, 
and the center frequency and bandwidth are set accordingly to the 
experimental needs. Firstly, a 3D Monte Carlo optical computation is 
performed on the grid points on the scanning plane to obtain the light 
energy deposition distribution, which is then transformed to obtain the 
three-dimensional initial pressure distribution. Then, a 2D acoustic 
computation is performed on the plane of the scanning points along the 
Y-axis, and this process is repeated to achieve full scanning (Fig. 1c, e). A 
total of 160 × 160 A-line signals are obtained, resulting in a 
maximum-intensity projection image. Generating the light energy 
deposition distribution in the optical model takes approximately 6 s, and 
collecting the raw photoacoustic signals in the two-dimensional acoustic 
model takes approximately 2 s. All calculations are performed on an 
Intel Core i7–10700KF CPU and NVIDIA RTX A2000 GPU. Compared 
with the three-dimensional acoustic model, the scanning method using 
the two-dimensional acoustic model is approximately 30 times faster. 

2.4. Network architecture 

U-Net is an encoder-decoder structure network with skip connec-
tions, which helps to preserve the detailed information of the image and 
helps to mitigate the loss of information when recovering the resolution 
in the decoder stage. U-Net has a relatively small number of parameters 
and computational complexity, which makes it faster in training and 
inference and performs well in small sample cases [51]. In order to 
achieve further optimization of systematic imaging based on computa-
tionally generated datasets, a modified U-Net architecture is used in this 
study (shown in Fig. S1), where the network accepts a 624 × 624 
grayscale image of skin blood vessels as input, the first layer contains 32 
convolutional filters of size 3 × 3, and two successive convolution op-
erations are activated by applying a leaky integer linear unit LReLU 
layer (slope 0.2), and then convolutional operation is implemented 
using a 2 × 2 convolutional layers instead of pooling to achieve down-
sampling, which allows the model to learn how best to reduce the spatial 
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dimensions rather than relying on fixed operations, while better pre-
serving certain features of the original input. The number of filters is 
incremented by powers of 2 up to the bottleneck layer, up to a maximum 
of 512 filters. The output is then upsampled using a 2 × 2 transpose 
convolution to obtain an output of the same size as the input, and then 
two successive convolution operations are applied again. The number of 
channels in each layer is gradually reduced symmetrically. Skip con-
nections are added while the corresponding downsampled layer is 
upsampled. Finally, the output image is obtained by 1 × 1 convolutional 
downsampling. The total number of trainable parameters for the 
network is 8115009. The network is trained using the Adam optimizer’s 
mean-square error (MSE) loss function (β1 = 0.8, β2 = 0.999), with the 
learning rate, the number of epochs, and the batch size set to 3e-4, 100, 
and 2, respectively. During the model training process, we evaluate the 
model using the validation dataset periodically to avoid overfitting. We 
evaluated the network performance using mean-square error (MSE), 
mean-absolute error (MAE), peak signal-to-noise ratio (PSNR), and 
structural similarity index (SSIM) on the simulated test dataset. 

2.5. Experimental PAD imaging system 

Fig. 3c shows the PAD imaging system employed for the experiment, 
using a 532 nm Q-switched pulsed laser (Talon 532–40, Spectra-Physics; 
pulse repetition rate of 10 kHz; pulse width of 20 ns) as a light source to 
excite the PA signal. The beam was passed through an optical spatial 
filter system and then coupled into a single-mode fiber with the help of a 
fiber coupler (PAF-X-7-A, Thorlabs Inc.). The fiber output laser beam 
was collimated by a fiber collimator (F240FC-532, Thorlab Inc.). Scan-
ning was achieved by a two-dimensional linear motor (LS2–0830, 
JianCheng Technologies Ltd.) driven by a collimated light focused 

through a 5 × objective lens (S Pian Apo HL 5x/0.13, SIGMA KOKI), and 
the signal was received by using a homemade hollow-bowl ultrasonic 
transducer, with a center frequency of 20 MHz and a bandwidth of about 
100%. The laser fluence at the tissue surface was about 18 mJ/cm2, 
which is below the ANSI safety limit of 20 mJ/cm2. During raster 
scanning, the step between the two A-lines was 1 µm. The acquired PA 
signals were amplified by a 50 dB low-noise amplifier (LNA-650, RF 
Bay), and then the amplified PA signals were digitized using a high- 
speed data acquisition card (M4i.4480, Spectrum). The acquired data 
were recorded and reconstructed in real-time by a LabVIEW program. 

2.6. Quantitatively optimal photoacoustic dermoscopy 

The corresponding parameters in the 4D spectral-spatial computa-
tional model can be set according to the wavelength, energy density and 
focusing position of the incident beam used in the experimental PAD 
system as well as the frequency characteristics of the ultrasound trans-
ducer (Fig. 3a). The settings in this paper match the experimental system 
presented in Section 2.5. Adjusting its parameters based on the imaging 
results calculated by the model, iterating, and eventually feeding back 
relevant information to update the system’s configuration to provide the 
best system parameters for the current application scenario (Fig. 3b), 
thus helping aiding in the optimization of the experimental PAD system 
(Fig. 3c). Meanwhile, the “learning from computational model” schemes 
are used to break through the limitations of hardware and human body 
in the experiments to further improve the imaging performance of the 
PAD system, such as the optimization of imaging resolution and depth. 
To train the spread-spectrum model (Fig. 3d), we set the center fre-
quencies of the detectors in the k-Wave acoustic simulation to match the 
20 MHz of the experimental system and the optimized target 60 MHz, 

Fig. 3. The process of using the 4D spectral-spatial computational PAD combined with experiments for dataset acquisition and system optimization for deep learning. 
(a) Relevant parameters can be set before data acquisition, and the distribution of the model optical field and detector acoustic field under a collimated Gaussian 
beam in the model is shown. (b) Feedback on relevant performance optimization parameters is provided to the experimental system after simulating calculation. (c) 
Experimental system. (d) The dataset is used for training the spread-spectrum network model. (e) The dataset is used for training the depth-enhanced network model. 
(f) The low center frequency detector skin imaging results obtained in the experiment are input into the trained spread-spectrum model to obtain the output image. 
(g) The skin imaging results under conventional scattering obtained in the experiment are input into the trained depth-enhanced model to obtain the output image. 
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respectively, and the data enhancement was achieved by horizontally 
flipping the 900 pairs of images generated by the computation. To 
ensure the robustness and generalization of the model, we divided the 
entire dataset into three parts: training, validation, and testing, where 
1400 pairs of images were used for training, 200 pairs of images for 
validation, and 200 pairs of images for testing. For the deep-enhanced 
model (Fig. 3e), we set the optical scattering coefficient of the dermis 
as 1% as the ground truth parameter, and computationally obtained 900 
pairs of images corresponding to the dermis under strong and weak 
scattering, which helps to obtain deeper PAD imaging information, and 
likewise realized the data enhancement by horizontal flipping, whose 
number of the training, validation, and testing sets are also 1400, 200, 
200, respectively. More broadly, the corresponding parameters in the 

computational model are set according to the PAD experimental system 
and the desired experimental results, and the matched datasets are ob-
tained for network training and adjusted within a certain range to in-
crease the diversity of the data in order to obtain a good generalization 
performance. Finally, by combining the trained network with the PAD 
experimental system, the optimized imaging results after network pro-
cessing can be quickly obtained. 

3. Results and discussions 

This section describes experiments on four factors that affect the 
imaging performance of the 4D spectral-spatial computational model, as 
well as the acquisition of the dataset and its application in deep learning. 

Fig. 4. Computational imaging results of (a-c) Focused Gaussian beam, (d-f) Bessel beam, and (g-i) collimated Gaussian beam when the power densities are 6 mJ/ 
cm2, 12 mJ/cm2, and 18 mJ/cm2. (j-l) The 3D imaging results of focused Gaussian beams, Bessel beams, and collimated Gaussian beams with a power density of 
18 mJ/cm2. (m1, m2) Profile intensity along dashed lines 1 and 2 in (a, d, g) with a power density of 6 mJ/cm2. (n1, n2) Profile intensity along dashed lines 1 and 2 
in (b, e, h) with a power density of 12 mJ/cm2. (o1, o2) Profile intensity along dashed lines 1 and 2 in (c, f, i) with a power density of 18 mJ/cm2. (p) The a-line signal 
envelope of three different beams at the same position with a power density of 18 mJ/cm2. 
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Section 3.1 discusses the influence of the type of incident beam and the 
power density on the PAD imaging performance. Section 3.2 describes 
the influence of ultrasound transducers with different center frequencies 
and bandwidths on the PAD imaging performance. Section 3.3 presents 
the imaging results of Gaussian beams focused at different depths 
beneath the skin. Section 3.4 describes the imaging depth under 
different wavelength beams, demonstrating the multispectral imaging 
capability of the model. Section 3.5 discusses the feasibility of gener-
ating datasets for neural network training using the model. 

3.1. The influence of the incident beam 

The laser parameters used in PAI can greatly affect the imaging re-
sults, and since the calculation of the light energy deposition distribu-
tion and ultrasonic back propagation of the computational model is 
performed in a stepwise manner, it can be assumed that the imaging is 
not affected by the laser pulse width. To validate the influence of beam 
focusing and energy on imaging performance in the computational 
model, focused Gaussian, Bessel, and collimated Gaussian beams with 
varying power densities of incident beams at a wavelength of 532 nm 
were used for imaging while the optical and acoustic parameters of the 
model were fixed. The Gaussian and Bessel beams were focused on the 
boundary between the epidermis and dermis layers of the skin model, 
and full scanning was performed on the same vascular network for each 

type of beam. The ultrasonic transducer with a center frequency of 
100 MHz and a bandwidth of 100% was used to receive photoacoustic 
signals to reduce measurement errors in the computational model. 
Fig. 4a-c, d-f, and g-i show the maximum intensity projection results of 
the three types of beams with power densities of 6 mJ/cm2, 12 mJ/cm2, 
and 18 mJ/cm2, respectively. Fig. 4j-l show the three-dimensional im-
aging results of the three types of beams with a power density of 18 mJ/ 
cm2. Fig. 5 shows the maximum intensity projection results at different 
depths of the three types of beams with a power density of 18 mJ/cm2, 
in which we could clearly see the difference in imaging depth and res-
olution between the three beams. The comparisons in Figs. 4m-p and 5 
show that, with a fixed power density, Bessel beams and collimated 
Gaussian beams can achieve greater imaging depth, while Bessel beams 
have a higher lateral resolution. 

In PAI, the intensity of the PA signal is directly proportional to the 
local optical fluence [52]. Increasing the power density of the incident 
beam directly increases the optical fluence, which enhances the signal 
intensity and amplifies small signals in deeper regions, thereby 
improving the visibility of targets in deeper regions. The imaging reso-
lution is closely related to the size of the optical focus [53]. The colli-
mated Gaussian beams have the lowest imaging quality due to the lack 
of focus. Both focused Gaussian beams and Bessel beams have excellent 
spot sizes at the focus point, but Bessel beams achieve better imaging 
results due to their larger depth of field [54,55]. This result is consistent 

Fig. 5. Maximum intensity projection results of focused Gaussian beam, Bessel beam, and collimated Gaussian beam at different depths with a power density of 
18 mJ/cm2. (a-c) Maximum projection image from 90 to 200 µm. (d-f) Maximum projection image from 200 to 430 µm. (g-i) Maximum projection image from 430 to 
530 µm. (j) Profile intensity along the dashed lines in (a-c). (k) Profile intensity along the dashed lines in (d-f). (l) Profile intensity along the dashed lines in (g-i). 
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with reality and confirms the reliability of the proposed computational 
optical model in this work. 

3.2. The influence of ultrasonic transducer performance 

The human skin generates broadband PA signals ranging from a few 
to hundreds of MHz due to the wide variation in the size of light ab-
sorbers. The central frequency and bandwidth of the transducer for 
detection must be selected based on the size of the target [56]. However, 
the improper selection of detection bandwidth and central frequency in 
most PAD studies has resulted in many skin structures being indistin-
guishable [57]. 

In this section, under the condition of unchanged optical parameters 
of the model, in order to reduce the impact of beam focusing on imaging 
depth, we investigated the effects of changing the center frequency and 
bandwidth of the ultrasonic transducer on the PAD imaging perfor-
mance when using a collimated Gaussian beam for illumination of 
532 nm. The detection sensitivity of the ultrasonic transducer is higher 
near the acoustic focus, and its depth of field mainly depends on the 
center frequency and the numerical aperture of the acoustic lens, typi-
cally several hundred micrometers, which is comparable to the depth of 
field of a Bessel beam. The computational model used in this study 
employed a bowl-shaped focused ultrasonic transducer consisting of 
several point detectors on a grid, whose directionality comes from the 

spatial average of the pressure field on the detector surface. The depth of 
field extends along the entire central axis, and it can be assumed that the 
detection sensitivity of the transducer is uniform within the depth of 
field range. 

In this study, the center frequency of the ultrasonic transducer was 
chosen as 20 MHz, 40 MHz, and 60 MHz, and the bandwidth was 
increased from 60% to 100%. The imaging results under different 
combinations of parameters are shown in Fig. 6a-l, and the profile in-
tensities along the dashed line in the figures are shown in Fig. 6m-p, 
which show that the axial resolution improves with the increase of the 
center frequency and bandwidth of the transducer. In addition, due to 
the correlation between sound attenuation and frequency, as the central 
frequency of the transducer increases, the visibility of deep blood vessels 
becomes weaker. These imaging results highlight the benefits of using 
ultra-broadband ultrasound detectors in PAD. 

3.3. The influence of laser focusing position 

In imaging and diagnostics of PAD, lateral resolution is critical for 
tissue microstructure studies. Usually, there is a compromise between 
imaging depth and resolution. Imaging resolution can be improved by 
beam focusing, but defocusing occurs when the beam is focused at a 
certain depth under the skin, at which point the imaging resolution 
deteriorates rapidly. Conversely, if the focusing depth is too shallow, the 

Fig. 6. Computational imaging results of ultrasonic transducers at different center frequencies and bandwidths. (a-c) Position 1 with center frequencies of 20 MHz, 
40 MHz, and 60 MHz and a bandwidth of 60%. (d-f) Position 1 with center frequencies of 20 MHz, 40 MHz, and 60 MHz and a bandwidth of 100%. (g-i) Position 2 
with center frequencies of 20 MHz, 40 MHz, 60 MHz, and 60% bandwidth. (j-l) Position 2 with center frequencies of 20 MHz, 40 MHz, 60 MHz, and 100% band-
width. (m) PA amplitude along the dashed lines in images (a-c). (n) PA amplitude along the dashed lines in images (d-f). (o) PA amplitude along the dashed lines in 
images (g-i). (p) PA amplitude along the dashed lines in (j-l). 
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imaging depth may not meet the clinical requirements. 
This section discusses the effect of the focusing depth of the incident 

focused Gaussian beam at 532 nm on imaging. The optical parameters of 
the skin model remained unchanged, and the incident beam power 
density was 18 mJ/cm2. The center frequency of the ultrasonic trans-
ducer was set to 100 MHz, with a bandwidth of 80%. Full-scan imaging 
was performed at six different depths where the Gaussian beam was 
focused at 0.25 mm, 0.5 mm, 0.75 mm, 1.0 mm, 1.25 mm, and 1.5 mm, 
respectively. Fig. 7a-f show the maximum projection imaging results in 
the X-Y plane at these six different focusing depths, Fig. 7g shows the 
maximum projection results in the X-Z plane, and Fig. 7h and i show the 
normalized profile intensity along the white dashed lines in Fig. 7a-g. As 
the focusing depth increases, the imaging depth is improved within the 
maximum range, but the upper vessels are gradually out of focus, 
leading to a deterioration in the lateral resolution of the imaging. The 
best imaging results were obtained when the depth of focus was 
0.75 mm, which may be because the ultrasound transducer we used in 
the simulation may have the best focus at this particular depth and the 
focused Gaussian beam used still maintains a good spot at this depth due 
to the optical properties of the tissue. However, this observation is not 
necessarily universally applicable in all cases. Different experimental 
systems, different samples, and different experimental conditions may 
affect the determination of the optimal depth of focus. 

3.4. Multi-spectral photoacoustic imaging and spectral unmixing 

Different skin layers have different optical absorption and scattering 
properties for different wavelengths, resulting in different penetration 
depths for each wavelength beam. To further investigate the effect of 
such wavelengths on the penetration depth, an incident collimated 
Gaussian beam was used in this section, and computational measure-
ments of imaging depth were made at 50 nm intervals for 15 wave-
lengths in the wavelength range from 400 nm to 1100 nm. As shown in 
Fig. 8a, we plotted the fluence rate of incident light at each wavelength 
up to 80%, 60%, 40%, 20%, 10%, and 5% as a function of penetration 
depth. As can be seen from the plots, as the wavelength increases, the 
corresponding penetration depth increases, which is consistent with our 
expected results. This result suggests that in skin imaging applications, 
the selection of appropriate wavelengths can realize deeper imaging. 

Next, the multi-spectral imaging capability of the proposed model 
was verified by simulation experiments. Here, we updated the compo-
nents of the vascular structure in the computational model to a combi-
nation of hemoglobin (Hb), oxyhemoglobin (HbO2), Lipid, and Glucose. 
The epidermal components only contain lipids, and the variation of 
optical absorption coefficients of wavelength for the four components is 
shown in Fig. 8b. B-scan images were acquired at wavelengths ranging 
from 700 nm to 1100 nm at 25 nm intervals for a total of 17 wave-
lengths using a collimated Gaussian beam and an ultrasound transducer 
with a center frequency of 100 MHz and a bandwidth of 100%. Fig. 8c 
shows the imaging results at seven representative wavelengths: 700 nm, 

Fig. 7. The imaging results when the Gaussian beam is focused at 0.25 mm, 0.5 mm, 0.75 mm, 1.0 mm, 1.25 mm, and 1.5 mm. (a-f) X-Y maximum projection image. 
(g) X-Z maximum projection image. (h) PA amplitude along the dashed lines in (a-f). (i) PA amplitude along the dashed lines in (g). 
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800 nm, 900 nm, 950 nm, 1000 nm, 1050 nm, and 1100 nm. It can be 
seen that at the wavelengths of 700 nm and 800 nm, lipids are in the 
absorption valley, which does not show up clearly in the resulting im-
ages, and near 900 nm and 950 nm, HbO2 is at the absorption peak, 
which absorbs light more strongly and is shown with higher contrast in 
the image. The multi-wavelength PA data were utilized to decompose 
the absorption spectra of the mixed targets by a non-negative con-
strained least-squares algorithm [58] to obtain unmixed images of the 
four components, Hb, HbO2, Lipid, and Glucose, as shown in Fig. 8d-g. 
The unmixing results show a decreasing trend with increasing depth 
because the intensity of the photoacoustic signals produced by each 
component decreases gradually at the depth of the tissue due to the 
consideration of the fluence heterogeneity in the optical forward simu-
lation, especially for lower concentrations of glucose. The unmixing 
results were in close agreement with the modeled components. The 
multispectral imaging and unmixing capabilities of the skin computa-
tional model are useful for the development and optimization of 
multiwavelength PAD systems, and the analysis of biochemical com-
ponents in conjunction with spectral unmixing algorithms can help to 
more accurately diagnose skin diseases. 

3.5. Dataset acquisition and assistance in system optimization 

Deep learning is being widely researched for medical image analysis 

Fig. 8. Multi-spectral imaging and spectral unmixing results. (a)When the fluence rate of incident light reaches 80%, 60%, 40%, 20%, 10%, and 5%, the depth of 
penetration into the skin varies with the wavelength of the incident light. The fluence rate value is taken from the central column of the output fluence rate grid. (b) 
Plots of optical absorption coefficients as a function of wavelength for Hb, HbO2, Lipid, and Glucose. (c) B-scan images at 700 nm, 800 nm, 900 nm, 950 nm, 
1000 nm, 1050 nm, and 1100 nm wavelengths. (d-g) Corresponding spectral unmixing results. 

Table 2 
Quantitative comparison between ground truth and simulated/U-Net output 
images on test dataset in the spread-spectrum model.The metrics are represented 
in the form of mean ± standard deviation.   

MAE MSE PSNR SSIM 

Simulated 
images 

0.0543 
± 0.0077 

0.1562 
± 0.0040 

66.3208 
± 1.0247 dB 

0.8115 
± 0.1418 

U-Net output 
images 

0.0042 
± 0.0009 

0.0001 
± 0.0001 

87.4351 
± 1.9440 dB 

0.9908 
± 0.0016  

Table 3 
Quantitative comparison between ground truth and simulated/U-Net output 
images on test dataset in the depth-enhanced model.The metrics are represented 
in the form of mean ± standard deviation.   

MAE MSE PSNR SSIM 

Simulated 
images 

0.0138 
± 0.0054 

0.0019 
± 0.0018 

77.0055 
± 3.6093 dB 

0.9308 
± 0.0228 

U-Net output 
images 

0.0066 
± 0.0029 

0.0003 
± 0.0004 

84.9128 
± 3.3614 dB 

0.9647 
± 0.0239  
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and processing [59–64]. Most of the deep learning techniques currently 
used in photoacoustic imaging belong to supervised learning. To train 
the network, it is essential to establish a matched dataset that pairs 
ground truth with corresponding measurements. Ideally, datasets should 
be collected through physical experiments based on the same imaging 
system. However, in many cases, it is difficult to obtain the ground truth 
corresponding to the experimental data. In such cases, matching data-
sets can be obtained through “learning from computational model” 

schemes [65–67]. The 4D spectral-spatial computational model in this 
paper considers wavelength-dependent optical scattering and can 
calculate the optical and acoustic characteristics of real heterogeneous 
skin tissue, generating multi-spectral photoacoustic skin imaging data-
sets under various physical conditions. 

Data acquisition requires setting the relevant parameters according 
to the expected ground truth, including phantom geometry, tissue 
chromophore content, beam properties, tissue optical properties, sensor 

Fig. 9. Network generalization test results. (a) 3D PA image of palm skin. (b) 3D PA image obtained after the spread-spectrum network and the depth-enhanced 
network processing. (c1, c2) X-Y slice images of red dashed line position in the 3D images. (d1, d2) X-Y maximum intensity projection (MIP) of the purple 
dashed range in the 3D images. (e1, e2)Y-Z slice images of blue dashed line position in the 3D images. (f1, f2) X-Z slice images of green dashed line position in the 3D 
images. (g1-g4) Profile intensity along the yellow dashed lines in the slice images. 
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frequency characteristics, etc. This process is shown in Fig. 3a. The 
optimal system parameters are obtained based on the feedback during 
the calculation (Fig. 3b), which can assist in optimizing the experimental 
system (Fig. 3c). Here are two examples illustrating how to implement 
the “learning from computational model” schemes. 

For photoacoustic skin vascular imaging, ultrasound transducers 
with large center frequencies and wide bandwidths are able to capture 
fine structural information of blood vessels and obtain higher axial 
resolution. However, the price of ultrasound transducers is closely 
related to their performance, and in order to reduce the cost of system 
construction and data collection, the image spread spectrum can be 
realized by training the network with simulated data (Fig. 3d). Here, the 
training of the spread-spectrum network was implemented based on U- 
Net and the performance of the network on the test set is shown in 
Table 2. Then it was tested on the experimental PAI data. Again, the 
experimental system used an ultrasonic detector with a center frequency 
of 20 MHz, and the scanned PA images of the skin on the back of the 
author’s hand were fed into the trained spectral spreading network, and 
the axial resolution of the output image and the completeness of the 
image information were significantly improved (Fig. 3f). 

In addition, since photoacoustic imaging depth is largely affected by 
optical scattering and optical removal of human skin is difficult to 
achieve, it is of great significance to train the network to enhance the 
imaging depth by calculated data. The same network architecture was 
used to train the depth-enhanced network (Fig. 3e) to help obtain deeper 
information about PAD imaging. The evaluated parameter values on the 
test dataset are shown in Table 3. The test results on a priori known leaf 
sample are shown in Fig. S3. Further, the depth-enhanced network was 
tested with skin vascularization experimental datas, and the visibility of 
deeper information in the output image was greatly improved (Fig. 3g). 

To examine the generalization of the trained neural network model, 
here the experimentally acquired 3D skin photoacoustic imaging data of 
5 mm × 5 mm × 4.5 mm were sequentially fed into the spread spectrum 
network and depth-enhanced network trained in the above examples 
with the form of X-Z slices, which have different epidermal shapes and 
vascular structures. The slices obtained from the network output were 
reconstructed into 3D images, and Fig. 9 shows the imaging results 
before and after network processing. It can be clearly seen that the axial 
resolution of the image is improved and deeper blood vessels are shown. 
The above experimental results show that the simulated data obtained 
using the PAD computational model proposed in this paper can obtain 
results similar to those of actual skin imaging, and can be used to train 
the network well, thus significantly reducing the training cost. 

4. Conclusion 

In this paper, we proposed and validated a hybrid computational 
method of 4D of spectral-spatial imaging for quantitative PAD, which 
enables structural and molecular computational imaging of blood ves-
sels. The method fully considers wavelength-dependent optical scat-
tering and can calculate the optical and acoustic properties of 
heterogeneous skin tissue. The computational model integrates two 
open-source toolboxes: MCmatlab for forward propagation Monte Carlo 
model of light and calculation of light flux at each grid position, and k- 
Wave for computation of ultrasonic propagation and reception. By 
adjusting the types of incident beams, the optical focusing depth, the 
center frequency, and the bandwidth of the ultrasound transducer, im-
aging experiments were performed to demonstrate that the computa-
tional model can calculate the effects of actual optical and acoustic 
parameters on photoacoustic imaging and validate its 3D imaging 
capability. The molecular information obtained for depth- and 
wavelength-dependent multi-spectral PAD imaging through multi- 
spectral imaging of Hb, HbO2, Lipid, Glucose, and least-squares 
unmixing of mixed components. In addition to the above experiments, 
the phantom structure, optical and acoustic parameters can be flexibly 
set according to the needs to realize the calculated imaging under 

various possible variations of multi-scenarios, including skin color, skin 
thickness, blood vessel number, size and shape, and tissue thickness. The 
feasibility of simulated datasets generated by computational modeling 
for neural network training was also demonstrated, helping to solve the 
major challenge of deep learning techniques in photoacoustic skin im-
aging that cannot obtain ground truth in many cases, with the potential 
to further improve the imaging quality of the PAD system through image 
reconstruction, information processing, and artificial intelligence 
methods. 

In summary, this study provided a comprehensive investigation of 
the photoacoustic mechanisms in skin tissue, laying a theoretical foun-
dation for the application of photoacoustic imaging detection technol-
ogy in skin disease diagnosis and treatment, providing a reference for 
the improvement of treatment protocols, which is crucial for under-
standing the photoacoustic properties of dermatological diseases and 
subcutaneous tissues, interpreting and quantifying the diagnostic data as 
well as evaluating therapeutic and surgical protocols, and also providing 
a powerful tool for the performance of PAD devices in preclinical and 
clinical applications. In addition, the PAD computational model pro-
posed in this work can simulate skin tissue, and imaging for specific 
applications and generate corresponding datasets on a large scale, 
contributing to the artificial intelligence applications in the PAD field. 

Finally, it should be mentioned that, although the “learning from 
computational model” schemes remove the reliance on large amounts of 
labeled experimental data, the inconsistency between the image for-
mation model and the actual experimental conditions leads to additional 
“domain adaptation” challenges. Although in this work we have 
demonstrated how the model can be utilized to obtain ground truth 
datasets that are difficult to access in experiments for neural network 
training, in practice, extending the computational model can be chal-
lenging due to a limited understanding of experimental perturbations, 
such as various noises, aberrations, vibrations, and motion artifacts, and 
the challenge of not being able to realistically and comprehensively 
reflect the real experimental system still exists. In future work, we will 
strive to address the approximate modeling related to these factors and 
extend the application scenarios of computational models. 
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Deep Learning-Enabled Pixel-Super-Resolved Quantitative
Phase Microscopy from Single-Shot Aliased Intensity
Measurement

Jie Zhou, Yanbo Jin, Linpeng Lu, Shun Zhou, Habib Ullah, Jiasong Sun, Qian Chen,
Ran Ye,* Jiaji Li,* and Chao Zuo*

A new technique of deep learning-based pixel-super-resolved quantitative
phase microscopy (DL-SRQPI) is proposed, achieving rapid wide-field
high-resolution and high-throughput quantitative phase imaging (QPI) from
single-shot low-resolution intensity measurement. By training a neural
network with sufficiently paired low-resolution intensity and high-resolution
phase data, the network is empowered with the capability to robustly
reconstruct high-quality phase information from a single frame of an aliased
intensity image. As a graphics processing units-accelerated computational
method with minimal data requirement, DL-SRQPI is well-suited for live-cell
imaging and accomplishes high-throughput long-term dynamic phase
reconstruction. The effectiveness and feasibility of DL-SRQPI have been
significantly demonstrated by comparing it with other traditional and
learning-based phase retrieval methods. The proposed method has been
successfully implemented into the quantitative phase reconstruction of
biological samples under bright-field microscopes, overcoming pixel aliasing
and improving the spatial-bandwidth product significantly. The generalization
ability of DL-SRQPI is illustrated by phase reconstruction of Henrietta Lacks
cells at various defocus distances and illumination patterns, and its
high-throughput anti-aliased phase imaging performance is further
experimentally validated. Given its capability of achieving pixel super-resolved
QPI from single-shot intensity measurement over conventional bright-field
microscope hardware, the proposed approach is expected to be widely
adopted in life science and biomedical workflows.
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1. Introduction

Optical microscopy has undergone con-
tinuous development since its inven-
tion in the 17th century and has grad-
ually become an essential tool for vi-
sualizing cellular and subcellular fea-
tures of biological samples, driven by
the increasing demand for biomedical
research.[1] However, generating suffi-
cient contrast in most biological samples
is challenging due to their low absorp-
tion or weak-scattering characteristic.[1,2]

To obtain their precise and detailed phase
information, extensive research has been
conducted for decades. Fluorescence mi-
croscopy is one of the most far-reaching
developments for weak absorption object
visualization. It labels the specimen with
fluorescent molecules to provide targeted
morphological and biochemical informa-
tion. With the emergence of new fluo-
rescent molecular probes and novel opti-
cal imaging techniques, advanced super-
resolution fluorescence microscopy fur-
ther enables super-resolution subcellu-
lar detail observation at the nano-scale
well beyond the diffraction limit, such
as structured illumination microscopy
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(SIM),[3] stimulated emission depletion microscopy (STED),[4,5]

photo-activated localization microscopy (PALM), and stochastic
optical reconstruction microscopy (STORM).[6] However, the uti-
lization of exogenous agents may introduce photo-toxicity and
photo-bleaching issues, which hinder the long-term imaging of
living cells. Furthermore, the use of fluorescent dyes and pro-
teins as bio-markers inevitably limits certain non-fluorescent ap-
plications where biological samples cannot be easily tagged with
fluorescent markers.[7,8]

In recent years, the technique of computational microscopy,
including interferometric[9–11] and non-interferometric[12–14]

manners for both quantitative phase imaging (QPI)[15–19] and 3D
refractive index (3D RI),[20,21] has been proved to be an invaluable
tool regarding its distinctive capability to quantify the phase delay
of unlabeled biological specimens in a non-destructive way. As
two representative QPI approaches, transport of intensity equa-
tion (TIE)[22] and Fourier ptychographic microscopy (FPM)[23]

have gained wide attention in the application of biomedicine.
With a simple optical implementation of an off-the-shelf bright-
field microscope, the phase distribution of specimen can be
simply reconstructed by TIE using intensity measurements at
multiple axially displaced planes. Nevertheless, the achievable
imaging resolution of TIE is restricted to the incoherent diffrac-
tion limit under partially coherent illumination, and the spatial
bandwidth product (SBP) of TIE is fundamentally restrained
by the optical system, resulting in a trade-off between imaging
resolution and field-of-view (FOV).[24,25] FPM is a recently devel-
oped computational imaging technique that could circumvent
the imaging resolution-FOV trade-off and improve the through-
put of the imaging system.[23,26] FPM maintains high imaging
resolution and wide FOV simultaneously by stitching together
a series of variously illuminated low-resolution but large-FOV
intensity images in Fourier space. However, FPM requires a
large amount of data redundancy, which leads to a cumbersome
data acquisition process. Additionally, the iterative strategy used
by FPM limits its recovery efficiency, preventing its application
in high-speed cell imaging.
On the other hand, high-throughput QPI faces another ma-

jor obstacle posed by pixel-aliasing.[27] In optical systems, de-
tectors are used to collect intensity information and are typi-
cally designed with large pixel sizes to accommodate high photo-
sensitivity and large FOVs for high-throughput imaging. How-
ever, large pixel sizesmay lead to inadequate sampling or digitiza-
tion of the transmitted intensity, resulting in low pixel resolution
and even leading to the infamous pixel-aliasing/undersampling
problem. Although deploying magnification camera adapters or
using image sensors with smaller pixel sizes could mitigate the
pixel-aliasing problem, it comes at the cost of the FOV. There-
fore, this trade-off between pixel resolution and FOV leads to
sub-optimal use of SBP of the imaging system. Several QPI
techniques with anti-aliased ability have been proposed. For in-
stance, the pixel-aliasing in differential phase contrast (DPC)
could be alleviated by the iterative de-multiplexing algorithm.
However, its efficacy is still restrained by the elaborate illumina-
tion scheme, the requirement of multiple intensity images and
the iterative strategy.
Benefiting from the accelerating development in computer sci-

ence and technology, coupled with exponential growth in pro-
cessing power, the past few years have witnessed rapid progress

in deep learning, where high-dimensional representations can
be learned directly from captured data based on neural net-
works. With its unique data-driven methodology, deep learn-
ing has solved many tasks in computer vision and computer-
aided diagnosis with unprecedented performance.[28] In the
field of computational microscopy, deep learning has led to
rapid growth in algorithms and methods for solving various ill-
posed inverse problems, transcending the limitations of tradi-
tional microscopy.[29] For example, deep learning enables super-
resolution imaging and reveals microscopic biological details
with higher precision.[30] It has also been proved that a con-
ventional microscope aided by deep learning could even enable
the observation of nano-scale subcellular details well beyond
the diffraction limit, reaching the image resolution of STED.[31]

Deep learning also realizes cross-modality imaging of biomedi-
cal samples, such as the digital staining technique that accom-
modates the generation of quantitative phase images for virtual
histological staining, therefore circumventing the procedure of
laborious and time-consuming sample staining.[32] Thanks to
its powerful non-linear ability, deep learning has also been uti-
lized to enhance the phase information acquisition capability of
conventional computational imaging techniques by construct-
ing precise mapping relationships between intensity and phase
distributions. With a well-trained neural network, FPM can re-
duce the number of required intensity images from hundreds to
five, eliminating the tedious image acquisition process and time-
consuming iterations, while maintaining the quality of the re-
constructed phase images.[29,33] However, these methods still re-
quire multiple input images for phase recovery. The end-to-end
capability of deep learning implies that the data redundancy re-
quirement for phase retrieval can be further minimized to sin-
gle frame. Based on Gerchberg and Saxton (GS)’s iterative phase
retrieval algorithm, a deep neural network has successfully ob-
tained accurate amplitude and phase information from a single
coaxial hologram amidst the interference of twin images and ob-
ject artifacts.[34] Another deep learning-assisted method achieves
TIE-based phase retrieval from a single intensity image.[35] Nev-
ertheless, though the data efficiency has been improved, the im-
age resolution is still limited, and phase recovery for a large pop-
ulation of cells remains to be investigated. Besides, the prob-
lem of pixel-aliasing requires further exploration. Consequently,
high-throughput quantitative phase imagingwith both wide FOV
and pixel super-resolution from single-frame intensity image in
bright-field optical implementation has not been proposed yet.
In this work, we present a novel quantitative phase imag-

ing technique, termed deep learning-based single-frame super-
resolution quantitative phase imaging (DL-SRQPI). Our method
combines deep learning with quantitative phase imaging and
achieves high-throughput, high-accuracy phase retrieval in a
computational manner without any additional hardware design.
After proper training, a neural network identifies the mapping
relationship between low-resolution intensity image and high-
resolution phase image, with which DL-SRQPI alleviates the
pixel-aliasing problem and improves the space-bandwidth prod-
uct since the inherent large FOV of the low-resolution intensity
image is exploited. DL-SRQPI maximizes the data efficiency by
reducing the intensity image redundancy requirement to only
one frame, and the phase reconstruction speed is greatly ac-
celerated by utilizing the graphics processing unit (GPU). The
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Figure 1. Illustration of the trade-off between field of view and resolution, and comparison of TIE and DL-SRQPI phase retrieval methods. a) Comparison
of resolution and field of view of human blood smear microscopic images under 10× and 60× objectives. b) Standard TIE phase retrieval workflow using
an axial defocus intensity image stack as input to solve the TIE equation and obtain phase images. c) DL-SRQPI phase retrieval workflow using a
single-frame defocused intensity image as input of a well-trained neural network, and outputs a super-resolved phase image.

effectiveness and feasibility of DL-SRQPI has been illustrated by
the comparison with other traditional or network-aided phase re-
trieval methods, and the robustness of DL-SRQPI is also proved
by the phase reconstruction of intensity images at various de-
focus distances and illumination conditions. To demonstrate its
strong capability, we use DL-SRQPI to rapidly convert hundreds
of frames of 512 × 512 pixels simulated intensity images into
the corresponding 2048 × 2048 pixels phase images with high
accuracy. We further validate the capability of DL-SRQPI with ex-
perimentally acquired intensity images. For a 647 × 490 pixels
intensity image obtained by an off-the-shelf bright-field optical
microscope, DL-SRQPI precisely retrieves its phase result at a
resolution of 2588 × 1960 pixels while maintaining the original
FOV, revealing abundant subcellular details that are once embed-
ded in the aliased pixels.With the large-SBP phase reconstruction
capability of DL-SRQPI, we provide long-term high-throughput
time-lapse videos of Henrietta Lacks (HeLa) cells undergoing di-
vision. These superior performances indicate that the proposed
DL-SRQPI is a promising tool for achieving high-throughput dy-
namic quantitative phase imaging of biological cells.

2. Principle and Methods

2.1. High-Throughput QPI via Single-Shot Intensity
Measurement

High-throughput microscopy permits access to high-throughput
quantitative analysis for multiple events in a large population
of cells.[36,37] However, the achievable SBP of conventional mi-
croscopy is fundamentally limited by the optical system, leading
to an inevitable trade-off between FOV and imaging resolution.
This limitation can be intuitively illustrated by Figure 1a. A com-
mercial objective lens with low magnitude (UPlanSApo 10×, 0.4
NA, Olympus) allows the observation of tens of thousands of red
blood cells across the FOV of ≈2.25 mm2, but the spatial resolu-
tion is insufficient to distinguish detailed structures. In contrast,
an alternative objective lens with higher magnitude (UPlanSApo
60×, 1.35 NA, Olympus) enables analysis for high-resolution cel-
lular structures and details, such as the sharp boundaries of red

blood cells and the white blood cells’ internal particles. How-
ever, compared with the large FOV of the 10× objective lens, the
achievable FOV of the 60× objective lens shrinks to ≈0.06 mm2,
where only hundreds of cells could be observed. Hence, it is dif-
ficult to take into account large FOV and high resolution simul-
taneously in conventional microscopic imaging systems.[38]

To decouple FOV and resolution from each other in a mi-
croscope, considerable research has been conducted, such as
imaging stitching,[39] synthetic aperture microscopy,[10,40] lens-
less on-chip microscopy,[41–43] and FPM,[23,26,44–46] achieving
high-throughput microscopic imaging with spatial-domain or
frequency-domain methods. Image stitching is a simple and
widely used approach that mitigates the trade-off between FOV
and resolution by scanning the field with a high numerical aper-
ture (NA) objective lens and then stitching the high-resolution
segments in the spatial domain. However, the cost of an image
stitching system is usually expensive due to the pricey high-NA
objective lens and the high-precision electric scanners used. Be-
sides, the necessary mechanical scanning, refocusing, and regis-
tration procedures also induce extra computation, resulting in a
restriction of space-bandwidth-time production. In contrast, as
mentioned above, FPM is a novel QPI technique that uses a
low-NA objective lens to take advantage of its innate large FOV
and stitches together images in the frequency domain. By vary-
ing the illumination angle, FPM shifts different high spatial fre-
quency components of the object spectrum into the passband of
the low-NA objective lens, and realizes high-throughput phase
imaging using a low-cost system. Nevertheless, the basic strat-
egy of the above-mentioned techniques is to trade numerous data
measurements for high system throughput. This data reliance
often requires sophisticated optical setups or elaborate illumina-
tion schemes, leading to time-consuming data acquisition and
severe storage burden problems. On the other side, TIE is a well-
established deterministic QPI approach that simply utilizes in-
tensity measurements at multiple axially displaced planes to ob-
tain the axial intensity derivative and reconstruct the quantitative
phase (Figure 1b).[22] Thanks to its Köhler illumination compat-
ibility within an off-the-shelf bright-field microscope, TIE elim-
inates the need for elaborate illumination schemes and optical
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setups. Additionally, TIE recovers phase in a non-iterative man-
ner with a requirement of only a few intensity measurements,
which improves the data efficiency, reduces the storage bur-
den and brings higher imaging speed. Nevertheless, despite its
high efficiency, the throughput of phase reconstruction is still
fundamentally constrained by the optical system, since TIE is
always limited by BF illumination, and the maximum attain-
able imaging resolution is restrained to the incoherent diffrac-
tion limit when matched annular illumination is used.[24,25,47]

Consequently, a computational QPI technique for wide-field
high-resolution and high-throughput phase reconstruction from
single-shot intensity measurement is yet to be developed.
The proposed DL-SRQPI has the ability to retrieve high-

resolution phase images from low-resolution intensity image us-
ing a well-trained neural network (Figure 1c). Thanks to the
unique end-to-end mapping mechanism and powerful high-
dimensional feature extraction capability of deep learning, DL-
SRQPI minimizes the data acquisition requirement to a sin-
gle intensity measurement. With the help of GPU, this hy-
brid approach of deep learning and QPI addresses the above-
mentioned data reliance limitation, improving the data efficiency
and speeding up the phase imaging simultaneously. Meanwhile,
DL-SRQPI provides a significant improvement in SBP and re-
alizes high-throughput QPI by enhancing the image resolution
without sacrificing the FOV, alleviating the resolution-FOV trade-
off in a computational manner. Besides, DL-SRQPI allows for
simple and straightforward implementation on a conventional
bright-field microscope at a low cost, giving the possibility for its
wide application.

2.2. Image Preprocessing and Dataset Construction

As an approach based on the end-to-end supervised-learning
strategy, DL-SRQPI gains its capability from the training datasets
consisting of well-paired low-resolution (LR) intensities and
high-resolution (HR) phases.[28] We constructed simulated and
experimental datasets separately to train DL-SRQPI progres-
sively.
In the simulated dataset, we used numerical propagation

methods, including angular spectral propagation and Abbe su-
perposition, to accurately and efficiently generate low-resolution
intensity images at different defocus distances and illumination
patterns from ground truth high-resolution phases. The prop-
agated complex field utilizing the angular spectrum method,
which models the propagation of a wave field by using an ana-
lytic formula, can be calculated by Equation (1)

U(x, z) = ℱ−1
{
Û(ux, uy, 0) exp

[
j2𝜋
𝜆
z
√
1 − (𝜆ux)2 − (𝜆uy)2

]}
(1)

where x represents the 2D spatial coordinate (x, y) in the real
space, the scalar coherent field U(x, 0) (assuming z = 0) is de-
composed into the coherent superposition of the angular spec-
trum (plane wave) components Û(ux, uy, 0) = ℱ{U(x, 0)}, and

exp[j 2𝜋
𝜆
z
√
1 − (𝜆ux)2 − (𝜆uy)2] is a phase delay factor, which is

also known as the angular spectrum transfer function. Then, the

intensity I(x) at propagation distance z can be calculated by mul-
tiplying the complex field U(x, z) and its conjugate U∗(x, z).[48,49]

For the generation of intensities of partially coherent field,
we utilized Abbe’s superposition method, which describes the
formation model of intensity images under different illumina-
tion conditions. The Abbe’s method could be described by Equa-
tion (2)

I(x) = ∫ S(u)Iu(x)du (2)

where S(u) is the Fourier transform of the source intensity distri-
bution, Iu(x) is the coherent partial image arising from the point
of the incoherent source. Equation (2) implies that a partially co-
herent intensity image can be represented as an incoherent su-
perposition of all intensities Iu(x) generated by all light source
points at the condenser aperture plane.[49] By this means, we can
generate intensity images under various illumination conditions.
The simulated datasets consist of FPM phase images as la-

bels and their calculated LR intensity images as inputs. The la-
bel phase images are from our previously published paper.[50]

The accurately matched intensity images were generated from
the ground truth phase images by the above-mentioned numer-
ical propagation methods. With the angular spectrum method,
we digitally back-propagated a ground truth phase image to 13
intensity images at various defocus distances, within a range of
z = (+1 μm, +13 μm) with △z = 1 μm increments. With the
Abbe’s superposition method, we also generated defocused in-
tensity images (z = +4 μm) under different coherent parameters
within a range of S = [0, 0.4] with S = 0.l increments. These gen-
erated intensity images were then corrupted by Gaussian noise
with a standard deviation of 0.01 to simulate the noise effect. Sub-
sequently, we downsampled the intensity images to simulate the
increase of pixel size and introduce the artificial pixel aliasing.[27]

After the operation of 4× pixel binning, the pixel resolution of the
intensity images was reduced from 2048 × 2048 pixels to 512 ×
512 pixels, while the FOV remained unchanged. So far, we had
obtained 17 LR intensity images on 13 defocus distances and four
coherent parameters. With these images, we constructed 17 sim-
ulated datasets, each comprising the original phase image and
one intensity image on a specific defocus distance and a coher-
ence parameter generated from the phase. To reduce the mem-
ory demand of the computer and speed up the process of network
training, we divided the full-field LR intensity images and the cor-
responding HR phase images into paired image patches, and the
patches without valid information were excluded via edge detec-
tion algorithm. For each simulated dataset, the full-field inten-
sity image and phase image were segmented into 64 × 64 pixels
and 256 × 256 pixels image patches, respectively. With further
augmentation by mirroring and rotation, each dataset eventually
contains 1480 LR intensity and HR phase image pairs. Out of
these images, 1300 pairs were randomly selected to be used as
the training dataset, while 80 pairs were used as the validation
dataset for validating the network performance and selecting the
optimal model, and the remaining 100 pairs formed the testing
dataset to blindly quantify the average performance of the final
network. To ensure fairness across networks, though an individ-
ual dataset was randomly divided, the division of each dataset was
identical.
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The experimental dataset consists of real experimental inten-
sity images, which are from our previous work.[51] The differ-
ences in exposure time during intensity image acquisition and
the inhomogeneous light absorption of sample areas resulted in
non-uniformfield brightness, which had a negative impact on the
accuracy of phase retrieval. This influence of spatial variability of

the light intensity can be corrected with the algorithm Cij = Rij
S

R
,

where C is the corrected image, R is the original image, R is the
average gray level of the image R, S is the average gray level of all
270 intensity images, and the subscripts i and j indicate that the
correction is performed on the ith and jth pixel of the image. The
phase images can be recovered by TIE, which is given by Equa-
tion (3)

−k
𝜕I(x)
𝜕z

= ∇ ⋅ [I(x)∇𝜙(x)] (3)

where ∇ denotes the 2D gradient operator with respect to x and
y, and k = 2𝜋∕𝜆 is the wave number. Then the phase 𝜙(x) can
be extracted by solving the equation. The left hand of TIE is the
spatial derivative of intensity at the in-focus plane along the z-
axis.[52] The right hand of TIE is a second-order elliptic partial
differential equation, andwe treat it as a Poisson equation, ideally,
which can be easily solved with fast-Fourier transform (FFT).[53]

We corrected the field brightness of the experimentally ac-
quired 135 intensity image stacks and then reconstructed their
corresponding phase images via TIE. To introduce noticeable
pixel aliasing effect, we downsampled the resolution of the in-
tensity images from 2588 × 1960 pixels to 647 × 490 pixels by
performing 4× pixel binning. This can be regarded as an 4× en-
largement of the pixel size, resulting in a significant loss of de-
tailed information. The TIE-retrieved phase images and the low-
resolution intensity images were used as input and labels for the
experimental dataset. Same as the simulated datasets, we con-
structed the experimental dataset by extracting paired 128 × 128
pixels and 512 × 512 pixels image patches from a pair of exper-
imentally captured full-field LR intensity image and its HR TIE
phase image, and augmented the dataset to 433 pairs by rotating
and mirroring. 400 pairs were randomly selected as the training
dataset, eight pairs were selected as the validation dataset, and
the remaining 25 pairs as the testing dataset.

2.3. Network Architecture and Training

DL-SRQPI adopts U-Net (Figure 2a) as the neural network to
achieve high-speed high-throughput QPI. U-net is a remarkable
CNN-based network with excellent performance in biomedical
image processing.[35,54,55] In DL-SRQPI, U-Net transforms previ-
ously fuzzy inferior intensity images with pixel aliasing to clear,
superior, alias-free phase images. As shown in Figure 2a, the
network consists of an interpolation operation at the input, an
encoder branch for feature extraction, and a decoder branch for
feature reconstruction, with skip connections combining the fea-
tures from two branches. The interpolation operation is per-
formed to align the resolution of the intensity image and the
phase image, so that the network can identify the complex map-
ping relationship of super-resolution phase retrieval. The en-

coder branch consists of four identical downsampling modules,
each including a 2 × 2 max pooling layer and two convolutional
layers with a 3 × 3 kernel and stride of 2. The skip connection
path connects the extracted features of each stage of the encoder
branch to the corresponding feature layer of the decoder branch.
The decoder branch consists of four identical upsampling mod-
ules, each consisting of an upsampling convolutional layer con-
catenating with the corresponding feature map in the encoder
branch by skip connection, and two convolutional layers with
a 3 × 3 kernel. All convolutional layers are followed by a batch
normalization module (BN) and a rectified linear unit (ReLU) to
achieve faster training and enhance the nonlinear ability. Dur-
ing training (Figure 2b), the mean-square-error (MSE) between
the output phase image and the label phase image was calcu-
lated as the loss function, and was back-propagated to the net-
work for optimization. For an image with a size ofM × N pixels,
this loss function over a mini-batch at size of K is calculated by
Equation (4)

Loss(Θ) = 1
K

K∑
k=1

1
M × N

M∑
m=1

N∑
n=1

‖YΘ
m,n,k − YGT

m,n,k‖2 (4)

where k is the kth image patch among the mini-batch, YΘ
m,n,k de-

notes the mth and nth pixel of network output phase image, and
YGT
m,n,k denotes the mth and nth pixel of the training labels (i.e.,

ground truth). The network’s parameter space (e.g., kernels, bi-
ases, and weights) is defined by Θ and its output is given by
YΘ = F(Xinput;Θ), where F defines the deep neural network’s op-
eration on the network input intensity Xinput. The adaptive mo-
ment estimation (ADAM) optimization algorithmwith a learning
rate of 0.01 is utilized tominimize theMSE and tune the network
parameters. After sufficient training, the network has established
themapping relationship between the LR intensity image and the
HR phase image. It is worth mentioning that due to the transla-
tion invariance of the convolutional neural network, the network
can output full-field phase images from full-field intensity im-
ages, despite only patches being used during training. The met-
ric used to measure the accuracy of phase retrieval is given by the
structural similarity index (SSIM), which comprehensively eval-
uates luminance (l(x, y)), contrast (c(x, y)), and image structure
(s(x, y)), to quantify the similarity of the ideal phase and the re-
trieved phase. It can be calculated by Equation (5)

SSIM(x, y) = [l(x, y)]𝛼 ⋅ [c(x, y)]𝛽 ⋅ [s(x, y)]𝛾 (5)

where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

l(x, y) =
2𝜇x𝜇y + c1
𝜇2
x + 𝜇2

y + c1

c(x, y) =
2𝜎x𝜎y + c2
𝜎2x + 𝜎2y + c2

s(x, y) =
𝜎x,y + c3
𝜎x𝜎y + c3

(6)
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Figure 2. Network architecture and schematics of network training and testing. a) The U-Net structure is depicted, where each block represents a multi-
channel feature map. The number of channels is indicated at the bottom of each block, while the size is denoted in the lower left corner. b) The network
training workflow involves utilizing low-resolution intensity image patches as inputs and corresponding high-resolution phase image patches as training
labels. The network optimizes its parameters by minimizing the loss function (MSE) between the network outputs and the training labels. c) During
network testing, a full-FOV low-resolution intensity image is presented as the input, and the well-trained network generates a full-FOV high-resolution
phase image as the output.

where 𝜇x, 𝜇y, 𝜎x, 𝜎y, and 𝜎xy are the local means, standard de-
viations, and mutual covariances of the images x and y. When
𝛼 = 𝛽 = 𝛾 = 1 and c3 = c2∕2, the SSIM index simplifies to

SSIM(x, y) =
(2𝜇x𝜇y + c1)(2𝜎x,y + c2)

(𝜇2
x + 𝜇2

y + c1)(𝜎2x + 𝜎2y + c2)
(7)

The SSIM index varies between 0 and 1, where 1 can be achieved
if predicted and ground truth images are identical to each other.
The fixed network gains the capability to blindly output full-
field high-resolution phase images at a high reconstruction speed
(Figure 2c), providing a great enhancement of space-bandwidth-
time product for the QPI system.

3. Results

3.1. Benchmarking of DL-SRQPI

To illustrate the applicability of our proposed method, we com-
pared DL-SRQPI with two traditional TIE-based methods (FFT-
TIE,[22] iterative DCT[56]) and a classic super-resolution neural

network SRCNN.[57] The full-field FPM phase image was used as
the ground truth (Figure 3a), with high quality and abundant de-
tail information. As mentioned in Section 2.2, the LR defocused
intensity image used for phase reconstruction was generated fol-
lowing the forward model consisting of angular propagation and
pixel binning (Figure 3b), and was corrupted by Gaussian noise
to simulate the noise effect with a standard deviation of 0.01.
To make a fair comparison between SRCNN and U-Net, both

networks are fully trainedwith the same dataset and loss function
(MSELoss). In Figure 3c, we showhow theMSE values of two net-
works decrease. SRCNN has a low initial loss value of ≈400, but
it decreases slowly and converges to ≈250 after 2000 epochs of
training. In contrast, though the initial loss value of U-Net is as
high as ≈6500, the loss function sharply decreases to less than
200 within 15 epochs, and eventually converges to ≈4, exhibiting
much stronger mapping ability. More intuitively, the outputs of
two networks during the training process are shown in Figure 3d.
During training of SRCNN, the output images show little im-
provement. The poor response at low-spatial frequencies leads to
severe noise and artifacts in the output, resulting in difficulty dis-
tinguishing the cell boundary and inner structure. On the other
hand, as U-Net training proceeds and the loss function steadily

Laser Photonics Rev. 2024, 18, 2300488 © 2023 Wiley-VCH GmbH2300488 (6 of 16)
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decreases, the precise phase gradually emerges from the dark
background. The phase reconstruction of DL-SRQPI achieves an
SSIM index of 0.96 with respect to the ground truth, indicating
its high precision. In the output of DL-SRQPI, the optically thick
nucleus, the cell membrane, and some cytoplasmic organelles
are shown with high contrast and clarity. Compared with other
methods, the high-quality reconstructions of DL-SRQPI exhibit
abundant subcellular features in high resolution, unraveling the
aliased pixels in the input images.
In Figure 3e, we compare the phase retrieval of these meth-

ods for two HeLa cells. After 4× pixel binning, the intensity im-
ages become fuzzy and inferior. Due to its low contrast, the in-
tensity images cannot provide much cellular information, and
are further exacerbated by the severe pixel aliasing problem. The
high frequency detail is almost completely lost in the under-
resolved intensity image, preventing the observation of detailed
subcellular structures and making phase retrieval very challeng-
ing. Since the FFT-TIE and Iter-DCT methods do not possess
super-resolution capability, their retrieved phases are blurry and
the detailed information is still buried in oversized pixels. Only
optically thick cellular structures in the phase results can be vi-
sualized, such as the nucleus, while the high-frequency details
are completely lost. In Figure 3e, we demonstrate the line pro-
files across the nucleus and the cell membrane of each output.
The line profiles of FFT-TIE and Iter-DCT only show the general
trend of phase changes and are unable to present the detailed
phase variation of the internal cellular structures. This result re-
veals the gap in resolution between TIE-based and deep learning
methods. Notably, two intensity images at different defocus dis-
tances are required by FFT-TIE and Iter-DCT due to their data
redundancy requirement, while the deep learning methods only
require a single frame of intensity image as input for its end-to-
end mechanism.

3.2. Generalization Capability Analysis for Axial Defocusing and
Illumination Condition

Axial intensity derivative estimation is a key issue in TIE-based
QPI methods. TIE requires multiple defocused intensity mea-
surements to achieve phase retrieval. The defocus distance has
to be large enough to ensure an adequate SNR,[49] but too large
a defocus distance tends to introduce phase blurring effect. This
noise-resolution trade-off requires a strict and precise choice of
defocus distance for TIE-based phase retrieval. Therefore, DL-
SRQPI is expected to possess the capability to recover high-
quality phase robustly from a single frame of intensity image at
a random defocus distance. To initially analyze the generaliza-
tion capability of DL-SRQPI for axial defocusing, we used the 13
datasets that contain variously defocused intensity images (z =
[+1 μm, +13 μm],△z = 1 μm) to train 13 U-Net networks inde-
pendently, which arementioned in Section 2.2. Following the for-

ward model in Figure 4a, after adequate training, we blindly fed
13 sets of testing intensity images at different defocus distances
into each network, each testing dataset containing 100 identically
defocused LR intensity images. Note that the image pairs used
in the training and test datasets are completely different. All 13
networks responded rapidly to each set of testing images, and
the HR phase outputs are shown in Figure 4b. The line profiles
show the phase variation along the same region. Notably, with the
decrease of testing defocus distance, the phase results become
dimmer; while the testing defocus distance becomes higher, the
phase results become brighter and even get overexposed. This
can be regarded as proof that the neural network has mastered
the mapping relationship between intensity and phase: accord-
ing to Equation (3), too large an estimate of the defocus distance
z results in low phase values of the reconstruction result. To quan-
tify the accuracy and the quality of the phase reconstructions, the
average SSIM index for the outputs of each testing dataset was
evaluated with respect to the ground truth, and the SSIM indexes
are shown in Figure 4c. When the defocus distance of the testing
images matches the training images, the phase results are of the
highest quality with the average SSIM index reaching nearly 0.96.
As the testing defocus distance differs from the training defocus
distance, the accuracy and the SSIM indexes of the phase results
drop slowly. Figure 4 illustrates that though each network was
trained with intensity images at one particular defocus distance,
DL-SRQPI still has the ability to reconstruct HR phase images
from intensity images at a range of defocus distances with a neg-
ligible drop in reconstruction quality.
To maximize the generalization capability of DL-SRQPI for ax-

ial defocusing, we used 13 sets of intensity images at various de-
focus distances to construct a training dataset, each containing
100 identically defocused intensity images. After proper training,
DL-SRQPI adapts the variation in defocus distance. We blindly
tested the network with the above testing dataset and calculated
the average SSIM indexes of the phase outputs from each set of
intensities at a certain defocus distance. All these average indexes
are higher than 0.9, and the overall average SSIM index reaches
nearly 0.95, representing the network is adaptive to axial defocus-
ing. So far, we have demonstrated that DL-SRQPI is robust to the
variation of defocus distance, and the proposed defocus adaptive
DL-SRQPI could further enhance the generalization ability on
axial defocusing.
The spatial coherence of the illumination is also an essential

factor for phase retrieval. It can be quantified by a normalized
factor S = NAcond∕NAobj (so-called coherent parameter), where
NAcond is the numerical aperture of the condenser lens andNAobj
is the numerical aperture of the objective lens. Similar to the
noise-resolution trade-off in the choice of defocus distance, the
spatial coherence also brings a compromise between the contrast
and the resolution of phase recovery. Reducing NAcond can effec-
tively improve the phase contrast, but at the same time reduce the
imaging resolution of the system. The generalization capability

Figure 3. Methods comparison and training visualization. a) The full-FOV high-resolution ground truth phase image of HeLa cells in vitro, along with the
phase of a ROI (region of interest) and its intensity image obtained through numerical propagation. b) The defocused low-resolution intensity images
of cell A and cell B were generated by numerical propagation from their high-resolution phase images and subsequently downsampling them through a
4× pixel binning. c) The plot of the Mean Squared Error loss function for SRCNN and U-Net. d) Phase reconstruction images and corresponding loss
function values from the outputs of SRCNN and U-Net at different epochs during network training. e) Phase reconstruction results of FFT-TIE, Iter-DCT,
SRCNN, and U-Net using the low-resolution intensity images of cell A and cell B as inputs, along with the line profiles of the cells.
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Figure 4. Analysis of axial defocusing generalization capability. a) The forward model of DL-SRQPI for intensity images with different defocus distances.
Each neural network is trained with intensity images at a specific defocus distance and tested blindly with intensity images at different defocus distances.
b) The phase reconstructions of testing defocused intensity images (z=+3/+6/+9 μm), output by three well-trained networks trained on intensity images
at defocus distances of z = +3/+6/+9 μm), along with their SSIM indexes compared to the ground truth phase image, and their line profiles showing the
subcellular features. c1) The average SSIM index curves depicting the similarity between the phase images obtained from intensity images at different
defocus distances (z = +1 to +13 μm) and the ground truth phase, using the defocus adaptive network and three networks trained on three sets of
defocused intensity images (z = +3/+6/+9 μm). c2) The boxplot of the SSIM index of the phase images obtained from the defocus adaptive network
using 13 groups of testing datasets, and the ground truth phase images.
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of DL-SRQPI on coherent parameters has been verified. We used
the five datasets mentioned in Section 2.2 to train five U-Net net-
works independently, each containing intensity images at a cer-
tain parameter (S = [0, 0.4],△S = 0.1). After training, each well-
trained network was blindly tested with five sets of testing images
at different coherent parameters, each set containing 100 LR in-
tensity images (Figure 5a). Note that the image pairs used in the
training and test datasets are completely different. The results
are shown in Figure 5b and the average SSIM indexes of each
set of outputs were evaluated with respect to the ground truth
(Figure 5c). The phase results and the line profiles in Figure 5b
show that when the coherent parameter of the testing intensity
images matches the coherent parameter of the training inten-
sity images, the quality of the phase results reaches the highest,
with an average SSIM index of 0.95, which shows the high sim-
ilarity between ground truth and network output images. As the
coherent parameter of the testing image gets lower, the phase
imaging contrast reduces, bringing a blurry effect on the internal
structures and edges of cells, causing a significant loss of high-
frequency detail information. With the increase of testing coher-
ent parameter, the phase imaging contrast becomes excessively
high, resulting in a sharpening-like effect in the phase recon-
struction, which added difficulty to the cell morphology analysis.
The box plot of the SSIM indices for each set of outputs from the
S = 0.4 trained network shows a small variance in the accuracy
of the outputs, indicating the stability of the DL-SRQPI. By far,
the robustness of the phase retrieval framework of DL-SRQPI is
critically estimated through the above testing experiments.

3.3. Quantitative and Generalizable Characterization of
DL-SRQPI

We conducted an experiment to demonstrate the quantitative
property of DL-SRQPI using a microlens array as the test sub-
ject. For the establishment of the ground truth high-resolution
phase image, the TIE algorithm was utilized to reconstruct the
accurate phase image of the microlens array. Subsequently, we
performed 4× pixel binning on the original defocused intensity
image to generate a low-resolution intensity image. This process
enlarged the pixel size to 8.8 μm and decreased the pixel reso-
lution of the defocused intensity image from 1280 × 960 pixels
to 320 × 240 pixels. With the LR defocused intensity image and
ground truth HR phase image, we created a dataset comprising
high-resolution phase and low-resolution intensity image pairs
of the microlens array using the same method described in Sec-
tion 2.2. We trained a U-Net network and blindly fed it with a
new defocused low-resolution intensity image of the microlens
(Figure 6 a2). The network rapidly generated a high-resolution
phase reconstruction (Figure 6 a3), and the heights of the mi-
crolens were deduced from the output phase image (Figure 6 a4).
In Figure 6 a5, we compare the line profiles of the DL-SRQPI out-
put phase, the ground truth high-resolution phase, and the low-
resolution phase for a single lens. It is evident that the three pro-
files almost completely overlap. As seen in the zoomed area, the
discrete pixels of LR phase exhibit a noticeable stair-step pattern
due to the pixel binning, indicating a large pixel size and a low
resolution. Conversely, the DL-SRQPI achieves a high resolution
comparable to the ground truth HR phase. Figure 6 a6 presents

the difference between the ground truth phase and the output
phase of DL-SRQPI. The difference between the output phase
and the ground truth phase is only 1 to 2 gray levels, which is
equivalent to 0 to 0.2 μm in height, showing the high accuracy of
DL-SRQPI. These results confirm the precise quantitative char-
acteristics of DL-SRQPI.
To further demonstrate the generalizability of DL-SRQPI, we

utilized experimentally acquired differently defocused intensity
images of HeLa cells. Following the same method described in
Section 2.2, we constructed three experimental datasets for HeLa
cells, each consisting of HR phase images and LR intensity im-
ages captured at different defocus distances (z = +3/+6/+9 μm).
Subsequently, we trained three separate U-Net networks using
these datasets. Figure 6 b1–b3 displays three LR intensity images
of a single HeLa cell captured at the corresponding defocus dis-
tances of z = +3/+6/+9 μm. These LR intensity images were in-
put into their respective networks, which rapidly generated four-
fold pixel super-resolved phase images (Figure 6 b4–b6). Impor-
tantly, the output phase images obtained from the LR intensity
images at different defocus distances all exhibited high SSIM val-
ues when compared to the ground truth (Figure 6 b7). This exper-
imental evidence clearly demonstrates the strong generalization
capability of DL-SRQPI.

3.4. Evaluation on the Simulation Dataset Using DL-SRQPI

We verified the feasibility of DL-SRQPI to achieve rapid high-
throughput single-shot QPI using the simulation dataset of in
vitroHeLa cells. Figure 7 shows the full FOV phase prediction for
the simulated dataset of HeLa cells in vitro. The simulated input
LR intensity image has a wide FOV of ≈1.77 mm2, matching the
FOV size of the objective lens with 10×magnification. The input
intensity image has a resolution of 512 × 512-pixel with an effec-
tive pixel size of 2.6 μm. The high-throughput phase reconstruc-
tion is displayed in Figure 7a, which shows that our DL-SRQPI
is able to achieve a four fold enhancement in the pixel resolu-
tion from 512 × 512 pixels to 2048 × 2048 pixels while maintain-
ing the large FOV size of ≈1.77 mm2, as the effective pixel size
improves to 0.65 μm. The comparison between LR intensity and
the predicted HR phase of two ROIs is shown in Figure 7a. Com-
pared to the low-contrast aliased intensities, the recovered phases
display improved overall contrast of cell organelles and highlight
high-spatial-frequency subcellular details.
Additionally, thanks to the non-invasive and nontoxic prop-

erties of DL-SRQPI, it can also serve as a practical tool for vi-
sualizing the morphological dynamics of living HeLa cells. We
used DL-SRQPI to reconstruct phase imaging videos with large
SBP (Videos S1 and S2, Supporting Information). As shown in
Figure 7b, cells A and B are enlarged to present different typical
mitosis phases and the morphological evolution of cells during
the mitotic cycle. The subcellular features of both cells, such as
cytoplasmic vesicles and pseudopodium, and their sub-pixel or-
ganellemotions, such as plasmidmigration, are demonstrated in
the video. Since each HR phase image was reconstructed within
only 0.3 s, which can be further accelerated with higher perfor-
mance hardware, all the retracting, extending, reorganizing, mi-
grating, and maturing processes of cells could be recovered ac-
curately avoiding motion blur, which lays the foundation for the

Laser Photonics Rev. 2024, 18, 2300488 © 2023 Wiley-VCH GmbH2300488 (10 of 16)
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Figure 5. Analysis of generalization capability for illumination condition. a) The forward model of DL-SRQPI for intensity images with various coherent
parameters. Each network is trained with intensity images at a specific coherent parameter and tested blindly with intensity images at different coherent
parameters. b) The phase reconstructions of testing intensity images (S = 0/0.3/0.4), output by three well-trained networks trained on intensity images
at illumination condition of S = 0/0.3/0.4, along with their SSIM indexes compared to the ground truth phase image, and their line profiles showing the
subcellular features. c1) The average SSIM index curves depicting the similarity between the phase images obtained from intensity images at different
coherent parameter (S = 0/0.3/0.4) and the ground truth phase, using three networks trained on three sets of intensity images at the same coherent
parameter. c2) The boxplot of the SSIM index of the phase images obtained from the well-trained network (S = 0.4) using five groups of testing datasets,
and the ground truth phase images.
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Figure 6. Validation of quantitative and generalization capabilities of experimental data based on a microlens array and a defocused HeLa cell. a1) The
low-resolution phase image of the microlens array retrieved from low-resolution intensity images via TIE. a2) The low-resolution defocused intensity
image of the microlens array. a3) The high-resolution phase reconstruction result output by DL-SRQPI. a4) The 3D topography of the microlens array. a5)
Comparison of DL-SRQPI output, ground truth HR phase and LR phases. a6) The error of DL-SRQPI output, that is, the difference between ground truth
phase and DL-SRQPI output phase. b1–b3) The input defocused LR intensity images of a HeLa cell (z=+3/+6/+9 μm]). b4–b6) DL-SRQPI reconstructed
HR phase images from intensity images of (b1–b3). b7) The ground truth HR phase image of the HeLa cell.

practical application of DL-SRQPI in the fields of cytomorphol-
ogy, cytokinetics, and cytogenetics.

3.5. Experimental Phase Imaging of HeLa Cells In Vitro Using
DL-SRQPI

After validating the feasibility and the generalization capability
of DL-SRQPI on simulated data, we further demonstrate the
full-field high-resolution phase recovery from experimentally ac-
quired intensity images of HeLa cells in vitro using DL-SRQPI.
The HeLa cell image used to test the network was acquired at
different culturing time point from the HeLa cell image used to
construct the training dataset. As mentioned in Section 2.2, the
ground truth phase images were retrieved based on TIE using the
experimentally acquired high-resolution intensity images, and

the low-resolution intensity images were used as inputs of DL-
SRQPI and TIE. As can be seen in Figure 8a,b, the low-resolution
intensity images suffer from severe pixel aliasing problem, where
the high-frequency components almost completely disappear in
the extremely low contrast and oversized pixels. With the low-
resolution intensity image stack as input, TIE could only provide
phase image with the same low resolution (Figure 8c), creating
a great obstacle to the observation of the internal structure of
cells. In contrast, DL-SRQPI has a minimum requirement and
possesses pixel super-resolution capability. With a single frame
of low-resolution intensity as the only input, DL-SRQPI rapidly
generates the high-resolution phase image with pixel resolution
of 2588 × 1960 pixels (Figure 8d) in 0.2 s, achieving fourfold pixel
super-resolution. As shown in three enlarged ROIs in Figure 8e,
DL-SRQPI enables the precise observation of plentiful subcel-
lular features of HeLa cells, such as nucleus with large phase,

Laser Photonics Rev. 2024, 18, 2300488 © 2023 Wiley-VCH GmbH2300488 (12 of 16)
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Figure 7. Time-lapse full-FOV high-resolution phase reconstruction of unstained HeLa cells undergoing division using DL-SRQPI. a) The full-FOV
high-resolution phase reconstruction of the low-resolution intensity image by DL-SRQPI, and the comparison of low-resolution intensity images and
high-resolution phase images of two ROIs. b) Sample frames of the DL-SRQPI reconstructed video (Video S2, Supporting Information) for cells A and B
across 5 h, showing their different stages of cell division. c) The timeline of cell division of cells A and B within 5 h judging from DL-SRQPI reconstructed
video. Different colors corresponding to (b) represent different cell division stages.
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Figure 8. The experimental result of DL-SRQPI to reconstruct the full-FOV high-resolution phase image of unstained HeLa cells. a) The full-FOV low-
resolution defocused intensity images, and the low-resolution phase image reconstructed by TIE. b) The low-resolution defocused intensity images
of three ROIs. c) The low-resolution phase images of three ROIs reconstructed by TIE. d) The full-FOV high-resolution phase image reconstructed by
DL-SRQPI from a single frame of low-resolution intensity image. e) The high-resolution phase images of the three ROIs reconstruted by DL-SRQPI. f)
The ground truth phase images of the three ROIs.

mitochondria in transport, and cytoplasm in high contrast. The
accuracy of the DL-SRQPI can be quantified by the SSIM index.
The SSIM index of the full-field output phase reaches 0.9948, and
the SSIM indexes of ROI 1, ROI 2, and ROI 3 are 0.9933, 0.9898,
and 0.9920, which show extremely high similarity between the
network outputs and the ground truth phases (Figure 8f). Com-
pared with the TIE method that requires two intensity images
at different defocus distances, the network reduces the demand
for intensity images to only one, lightening the data burden as
well as avoiding the phase error caused by the inaccurate estima-
tion of axial intensity derivative. DL-SRQPI improves the reso-
lution without sacrificing FOV, enhancing the throughput of the
system effectively. Video S3, Supporting Information, shows the
experimental time-lapse full-field phase reconstruction results of
DL-SRQPI. These experimental results validate the efficacy and
promptness of the DL-SRQPI utilization within a bright-field op-
tical microscopy system.

4. Conclusion

In this study, we have introduced DL-SRQPI, a novel deep
learning-based technique for quantitative phase microscopy with
pixel super-resolution capability. DL-SRQPI enables full-FOV
high-resolution phase imaging of unlabeled specimens using
only a single frame of low-resolution intensity image as input, as
validated by experimental data. The robust generalization capa-
bility of DL-SRQPI has been demonstrated using datasets of sim-
ulated and experimental intensity images with varying defocus
distances and coherent parameters, which highlights the versatil-

ity and adaptability of our approach in handling different imaging
conditions. The quantitative property of DL-SRQPI has also been
validated by amicrolens array. Furthermore, our method exhibits
notable advantages in terms of fast speed and high-throughput,
as evidenced by successful phase reconstruction of unstained bi-
ological cells and dynamic phase observation ofHeLa cells. These
results demonstrate the feasibility of DL-SRQPI for video-rate liv-
ing cell phase imaging, opening up new possibilities for real-
time cellular dynamics analysis. Importantly, DL-SRQPI signif-
icantly reduces the need for intensity data redundancy compared
to conventional QPI approaches, thereby mitigating the trade-
off between FOV and resolution. This advancement enhances
the SBP of fundamental bright-field system equipment, facilitat-
ingmore efficient and cost-effective imaging capabilities. Overall,
DL-SRQPI showcases its potential as a powerful QPI technique
with wide-ranging applications in high-throughput microscopy.
It holds promise for various fields such as drug discovery, cellu-
lar phenotype characterization, and the identification of disease
mechanisms.[58] Future investigationswill delve into understand-
ing the dependencies of DL-SRQPI on specific cell types and cul-
ture conditions, as well as addressing the impact of various ex-
perimental configurations on phase retrieval.

5. Experimental Section
Sample Preparation: To prepare biological material, the HeLa cells

were cultivated in a glass bottom Petri dish (35 mm, MatTek) with
L-glutamine Dulbecco’s modified Eagles medium (Gibco, American)

Laser Photonics Rev. 2024, 18, 2300488 © 2023 Wiley-VCH GmbH2300488 (14 of 16)
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supplemented with 10% Nu-serum (Corning, American), 10% fetal calf
serum (Gibco, Australia), and 1% vitamin mix (100×) (Lonza, Cologne,
Germany). The cells were cultured in a stage-mounted climate chamber
(Tokai Hit INUF-IX3W, Japan) for stabilization of temperature at 37 ◦C and
CO2 gas at 5%. The medium was changed every other day and cells were
passed with trypsin upon reaching 80% confluency. In preparation for cell
division imaging, cells were washed once with phosphate-buffered saline
and detached with either accutase or trypsin.

Experimental Configuration: For experimental measurements of HeLa
cells, the intensity images used for TIE phase retrieval were obtained with
an optical system equipped with an inverted microscope (IX71, Olympus,
Japan), utilizing a halogen white-light source with a green interference fil-
ter (central wavelength 𝜆 = 550 nm, 45-nm bandwidth) for illumination.
The microscope was equipped with a 5-megapixel charge-coupled device
(CCD) camera (UC50, Olympus, Germany) with a pixel resolution of 2588
× 1960 and a pixel pitch of 3.4 μm. Themicroscope also included an electri-
cally tunable lens (EL-C-10-30-VISLD, Optotune AG, Switzerland) module
that was synchronized with the camera at different focal distances along
the z-axis and controlled by software via a standard USB cable. The image
stack was acquired via plan semiapochromat objective (LUCPlanFLN 40×,
Olympus, Half magnification, NA 0.6) in an 8-bit grayscale range.

The microlens array (SUSS MicroOptics pitch 240ROC 297 μm) was
imaged using an inverted bright-field microscope (Olympus IX71 ), and
in-focus and out-of-focus intensity images were captured by axially trans-
lating the camera. The camera used here had a pixel size of 2.2 μm (The
Imaging Source DMK 72BUC02, 1280 × 960 resolution), and the illumina-
tion was set to a central wavelength of 550 nm.

Implementation Details: The deep neural network was implemented
using Pytorch 1.10.2 based on Python 3.9.7. The network training and test-
ing were performed on a workstation with Intel(R) Core (TM) i9-10900K
CPU (3.70 GHz) and 32 GB of RAM, running a Windows 10 operating sys-
tem (Microsoft) using NVIDIA GeForce RTX 3090 GPU. With a batch size
of eight, the training process of each dataset took≈1 h for 200 epochs. The
network took≈0.3 s to reconstruct a full-field 2048× 2048 pixels phase im-
age from the 512 × 512 pixels simulated intensity image, and took ≈0.2 s
to reconstruct a full-field 2588 × 1960 pixels phase image from the 647 ×
490 pixels experimentally acquired intensity image.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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Deep learning assisted variational Hilbert
quantitative phase imaging
Zhuoshi Li1,2,3, Jiasong Sun1,2,3, Yao Fan1,2,3, Yanbo Jin1,2,3, Qian Shen1,2,3,
Maciej Trusiak4, Maria Cywińska4, Peng Gao5*, Qian Chen3* and
Chao Zuo1,2,3*

We propose a high-accuracy artifacts-free single-frame digital holographic phase demodulation scheme for relatively low-
carrier  frequency  holograms —deep  learning  assisted  variational  Hilbert  quantitative  phase  imaging  (DL-VHQPI).  The
method, incorporating a conventional deep neural  network into a complete physical  model utilizing the idea of residual
compensation, reliably and robustly recovers the quantitative phase information of the test objects. It can significantly al-
leviate spectrum-overlapping-caused phase artifacts under the slightly off-axis digital holographic system. Compared to
the conventional end-to-end networks (without a physical model), the proposed method can reduce the dataset size dra-
matically while maintaining the imaging quality and model generalization. The DL-VHQPI is quantitatively studied by nu-
merical simulation. The live-cell  experiment is designed to demonstrate the method's practicality in biological research.
The proposed idea  of  the  deep learning-assisted  physical  model  might  be  extended to  diverse  computational  imaging
techniques.

Keywords: quantitative phase imaging; digital holography; deep learning; high-throughput imaging
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 Introduction
Quantitative  phase  imaging  (QPI),  as  a  powerful  label-
free  imaging  technique,  enables  dynamic  2D  and  3D
non-destructive  imaging  of  completely  transparent
structures1−3. It  uses  the refractive  index as  an endogen-
ous contrast agent to generate subcellular-specific quant-
itative  maps  of  analyzed  live  bio-structure4,5. QPI  solu-
tions  based  on  digital  holographic  microscopy  (DHM)
encode  a  complex  wavefront  information  into  intensity

modulations  by  the  interference  of  a  scattered  sample
wave  and  a  reference  wave6−9. And  it  can  robustly  per-
form the  quantitative  analysis  of  wave-matter  interac-
tions  by  decoding  phase  delay  from  a  hologram.  DHM
has emerged as a valuable means in the biomedical fields,
such  as  measurements  for  stain-free  biological  cells3,10 ,
optical  metrology  of  nanostructures11−14, and  drug  re-
lease monitoring in vitro15.

Regarding the phase demodulation strategy employed, 

1Smart  Computational  Imaging  Laboratory  (SCILab),  School  of  Electronic  and  Optical  Engineering,  Nanjing  University  of  Science  and

Technology, Nanjing 210094, China; 2Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology,

Nanjing 210094, China; 3Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing 210094, China; 4Institute of Micromechanics

and  Photonics,  Warsaw  University  of  Technology,  8  Sw.  A.  Boboli  St.,  Warsaw  02-525,  Poland; 5School  of  Physics,  Xidian  University,  Xi'an

710126, China.
*Correspondence: P Gao, E-mail: peng.gao@xidian.edu.cn; Q Chen, E-mail: chenqian@njust.edu.cn; C Zuo, E-mail: zuochao@njust.edu.cn
Received: 24 November 2022; Accepted: 3 March 2023; Published online: 18 May 2023

Opto-Electronic 
Science 

Article
April 2023, Vol. 2, No. 4

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023. Published by Institute of Optics and Electronics, Chinese Academy of Sciences.

220023-1

 

288

https://doi.org/10.29026/oes.2023.220023


there are two main configurations for holographic wave-
front acquisition in DHM, i.e., in-line and off-axis digit-
al holography (DH). In-line DH records complete wave-
front  information by  the  interference  of  the  object  light
and  the  reference  light  on  the  same  optical  axis,  which
can realize full detector-bandwidth phase reconstruction.
However, due to the superimposed twin image, the phase
retrieval results of samples are severely impacted by ima-
ging artifacts.  It  always needs to be processed via iterat-
ive  phase  retrieval16,17 or  noniterative  phase-shifting
methods18−20,  which  dramatically  sacrifices  the  temporal
resolution.  Therefore,  it  is  difficult  for  the  in-line  DH,
which is  vulnerable  to  external  disturbance  and  vibra-
tion, to  be  applied  to  dynamic  measurement.  Alternat-
ively,  off-axis DH implements twin-image separation by
introducing  a  slight  angle  between  the  object  beam and
reference  beam  and  recovers  the  complex  wavefront  of
the  sample  from  the  single-frame  off-axis  hologram.
Whereas, for achieving the separation of autocorrelation
and cross-correlation terms in  the  spatial  frequency do-
main (SFD),  the  off-axis  DH  needs  to  provide  a  suffi-
ciently  high  carrier  frequency  at  the  expense  of  the
space-bandwidth product (SBP) of the imaging system21.
The slightly off-axis  DH regime,  as  a  single-frame high-
SBP DH imaging solutions,  is  therefore proposed22−24.  It
optimizes SBP through full spectral separation of conjug-
ated  object  lobes  while  leaving  the  autocorrelation  term
partially  overlapped  with  information-carrying  cross-
correlation terms.  Under  this  configuration,  the  inevit-
able  spectrum  overlapping  causes  phase  artifacts,  which
greatly  degrades  the  imaging  quality  and  impairs  the
practicality of the slightly off-axis DH configuration.

High-accuracy  artifacts-free  phase  recovery  from  the
low-carrier  frequency  holograms  is  the  key  to  slightly
off-axis DH application. This process is presently imple-
mented by suppressing autocorrelation term iteratively25,
utilizing  dual-frame  decoding  scheme26,27,  employing
second  wavelength  assistance28 and  performing  the  1D
limited processing29,30.  With inspiration from the theory
of “cepstrum” and homomorphic filtering31, a slightly off-
axis  DH  demodulation  scheme  based  on  the  Kramers-
Kronig  (KK)  relations  is  proposed,  which  utilizes  the
half-space  bandwidth  of  the  sensor  to  achieve  high-SBP
imaging32,33. Although it is able to increase the SBP of full
complex field  recovery  significantly,  it  inevitably  re-
quires  intensity  restrictions  on  the  object  and  reference
beams and the separation of  the cross-correlation terms
of the interferogram in the extended SFD. Noteworthily,

an  exquisite  low-carrier  frequency  fringe  demodulation
approach has been presented recently, namely variation-
al  Hilbert  quantitative  phase  imaging  (VHQPI)34.  The
VHQPI, as  an end-to-end pure numerical  add-on mod-
ule, deploys the merger of tailored variational image de-
composition35 and enhanced Hilbert spiral transform36 to
achieve quantitative  phase  recovery.  It  adaptively  allevi-
ates the  overlapped-spectrum  problem  and  robustly  de-
modulates  high-quality  phase  information,  performing
excellent practicality in biological applications.

Although VHQPI has demonstrated excellent low-car-
rier frequency  fringe  demodulation  capability,  the  al-
gorithm-inherent  limitations (e.g.,  parameter  robustness
and  iterative  stability)  still  cause  non-sufficient  image
frequency  component  extraction,  resulting  in  imaging
artifacts in the phase reconstruction results.  Deep learn-
ing (DL),  as  a  subfield  of  machine  learning,  has  cur-
rently  gained  extensive  attention  in  the  field  of  optical
metrology  and  demonstrated  great  potential  in  solving
optical  metrology  tasks37−46.  When  sufficient  training
data is  collected in an environment that reproduces real
experimental conditions, the trained model may have ad-
vantages over physics-model-based approaches on some
issues (e.g.,  computing  speed,  parameter  adaptivity,  al-
gorithm complexity)37. Specifically, in terms of a series of
ill-posed inverse phase retrieval problems, the tradition-
al physical  model  tends  to  exhibit  higher  physics  com-
plexity and time consumption. Driven by a large dataset,
the deep  neural  network  (DNN)  can  directly  and  effi-
ciently  reconstruct  the  phase  and  amplitude  images  of
the  objects  from  the  captured  holograms47−49. Neverthe-
less,  in DL-based phase recovery tasks, it  is pretty tricky
and  laborious  to  capture  massive  datasets  and  generate
the corresponding ground truth, especially when applied
to bio-samples.  Deep  image  prior  (DIP)  applies  an  un-
trained network  to  the  solution  of  several  inverse  prob-
lems  without  a  massive  training  dataset  and  ground
truth,  which  can  fit  a  randomly  initialized  DNN  to  a
single  corrupted  image50. Inspired  by  the  DIP,  an  un-
trained network model named “PhysenNet” is proposed,
which  incorporates  a  complete  physical  model  into  the
conventional  DNN  to  achieve  phase  retrieval  from  a
single intensity image51.

Inspired by the successful  application of  the interplay
between DNN and the physical  model,  in  this  work,  we
propose  a  DL-assisted  variational  Hilbert  quantitative
phase  imaging  approach  (DL-VHQPI).  Unlike  the
massive-data-driven  DL  training  model,  DL-VHQPI,
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which  utilizes  DNN  to  compensate  and  optimize  the
possible  solutions  of  the  physics-driven  model,  can
achieve high-precision  artifacts-free  phase  recovery  us-
ing only a small fraction datasets. Specifically, VHQPI, as
the underlying physical model, can complete the prelim-
inary  extraction  of  the  background  components  of  the
fringes  to  provide a  physical  prior  for  the deep learning
model. The  DNN  compensates  for  the  image  frequen-
cies that cannot be extracted by the physical model using
the  idea  of  residual  compensation.  Due  to  the  physical
model  reducing  the  information  entropy  of  the  dataset,
the DL-VHQPI  performs  higher  reconstruction  accur-
acy utilizing less than one-tenth of the dataset of the con-
ventional end-to-end model  (without the physical  mod-
el). The  simulation  experiments  quantitatively  demon-
strate that the proposed method can achieve high-accur-
acy artifacts-free quantitative phase imaging from single-
frame low-carrier  frequency  holograms.  And the  results
of  live-cell  experiments  demonstrate  the  practicality  of
the method in biological research.

 Principle of VHQPI
The  VHQPI,  as  the  physical  model  of  the  DL-VHQPI,
adaptively and  effectively  completes  the  low-carrier  fre-
quency fringe  demodulation  employing  the  unsuper-
vised variational  image  decomposition  (uVID)  and  en-
hanced Hilbert spiral transform (HST). This section will
focus on describing the process details and physical lim-
itations of this method. In the DH wavefront recording,
the interferogram containing the required object inform-
ation  is  constructed  upon the  coherent  superimposition
of the object and reference beams. The intensity distribu-
tion of the recorded hologram can be expressed as: 

I = I1 + I2 + 2
√

I1I2cos(θ) + n = a + bcos(θ) + n . (1)

a
I1 I2

n
θ

b 2
√

I1I2

It  consists  of  a  sum  of  three  fundamental  intensity
components: background ( , incoherent sum of intensit-
ies  and  of  interfering  beams),  high-frequency  noise
( ), and coherent interference fringes term comprised by
a cosine function modulated in phase ( ) and amplitude
( , ). Acquiring the accurate fringes term from the
three  components  is  the  prerequisite  of  high-precision
artifacts-free  phase  recovery.  The  uVID  approach
achieves image frequency components extraction, which
is  based  on  the  notion  of  the  classical  variational  image
decomposition  to  separate  the  information  components
of the image with two steps in terms of methodology52,53:
1) A block-matching 3D (BM3D) algorithm is employed

to  remove  noise  with  remarkable  efficiency54; 2)  Back-
ground-fringes differentiation is performed using modi-
fied  Chambolle  projection  algorithm  with  an  automatic
stopping criterion to set  the number of  projections,  and
there  is  no  need  to  pre-set  any  parameter  values35.  The
based-on uVID image frequency components extraction
process is shown in Step 1 of Fig. 1. Although the uVID
provides a robust and automatic one-stop-shop solution
for single-frame fringe pattern analysis, there are physic-
al limitations in the process of frequency component ex-
traction, i.e.,  iterative  instability  and  parameter  robust-
ness,  which  directly  cause  non-sufficient  background
term  removal  and  then  impair  phase  recovery  accuracy
and artifacts-suppression effect52.

b

To  recover  the  phase  information  of  the  object,  the
uVID-filtered noise-free  zero-mean-valued  interfero-
gram  is  then  analyzed  using  the  HST  algorithm36,  as
shown  in  Step  2  of Fig. 1.  The  HST  is  the  two-dimen-
sional  variant  of  the  Hilbert  transform  (HT),  in  which
the complex analytic  signal  can be constructed,  whereas
several requirements  must  be  fulfilled.  First,  the  pro-
cessed interferogram must be of zero mean value, which
is satisfied based on background term removal using the
uVID  approach.  And  the  amplitude  term  (  in Eq.  (1))
has to be a slowly varying function. This is the so-called
Bedrosian theorem which can be applied to general pure-
phase  objects  at  relatively  low  carrier  frequencies55.  The
complex analytic  signal  constructed  by  HST  can  be  ex-
pressed as 

AFP = 2
√

I1I2cos(θ)− iexp(−iβ)
· F−1{SPF ∗ F [2

√
I1I2cos(θ)]} , (2)

AFP SPF
F F−1

β 2π

SPF

where,  denotes  the analytic  fringe pattern and 
is  the  spiral  phase  function;  and  denote  Fourier
transform (FT) and inverse Fourier transform (IFT) op-
erator respectively. It is important to emphasize that car-
rier-free  single-shot  interferogram  analysis  is  a  fully  2D
phase  demodulation  problem,  whereas  carrier-based  FT
phase  demodulation  is  a  1D  simplification  of  the  HT
analytic  relation.  The  HST,  therefore,  requires  the  local
fringe  direction  map  ( ,  modulo )56.  The  modulus
value and angle of the 2D complex analytic signal consti-
tute  the  intensity  and phase  in  QPI,  respectively.  is
defined as 

SPF(u, v) =
u + i · v√

u2 + v2
= exp[i · ϕ(x, y)] , (3)

(u, v) (x, y)
ϕ(x, y)

where  is  the  coordinate  of  corresponding to
the SFD.  is the polar coordinate phase expression.
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Figure 1 specifically showcases the schematic diagram of
the VHQPI-based  low-carrier  interferogram  quantitat-
ive phase demodulation algorithm.

 Deep learning assisted VHQPI model
VHQPI  has  been  proven  to  have  excellent  robustness
and practicality in low-carrier frequency fringe demodu-
lation  issue  though34.  However,  the  algorithm-inherent
iterative instability and parameter robustness restrict the
image frequency component extraction capability, which
will cause the non-perfect background term removal. DL
methods driven by massive datasets provide a new route
to address this problem by virtue of their high-powerful
image  feature  extraction  characteristics.  Whereas,  when
encountering  insufficient  training  data,  which  is  very
common, the DL method based on massive datasets may
have a poor effect. A feasible scheme is to train the DNN
on  a  stronger-constrained  available  standardized
dataset57.  Here,  we  employ  Shannon  entropy  theory  of
the images in the dataset for that purpose: the lower the
entropy of the datasets is, the more constrained prior in-
formation is,  giving it  a  better  same-domain generaliza-
tion  ability58,59.  Therefore,  in  the  proposed  DL-assisted
VHQPI model, the uVID is utilized to extract the image
background term as the physical prior of the network to
reduce  the  dataset's  entropy.  The  first  convolutional
neural  network  (CNN1)  is  used  to  “learn ”  the  residual
terms and assists the physical model to complete the pre-

liminary  estimation  of  the  background  components  of
the fringes.  Furthermore,  to  further  improve  the  ima-
ging accuracy,  the  original  hologram  and  the  prelimin-
ary  estimation  background  are  re-fed  into  the  model
(CNN2) for advanced component extraction. Dual-chan-
nel  input  is  used  because  the  preliminarily  estimated
background  terms  have  been  very  close  to  the  ground
truth  after  the  first  residual  compensation  by  CNN1.
Hence,  the  preliminary  estimated  background  can  be
used  to  provide  the  network  with  feature  guidance  and
helps CNN2 achieve the advanced component extraction.

ε1

ε2

As depicted in Fig. 2, with the original hologram as in-
put, CNN1 completes the preliminary background com-
ponent  extraction  by  compensating  for  the  residual  ( )
of  the  background  component  acquired  by  uVID,  as
shown in Fig. 2(b). With the preliminary estimated back-
ground  term  and  the  original  hologram,  the  CNN2  (as
shown  in Fig. 2(c))  uses  the  two  as  dual-channel  inputs
to  implement  the  more  advanced  background  residual
( ) compensation. After the high-accuracy fringes terms
extraction,  the  complete  complex  analytic  signal  can  be
constructed by HST. And then the final phase results are
recovered  by  calculating  the  angle  of  the  2D  complex
analytic signal. The whole method flow chart is shown in
Fig. 2(a).

Moreover, both CNN1 and CNN2 networks are com-
posed of a convolutional layer (Conv),  a group of resid-
ual  blocks  (containing  four  residual  blocks),  and  two
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(H,W,C)
W

C

convolutional  layers.  Each residual  block comprises  two
sets of Convs stacked one above the other.  The network
architecture uses Batch Normalization60 and ReLU activ-
ation61 to accelerate  the  model  convergence.  It  estab-
lishes  a  shortcut  between  input  and  output,  which  can
solve  the  problem  of  accuracy  decline  as  the  network
deepens, thereby easing the training process. The output
of the Convs is a 3-D tensor of shape , where H
and  are the  height  and  width  of  pixels  of  the  holo-
gram respectively, and  is the number of channels. The
hyperparameters  of  the  two  networks, i.e.,  the  weights,
bias, and  convolutional  kernels,  are  trained  using  back-
propagation on mean-squared errors between the results
of  the  network  output  and  the  ground  truth.  The  loss
function is computed as 

Loss(ω) =
1

H × W
∥∥Yω

output − G
∥∥2

, (4)

ω
Youtput G
where  represents  the  parameter  space  of  the  model,

 is the results predicted by the model, and  is the
ground truth.

 Experiments and results
In  this  section,  we  demonstrate  the  performance  of  the

proposed  DL-VHQPI  method  over  the  conventional
physics-driven low-carrier  frequency  fringe  demodula-
tion techniques and pure DL approach without a physic-
al model (DL-noPhy) through numerical simulation and
live-cell experiment. A rich set of paired training data is
the  prerequisite  for  network  generalization  during  DL
training.  It  is  challenging  to  acquire  a  reliable  ground
truth in the real-world DH system due to environment-
induced  instability  and  system-inherent  speckle  noise.
Consequently, we simulated low-carrier frequency holo-
grams  and  the  corresponding  ground  truth  for  training
and quantitative analysis.  We separately constructed the
complex amplitude distributions of the object and refer-
ence light  waves,  and  then  the  holograms  can  be  con-
structed by solving the square of the modulus of the sum
of the  two.  The  sum of  the  squares  of  the  modulus  val-
ues  of  the  two  was  calculated  to  obtain  the  background
(ground  truth)  needed  for  training.  The  more  specific
process  can  be  found  in  Supplementary  information
Section 1.

In the  live-cell  experiment,  we  used  the  Digital  holo-
graphic  smart  computational  light  microscope  (DH-
SCLM) developed by SCILab,  and turned it  to a slightly
off-axis  state  for  hologram  acquisition1.  In  the  DH-
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ground residuals by learning. (c) The CNN2 network structure is the same as CNN1, except that CNN2 combines the original hologram and the
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Li ZS et al. Opto-Electron Sci  2, 220023 (2023) https://doi.org/10.29026/oes.2023.220023

220023-5

 

292



SCLM,  the  object  wave  transmitting  the  objective  lens
(UPLanSAPO  ×20/0.45NA,  Olympus,  Japan)  interferes
with  the  reference  light  and  is  recorded  by  the  camera
(The Imaging Source DMK 23U274, 1600×1200, 4.4 μm).
The  central  wavelength  of  the  illumination  is  532  nm.
The used  sample  is  Henrietta  Lacks  (HeLa)  human cer-
vical  cancer  cells  cultured in  DMEM medium with 10%
fetal bovine  serum  under  standard  cell  culture  condi-
tions (37.2 °C in 5% CO2 in a humidified incubator). To
acquire  the  ground  truth  from  the  configuration,  each
intensity  map  of  the  object  and  reference  light  paths
needs  to  be  captured  separately  under  the  highly  stable
condition  of  the  holographic  system (Refer  to  Section  2
of the  Supplementary  Information  for  detailed  pro-
cessing). The  complete  training  process  was  implemen-
ted  using  the  TensorFlow  framework  (Google)  and  was
computed  on  a  GTX  Titan  graphics  card  (NVIDIA).  A
fixed learning rate of 0.0001 for the experiment is adop-
ted for the Adam optimizer62.

 Simulation
Figure 3 presents the experimental results under the nu-
merical simulation,  demonstrating  the  quantitative  ana-
lysis  between  DL-VHQPI  and  the  conventional  single-
frame  fringe  demodulation  techniques. Figure 3(a)
shows  the  phase  result  recovered  by  the  conventional
Fourier  transform  (FT)  method.  It  can  be  seen  that  the
phase artifacts severely disturb imaging results due to the
spectrum-overlapped problem in the SFD.  Although re-
ducing the filtering window size can attenuate the phase
artifacts,  this  will  sacrifice  the  SBP  of  the  system  while
causing  blurred  imaging.  More  details  about  it  can  be
found in Supplementary Section 3. The size of the filter-
ing  window  used  in  the  FT-based  phase  reconstruction
results  shown  in Fig. 3(a) is calculated  under  the  simu-
lated numerical aperture (NA), as shown in the red filter-
ing window in Fig. S2(a) of Supplementary Section 3. In
VHQPI, the uVID can extract the fringes term from the
hologram;  however,  the  non-perfect  background  term
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removal  still  inevitably  causes  imaging  artifacts,  as
shown in Fig. 3(b). In contrast, as presented in Fig. 3(c),
the  experimental  results  demonstrate  DL-VHQPI’s ex-
cellent  performance,  in  terms  of  artifacts  suppression,
over  two  physics-driven  methods:  FT  and  VHQPI. Fig-
ure 3(d) is the ground truth recovered by phase recovery
after  theoretical  background  removal.  The  magnified
views  of  the  corresponding  rectangular  boxes  in Fig.
3(a–d),  as  shown in Fig. 3(j1–j4),  are  the phase gradient
images by digital differential interference contrast (DIC)
for them. To discuss the performance of methods intuit-
ively  and  quantitatively,  we  respectively  calculated  the
Mean  Absolute  Error  ( ), Structural  Similarity  In-
dex  ( ),  and  Peak  Signal-to-Noise  Ratio  ( )
between the  FT,  VHQPI,  and  DL-VHQPI  phase  recov-
ery results and the ground truth. Compared with the FT
and  VHQPI  methods, Fig. 3(h) quantitatively demon-
strates  that  DL-VHQPI  has  an  excellent  phase  recovery
accuracy  and  artifacts-suppression  effect  (More  than  10
times improvement in precision.).  The background-part
cross-section  of  the  four  phase  results  depicted  in Fig.
3(i) shows the phase result reconstructed by DL-VHQPI
has  a  higher  similarity  to  the  ground  truth,  which  also
demonstrates that  it  can  be  more  effective  in  suppress-
ing the fringe-like error of the background part.

In addition,  we  also  designed  a  comparison  experi-
ment  with  DL-noPhy (The  specific  network  is  provided
in  the  Section  4  of  Supplementary  information)  to
demonstrate the high-efficiency and high-accuracy char-
acteristics  exhibited  by  the  proposed  method. Table 1
quantitatively  shows  the  comparison  results  of  the  DL-
VHQPI  and  DL-noPhy;  DL-VHQPI  performs  a  higher
phase  reconstruction  accuracy  while  only  utilizing  one-
tenth  of  the  datasets  of  DL-noPhy.  The  reason  is  that
DL-VHQPI adopts a physical model (uVID) to the back-
ground-component extraction process  of  the fringe pat-
tern  and  acquires  the  residual  components  for  training,
which is inherently a process of image entropy reduction.
According  to  the  Shannon  entropy  theory,  lower  image
entropy implies more image constraints, which provides

DNN with a more powerful same-domain generalization
ability.  The  simulated  holograms  with  the  size  of
160×160  were  fed  to  the  network.  During  the  training
process,  the CNN1 of DL-VHQPI over 150 epochs took
1 hour and 20 minutes, and CNN2 over 150 epochs took
1.5 hours; in contrast, DL-noPhy over 150 epochs took 7
hours  and  50  minutes.  Fewer  training  datasets  for  the
same DNN model naturally mean shorter training time,
so  our  method  performs  higher  training  efficiency  than
DL-noPhy while ensuring excellent imaging quality.

 Live-cell experiment on HeLa cells

×

π(NA/λ)2

We  performed  holographic  biological  experiments  on
HeLa cells  under a  ×20/0.45NA lens to demonstrate the
application of the method in biological research. The de-
noised  interferogram  presented  in Fig. 4(a) is  of  overall
low spatial  carrier  frequency,  which  results  in  a  spec-
trum overlapping  of  cross-correlation  and  autocorrela-
tion terms, as shown in Fig. 4(b). Figure 4(c) and 4(d) re-
spectively  show  the  phase  reconstruction  of  captured
low-carrier  frequency  holograms  utilizing  the  FT  and
DL-VHQPI  methods  for  HeLa  cells.  The  field  of  view
(FoV)  of Fig. 4(c) and 4(d) is  0.093  mm2 (The  Imaging
Source DMK 23U274, 1600 1200, 4.4 μm), and the SBP
of  the  complex  amplitude  image  is 210000 pixels  [the
area of the FoV, multiplied by the area of the spatial fre-
quency  band, ]. To  compare  the  imaging  res-
ults of  the  two  methods  in  detail,  we  selected  two  re-
gions of  interest  (ROI,  Area1  and  Area2)  on  the  speci-
mens,  and their  magnified views are shown in Fig. 4(e1,
e3, f1, f3).  Additionally, Fig. 4(e2, e4, f2, f4) vividly de-
pict  the  reconstructed  phase  gradient  images  by  digital
DIC.  It  can  be  revealed  that  spectrum-overlapping-
caused fringe-like error dramatically  degrades the phase
recovery quality.  The  selected  regions  in  the  red  rect-
angle  box  of Fig. 4(c) and 4(d) highlight  the  artifacts-
suppression  capability  on  the  phase  background.  And
the  enlarged  views  after  DIC  processing  are  shown  in
Fig. 4(g) and 4(h),  respectively.  The  background part  of
the  FT-based  reconstructed  phase  result  features  many

 
Table 1 | The quantitative comparison results of DL-VHQPI and DL-noPhy.

 

Evaluation Index
Group1 Group2 Group3 Group4

DL-noPhy DL-VHQPI DL-noPhy DL-VHQPI DL-noPhy DL-VHQPI DL-noPhy DL-VHQPI

MAE 0.0105 0.0065 0.0172 0.0142 0.0202 0.0171 0.0191 0.0170

SSIM 0.9914 0.9969 0.9712 0.9781 0.9637 0.9718 0.9646 0.9697

PSNR 84.8196 88.6846 79.7276 81.5757 78.1123 79.9083 79.4679 80.0348

Size of dataset 3600 324 3600 324 3600 324 3600 324
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coarse diagonal-fringe distributions; in comparison, that
of DL-VHQPI is much smoother. The calculated Stand-
ard  Deviation  (STD)  quantitatively  demonstrates  that
DL-VHQPI  performs  a  better  flatness  distribution.  As
can be readily observed in the cross-section presented in
Fig. 4(i), in the FT phase recovery, the reconstruction er-
rors  brought  by  the  autocorrelation  term  will  introduce
noticeable artifacts  to  the  correct  phase  result.  The  res-
ults demonstrate  that  DL-VHQPI  can  excellently  sup-
press phase  artifacts  and  own  the  effectiveness  and  ap-
plicability for a practical slightly off-axis DH system.

Indeed, reducing the size of the FT filter window may
also be a good way to alleviate artifacts, but this will not
fundamentally  address  the  problem  of  the  overlapped
spectrum and will cause phase imaging blur. The reason
is that reducing the filtering window is at the expense of
the system’s SBP and the high-frequency information of
the object cannot be enclosed in the limited filtering win-
dow. In the Section 3 of Supplementary information, we
experimentally present  the  imaging  effects  under  differ-
ent  FT  filtering  windows  for  living  cells.  To  verify  the

generalization  of  DL-VHQPI,  we  supplemented  a  new
group of  experimental  results  for  living  cells  in  Supple-
mentary Section 5, in which we added a comparison and
discussion  with  the  VHQPI  method  and  the  traditional
FT  method.  The  results  demonstrate  that  DL-VHQPI
still  performs  the  best  artifact-suppression  ability
and  generalizability  under  a  new  group  of  biological
applications.

 Conclusions and discussions
In  summary,  we  proposed a  high-accuracy  artifacts-free
single-frame  low-carrier  frequency  fringe  demodulation
approach for the slightly off-axis DH system, i.e., a mod-
el  using  the  DNN-assisted  physical  process.  When  the
cross-correlation  and  autocorrelation  are  inevitably
aliased in the SFD, the phase reconstruction based on the
conventional  FT  method  cannot  eliminate  the  effect  of
phase artifacts caused by zero-order term6. Although re-
ducing the size of the FT filter window may alleviate the
problem of imaging artifacts, the high-frequency inform-
ation  loss  of  the  object  caused  by  the  limited  filtering
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terferometry  system.  (b)  Corresponding  spatial  frequency  spectrum.  (c)  The  result  of  phase  recovery  by  slightly  off-axis  holography  using  FT

method under ×20 lens. (d) The result of phase recovery using DL-VHQPI. (e1–e4) and (f1–f4) correspond to the local amplification results of

“Area1” and “Area2” for the two samples under different phase recovery methods. Where (e2, e4, f2, f4) are the corresponding DIC views, re-

spectively. (g) and (h) The DIC views after partial magnification of the phase map in the corresponding red box. (i) The numerical distribution of

the cross-section and detail-preservation feature of the DL-VHQPI.
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window  will  cause  imaging  blur.  The  method  based  on
Kramers-Kronig relation is proposed on the basis of the
concept  of  “ cepstrum”  and  homomorphic  filtering31,
however, this method must depend on the limited condi-
tion of  the  object-reference  ratio  and  need  the  separa-
tion  of  the  high-order  terms  in  the  extended  SFD32,33.
Furthermore,  the  VHQPI  implements  the  background
component  removal  of  single-frame  hologram  utilizing
the principle of image frequency components extraction,
while it  inevitably  suffers  from  the  non-sufficient  back-
ground  term  removal  caused  by  the  physical  method34.
In  contrast,  DL-VHQPI,  a  novel  DL-assisted  physical
model method, can better suppress phase artifacts while
improving  imaging  accuracy.  The  simulation  result
quantitatively demonstrates  that  the  phase  recovery  ac-
curacy obtained by DL-VHQPI is greatly superior to that
by  FT  and  VHQPI.  Moreover,  the  live-cell  experiment
results demonstrate that our method is applicable in bio-
logical research.

In addition,  it  is  noteworthy that in the classical  end-
to-end DNN model (without a physical model), massive
data pairs are required to train the network model for a
higher reconstruction precision. However, it may be pro-
hibitively  laborious  and  time-consuming  for  the  real-
world  DH  system  to  collect  datasets  and  generate  the
corresponding  ground  truth.  Conversely,  the  proposed
DL-VHQPI can perform better same-domain generaliza-
tion  ability  and  image  data-feature  extraction  capability
without  a  large  of  datasets.  Compared  to  the  classical
end-to-end  DNN  model  (i.e.,  DL-noPhy),  DL-VHQPI
can  achieve  a  higher  reconstruction  accuracy  utilizing
only  a  small  fraction  of  the  datasets  due  to  the  physical
model  reducing the  information entropy of  DL training
objects. Meanwhile,  fewer  datasets  mean  shorter  train-
ing time and higher training efficiency.

The significance of  our work lies  in the multiple pos-
sibilities  of  applying  the  proposed  DL-assisted  physical
model idea to the QPI. This idea can be applied to many
scenarios in which deep learning methods are applied to
the  QPI,  e.g.,  addressing  a  series  of  ill-posed  inverse
phase  retrieval  problems  and  holography-based  high-
throughput optical diffraction tomography (ODT) prob-
lems63−65.  Specifically,  the  artifacts-free  low-carrier-fre-
quency  fringe  demodulation  capability  of  the  proposed
method has application possibilities for ODT imaging of
wide-bandwidth objects. In addition, it has also implica-
tions for  high-throughput  studies  of  high-robust  com-
mon-path  off-axis  interferometer  systems66,67. We  envi-

sion that  the  idea  presented  in  this  research  can  be  ap-
plicable to a diverse range of future computational ima-
ging  techniques,  not  just  limited  to  what  we  discussed
here.
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A B S T R A C T   

Photoacoustic Imaging (PAI) is an emerging hybrid imaging modality that combines optical imaging and ul-
trasound imaging, offering advantages such as high resolution, strong contrast, and safety. Despite demonstrating 
superior imaging capabilities, PAI still has certain limitations in its clinical application, such as the trade-off 
between imaging depth and spatial resolution, and the need for further improvement in imaging speed. Deep 
Learning, as a novel machine learning technique, has gained significant attention for its ability to improve 
medical image data and has been widely applied in PAI in recent years to overcome these limitations. In this 
review, we first introduce the principles of photoacoustic imaging, followed by the development and applications 
of popular deep neural network structures such as U-Net and GAN networks. Furthermore, we comprehensively 
discuss the recent advancements in the application of deep learning in photoacoustic imaging. Finally, a sum-
mary and discussion are provided.   

1. Introduction 

1.1. Photoacoustic imaging 

Photoacoustic Imaging (PAI) is a novel non-invasive photon imaging 
technique used for disease detection, observing biological tissue struc-
ture, and assessing function. The physical basis of PAI is the photo-
acoustic effect in biological tissue. When a short-pulsed laser illuminates 
the imaged sample, the tissue or substance absorbs the light energy, 
resulting in thermal elastic expansion and causing instantaneous 
expansion and contraction of the surrounding medium, thereby gener-
ating ultrasound waves propagating towards the tissue surface and being 
received. By receiving the ultrasound signals and using acoustic inverse 
problems, the initial sound pressure signal map of the tissue surface can 
be reconstructed, enabling observation and diagnosis of biological tissue 
structure and function [1,2]. Due to the significant difference in scat-
tering intensity between ultrasound waves and photons in biological 
tissue (approximately 2–3 orders of magnitude), ultrasound scattering is 
much lower than that of photons. Therefore, PAI can overcome the 

diffraction limit of optical imaging depth (i.e., 1 mm). Moreover, PAI 
combines the high imaging depth of ultrasound imaging with the high 
contrast and high resolution of optical imaging, thereby achieving 
high-depth, high-contrast, and high-resolution imaging of biological 
tissue by leveraging the advantages of both technologies. 

The most common forms of photoacoustic imaging are photoacoustic 
tomography (PAT), photoacoustic microscopy (PAM), and photo-
acoustic endoscopy (PAE) [3,4]. PAT uses a non-focused large-diameter 
pulsed laser beam to achieve full-field illumination of the tissue surface 
and employs an array transducer to collect signals, which are then 
reconstructed into an image using inversion algorithms. Existing 
inversion algorithms include filtered back-projection (FBP), 
delay-and-sum (DAS) beamforming algorithm, Fourier-based algo-
rithms, and time reversal (TR) algorithm. PAM, on the other hand, uses a 
focused short-pulsed laser to illuminate the target point and employs a 
focused transducer to collect the PA signal point-by-point, allowing for 
image reconstruction without the need for additional inversion algo-
rithms. PAE is a type of endoscope-based photoacoustic imaging tech-
nology. Due to its unique imaging principles and the advantages of 
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optics and acoustics, photoacoustic imaging has broad application 
prospects and has gradually played a role in clinical medicine, 
biomedical research, drug development, material science, and other 
biomedical fields. Its application areas are also constantly expanding 
and deepening. 

1.2. Deep learning 

With the advent of the big data era, computer computational capa-
bilities have significantly improved, and continuously emerging open- 
source and user-friendly software frameworks have led to unprece-
dented development of artificial intelligence (AI) technology. Classical 
AI technology machine learning has attracted great interest in both in-
dustry and academia, especially data-driven artificial neural network 
technology, that is, deep learning [3–6]. The deep learning method aims 
to discover complex mappings from training data to achieve optimiza-
tion of the existing parameter space problem. Unlike the lack of 
computing power in the past, today’s graphic processing units allow 
neural networks to continuously improve their depth [7,8], width [9], 
computation speed and other aspects, gradually developing various 
basic network architectures. Deep learning has become an important 
method in computer vision, natural language processing, and AI fields. 
This article introduces various networks’ applications and effects in the 
optical-acoustic field based on supervised learning perspective, focusing 
on classic deep neural network structures. 

1.3. Deep learning-powered photoacoustic imaging 

In the two previous sections, we introduced the advantages of pho-
toacoustic imaging and deep learning and found that both have very 
good prospects in their respective fields. Especially in the medical im-
aging field, photoacoustic imaging has many advantages, such as 
combining acoustic depth, optical resolution, and non-invasiveness. 
However, photoacoustic imaging still faces many challenges, including 
image quality limited by sound and light diffraction, and various prob-
lems in the data acquisition, processing, and inversion processes. For 
example, in PAT, it is difficult to achieve low-cost equipment and high 
signal-to-noise ratio image reconstruction at the same time, and the 
widely used sparse detectors currently have difficulty obtaining good 
reconstruction results through conventional inversion methods. In PAM, 
there are also deficiencies in imaging speed. Although scanning speed 
can be improved by changing the repetition rate of the excitation light 
pulse and the scanning mechanism, these methods often have an un-
avoidable impact on image quality. In short, there is a certain contra-
diction between image quality, economic benefits, and time efficiency in 
photoacoustic imaging. Although many methods have been proposed to 
solve these problems, and these methods have achieved some effec-
tiveness, further exploration and improvement are still needed. 

The intervention of deep learning has had a huge impact in the field 
of photoacoustic imaging. We have found that a large number of pho-
toacoustic imaging works based on deep learning have achieved imaging 
quality and efficiency that previous methods have difficulty achieving. 
This is also the reason why we want to write this review and organize 
and analyze recent related work. We want to organize and analyze our 
work in recent years from four important directions of photoacoustic 
imaging: PAT image reconstruction, PAM image reconstruction, photo-
acoustic image processing, and photoacoustic signal processing. Not 
only that, we also introduced the development and current status of 
common network structures such as U-Net and GAN networks in image 
processing. Finally, we summarized and prospected the review. 

The first chapter of this article introduces the principle of photo-
acoustic imaging, the principle of deep learning network, and analyzes 
the current problems of photoacoustic imaging. Chapter 2 details the 
development of current popular deep learning networks, including U- 
Net, Residual Network (ResNet), and Super-Resolution Generative 
Adversarial Network (SRGAN). Chapter 3 lists and analyzes the 

application results of current deep learning technology in various fields 
of photoacoustic imaging. Chapter 4 summarizes the application results 
and problems of deep learning in the field of photoacoustics, and looks 
forward to future development directions. The following is the article 
flowchart and Chart of Recent works on Deep Learning-powered pho-
toacoustic imaging.,. 

2. The neural network structures based on photoacoustic 
imaging 

In recent years, the combination of photoacoustic imaging and deep 
learning has brought significant improvements to photoacoustic imag-
ing. Considering the effectiveness, real-time performance, and economy 
of the method, U-Net has emerged in various aspects of photoacoustic 
imaging in recent years due to its simple and efficient network structure. 
It has been applied to PAT reconstruction, PAM reconstruction, 
denoising, and image processing of photoacoustic images. Its superiority 
in image recognition and segmentation tasks was first discovered, and 
then it was applied to image denoising. It is worth noting that the skip 
connections in U-Net ensure the validity of the image, which effectively 
improves the signal-to-noise ratio of the image and greatly suppresses 
the possible artifacts produced during the processing. Subsequently, the 
U-Net network has also been widely applied to other aspects of various 
photoacoustic imaging methods, which also proves that network opti-
mization for image recognition tasks is applicable to optimizing network 
performance for other image tasks. In addition, U-shaped deep neural 
networks also have certain robustness and generalization capabilities, 
can process different types and qualities of data, and can further 
improve model performance through techniques such as data 
augmentation. 

Overall, U-Net has great advantages in the field of photoacoustic 
imaging. It can effectively process high-dimensional data, learn features 
in the data, and achieve accurate image segmentation and localization. 
This makes it a very promising tool in the field of photoacoustic imaging, 
which can help doctors and researchers make more accurate diagnoses 
and treatments. This chapter mainly introduces the U-Net and SRGAN 
network structures, details the birth of U-Net and the development 
process of its network architecture, shares the photoacoustic microscopy 
method we are working on based on SRGAN, and finally introduces the 
classic residual block structure. 

2.1. U-Net 

2.1.1. The proposal of U-Net network 
Ronneberger et al. first proposed the U-Net network in 2015 [10], 

Fig. 1. The flowchart of this paper.  
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which was initially applied to image segmentation and won the cham-
pionships of the ISBI 2015 Cell Tracking Challenge and Caries Detection 
Challenge. To this day, U-Net has inspired the development of many 
network structures, and more and more deep learning strategies 
continue to extend based on U-Net. The U-Net network structure consists 
of a contracting path for capturing context and a symmetric expanding 
path for precise localization. U-Net can also be combined with data 
augmentation techniques to achieve end-to-end training with a small 
amount of data input [11–13]. Due to its network structure resembling 
the letter "U", it is named U-Net. The initial U-Net network structure is 
shown in Fig. 2(a). 

In U-Net network structure, the vertical arrows form the processes of 
the encoder and decoder, while the horizontal arrows represent skip 
connections that jump across multiple layers. Its multi-layer encoder 
and decoder structure together constitute an overall layout resembling 
the letter "U". The left part of U-Net is the encoder, and the right part is 

the decoder. Let’s discuss the encoder and decoder in detail.The encoder 
is responsible for extracting features from the input image. It gradually 
reduces the size of the feature map and increases the number of channels 
through multiple convolutional layers to extract more abstract features. 
Its structure consists of four blocks. Each block is composed of a 3 × 3 
convolution (using the ReLU activation function) and a pooling layer 
with a stride of 2 × 2. After processing through the four blocks, the 
feature map is gradually reduced. The output of the encoder is passed to 
the decoder, and at the same time, skip connections are made between 
the output of each stage of the encoder and the symmetric stage of the 
decoder to preserve the detailed information of the feature map. 

U-Net was initially applied to image segmentation, as shown in Fig. 2 
(b) and (c). Fig. 2(b) demonstrates the U-Net’s overlapping-tile strategy 
for seamless segmentation of images of arbitrary sizes by predicting the 
segmentation results of small selected areas through inputting the large 
selected frame image. Fig. 2(c) shows the process of observing HeLa cells 

Chart 1. Chart of Recent works on Deep Learning-powered photoacoustic imaging.  
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using differential interference contrast microscopy, where the four im-
ages represent the original image, the image overlaid with ground truth 
segmentation (different colors indicate different stages of HeLa cells), 
the generated segmentation mask (white represents foreground, black 
represents background), and the result using pixel loss weight mapping. 

U-Net’s overlapping-tile strategy has been widely used in medical 
image segmentation, effectively handling images of any size and 
achieving relatively accurate segmentation results. Meanwhile, U-Net 
can achieve end-to-end training with a small amount of data input by 
combining data augmentation and pixel loss weight mapping methods, 
making the network robust and capable of generalizing well. 

2.1.2. The development of U-Net 
U-Net is one of the currently popular network architectures, which 

was initially applied to image segmentation. With the continuous 
development and in-depth research of deep learning frameworks, the 
network structure of U-Net has also been continuously optimized and 
improved. More and more deep neural network structures have been 
discovered and combined with the U-Net architecture to further improve 
network efficiency. In addition, U-Net has been widely used in fields 
such as image reconstruction, image super-resolution, semantic seg-
mentation, and signal processing, and has achieved good results. 

In 2016, Cicek et al. proposed the 3D U-Net based on U-Net, which is 
used for 3D image segmentation [14]. Compared with U-Net, 3D U-Net 
only uses three downsampling operations and a normalization layer 
after each convolutional layer. It is worth noting that both 3D U-Net and 
U-Net do not use random dropout layers. In the 2018 MICCAI Brain 
Tumor Segmentation Challenge (BRATS), the team of the German 
Cancer Research Center used 3D U-Net and achieved the second place in 
the challenge with only a few modifications [15]. This indicates that 
compared to many new networks, 3D U-Net still has significant 
advantages. 

In 2018, residual U-shaped network (Res-UNet) and dense U-shaped 
network (Dense-UNet) were born based on the U-Net architecture. Res- 
UNet and Dense-UNet are inspired by residual connections and dense 
connections, respectively, replacing each sub-module of U-Net with a 
form of residual connection or dense connection. Among them, dense 
connection means that the output of a layer in the sub-module is used as 
part of the input of subsequent layers, while any layer’s input comes 
from the combination of outputs of previous layers. Res-UNet has been 
applied to the segmentation of retinal images [16], while Dense-UNet 
has been used to remove artifacts in images [17], which is the first 
case of using the U-Net architecture for image processing. The authors 

pointed out that U-Net is the most widely used CNN architecture for 
applying deep learning and post-processing methods to sparse tomo-
graphic image reconstruction [18]. It has many characteristics suitable 
for artifact removal, such as multi-level decomposition and 
multi-channel filtering. Moreover, on both synthetic data and experi-
mental data [19], it shows better performance in removing sparse PAT 
image artifacts than iterative methods.The core idea of DenseNet is the 
Dense Block. In a Dense Block, the input of each layer is a concatenation 
of the outputs from all previous layers. Due to the direct connections 
between each layer and all preceding layers, DenseNet can effectively 
utilize parameters, resulting in a model with fewer parameters and 
reduced risk of overfitting. With the dense connectivity design, every 
layer in DenseNet has direct access to the feature maps from previous 
layers, facilitating feature propagation and reuse, which helps in 
learning richer feature representations. 

Lin et al. proposed a robust deep learning network for ultrasonic 
photoacoustic microscopy with two modes dense network [20](US-PAM 
DenseNet), aimed at improving the performance of the model in dis-
tinguishing malignant from non-cancerous tissues based on 
co-registration of dual-mode ultrasound (US) and PAM images, as well 
as individualized normal reference images, as training. In Fig. 3, the 
US-PAM DenseNet similarly classifies the entire US-PAM B scan by ROI 
grade and computes the ROI heat map, highlighting the rectal cancer 
region.In Fig. 3(a), Five channels are generated from the selected ROI as 
the model input, which has dimensions of 128 × 64 × 5. Solid arrows 
indicate data flows and connections inside the model: different colors 
correspond to different data origins. Connections are made between 
every pair of layers in the DenseNet architecture. The model has three 
layers, with 64 initial kernels in the first layer, a kernel growth rate of 12 
from one layer to the next, and block repetition numbers of 4, 8, and 6 
respectively for the three layers. The size of each model layer is marked 
under the layer icons. 

In the same year, U-Net began to be applied to direct PAT recon-
struction of sparse data from raw sensors. 

Guan et al. proposed a new deep learning method called Pixel-DL 
(Pixel-wise Deep Learning) [21]. It first utilizes pixel-wise interpola-
tion controlled by the physical propagation of photoacoustic waves, and 
then employs convolutional neural networks (CNNs) to reconstruct 
images. Synthetic phantom data from mouse brain, lung, and retinal 
vascular system were used for training and testing. The results show that 
Pixel-DL achieves comparable or better performance compared to iter-
ative methods, making it suitable for real-time photoacoustic tomogra-
phy (PAT) rendering and improving image reconstruction quality in 

Fig. 2. Network structure and image segmentation; (a) Basic structure of U-Net network; (b) Seamless segmentation effect; (c) Progressive treatment of Hela cells, the 
four results are the original image, the image overlapped with the true value segmentation, the generated segmentation mask, and the result of using pixel loss 
weight mapping. 
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limited-view and sparse PAT scenarios.Fig. 4(c) shows the improvement 
of Pixel-DL.Comparable to iterative reconstruction, Pixel-DL had similar 
performance for the fundus vasculature and outperformed it for the lung 
vasculature dataset.In this work, three different CNN-based deep 
learning methods for limited-view and sparse PAT image reconstruction 
were used, as shown in Fig. 4(a). Fig. 4(a)(I) shows inputs into the CNN 
for each deep learning approach. The Post-DL CNN implementation used 
residual learning which included a skip connection between the input 
and final addition operation. The initial Pixel-DL input contains “N” 
feature-maps corresponding to the number of sensors in the imaging 
system; (II) The FD-UNet is comprised of a contracting and expanding 
path with concatenation connections; (III) The output of the CNN is the 
desired PAT image. In Post-DL, residual learning is used to acquire the 
final PAT image. In Post-DL, the sensor data is reconstructed into an 
image with artifacts using time reversal, and then CNN is utilized as a 

post-processing step to remove the artifacts and enhance the image. In 
Pixel-DL, window-correlated information in the sensor data is interpo-
lated on a pixel-by-pixel basis and mapped to the image space. In the 
improved Direct-DL implementation (mDirect-DL), a combination of 
linear interpolation and downsampling is used to ensure that the 
interpolated sensor data has the same dimensions as the final PAT 
image.In Fig. 5(b)(IV) The red semi-circle represents the sensor array, 
and the gray grid represents the defined reconstruction grid. In Fig. 5(b) 
(V)Color represents the time at which a pressure measurement was 
taken and is included to highlight the use of time-of-flight to map the 
sensor data to the reconstruction grid. 

In 2019, Lan et al. proposed a Y-Net network based on the U-Net idea 
[22]. Unlike the general U-Net, Y-Net has two inputs and one output, i. 
e., two encoders and one decoder. By using the measured raw data and 
the beamformed image as inputs, Y-Net solves the PAT image 

Fig. 3. The architecture of US-PAM DenseNet and the application of US-PAM DenseNet in generating thermal maps of suspicious tumor regions; (a) The white dotted 
box shows an example ROI selected from a co-registered US-PAM B scan. (b) The white dotted box shows an example ROI selected from a co-registered US-PAM B 
scan. Five channels are generated from the selected ROI as the model input, which has dimensions of 128 × 64 × 5. Solid arrows indicate data flows and connections 
inside the model: different colors correspond to different data origins. Connections are made between every pair of layers in the DenseNet architecture. The model has 
three layers, with 64 initial kernels in the first layer, a kernel growth rate of 12 from one layer to the next, and block repetition numbers of 4, 8, and 6 respectively for 
the three layers. The size of each model layer is marked under the layer icons.Pipeline for applying US-PAM DenseNet to diagnose a whole US-PAM B scan and 
generate an attention heat map of suspicious cancer regions to facilitate surgeons decision making. The processing pipeline is illustrated in the blue box. In steps 3, 4, 
and 5, green dotted boxes show the ROIs that US-PAM DenseNet classifies as normal, red shows the cancer ROIs, and cyan shows artifacts. In step 5, guided 
backpropagation is computed for all three potential classification outcomes, i.e., normal, cancer and artifact, weighted with their respective prediction scores. 
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reconstruction problem, which can also be called hybrid processing. 
Inspired by the Y-Net network idea, in 2022, Guo et al. proposed an 
attention-guided network based on multi-feature fusion (AS-Net) for PA 
reconstruction, aiming to solve the PA reconstruction problem under 
sparse conditions of ultrasonic transducers in photoacoustic tomography 
[23]. 

In Fig. 5, Firstly, 2-D PA raw data is transformed into a 3-D square 
matrix by Folded Transformation (FT). Then AS-Net produces the multi- 
feature fusion base on the attention mechanism for PA reconstruction. 
ASKF-Net architecture consists of a basic PA reconstruction (BPR) 
module, semantic feature extraction (SFE) module, and feature fusion 
(FF) module. BPR module is a modified Auto-Encoder architecture used 
to reconstruct images from the PA signal, while the SFE module aims to 
extract semantic features from the DAS image. FF module is used to fuse 
the semantic feature into the output of the BPR module and generate the 
final reconstructed image. 

In 2022, MENG et al. proposed a deep tissue acoustic-resolution 
photoacoustic microscopy technique based on a two-stage deep 
learning network [24]. This technique can adaptively restore 
high-resolution photoacoustic images at different defocusing depths, 

thereby partially solving the problem of poor imaging quality of 
off-focus plane targets. Specifically, the network structure consists of 
two stages. The first stage of the deep learning network is used to 
reconstruct the region far away from the focus, and the second stage 
reconstructs the region near the focus. In order to achieve image 
reconstruction, a residual U-shaped network with attention gates 
(Res-UNet_AG) is also designed in this study. 

2.2. Generative adversarial network 

Super-Resolution Generative Adversarial Network (SRGAN) is a 
network proposed by Christian Ledig et al.in 2017 in their paper [25]. 
This paper presents a super-resolution method based on generative 
adversarial networks, which can convert low-resolution images into 
high-resolution and realistic images. The appearance of SRGAN has 
attracted wide attention in the field of image processing and has ach-
ieved good results in practical applications. 

The main body of the SRGAN network consists of two independent 
and combinable training network structures, namely the generator and 
discriminator. The network loss function consists of a perceptual loss 

Fig. 4. The proposed FD-UNet network architecture, the introduced pixel interpolation process and PAT sensor data acquired with 32 sensors and a semi-circle view; 
(a)(I) Inputs into the CNN for each deep learning approach. The Post-DL CNN implementation used residual learning which included a skip connection between the 
input and final addition operation. The initial Pixel-DL input contains “N” feature-maps corresponding to the number of sensors in the imaging system; (II) The FD- 
UNet is comprised of a contracting and expanding path with concatenation connections; (III) The output of the CNN is the desired PAT image. In Post-DL, residual 
learning is used to acquire the final PAT image; (b)(IV) There are Schematic of the PAT system for imaging the vasculature phantom. The first sensor (S1) is circled 
and used as an example for applying pixel-wise interpolation to a single sensor; The PAT time series pressure sensor data measured by the sensor array; Resulting 
pixel-interpolated data after applying pixel-wise interpolation to each sensor based on the reconstruction grid; (V) There are Sensor data for S1; Calculated time-of- 
flight for a signal originating at each pixel position and traveling to S1; Pressure measurements are mapped from the S1 sensor data to the reconstruction grid based 
on the calculate time-of-flight for each pixel.(c)Data were acquired respectively on images of lung and fundus vasculature. 
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function, which corresponds to the content loss of the generator, and an 
adversarial loss function of the discriminator weighted by the two. The 
training idea of the network is to input low-resolution images into the 
generator network to obtain super-resolution images, and then input the 
super-resolution images into the discriminator network. The discrimi-
nator network will output a binary result representing the "truthfulness" 
of the image. If the discriminator outputs that the image is fake, the loss 
value will be returned to the generator network for further training; if it 
is true, the discriminator will continue to train. In summary, the 
generator and discriminator mutually constrain each other and train 
with a related loss function. The goal of the generator can be understood 
as "deceiving" the discriminator, while the goal of the discriminator is to 
optimize the authenticity of the generator.The network iteration stops 
when the minimum error is reached, and the generator at this time is 
taken as the final result of the network training. The content loss func-
tion used in this paper is different from the spatial loss and is based on 
the feature space Mean Squared Error (MSE) loss of a certain layer 
weight of the VGG19 model [26,27]. This loss function can improve the 
semantic recognition and readability of the image. The paper compares 

the reconstruction effects of three methods, interpolation, ResNet, and 
SRGAN (the generator is ResNet). The results show that SRGAN has a 
better effect in extracting image features. Fig. 6 shows the SRGAN 
network structure. 

In 2018, Wang et al. proposed an enhanced super-resolution gener-
ative adversarial network to solve the artifacts generated by SRGAN in 
image super-resolution [28]. The super-resolution generative adversa-
rial network (SRGAN) can generate realistic textures during the single 
image super-resolution process. However, the details of the recon-
structed image are often accompanied by artifacts. In order to further 
improve the visual quality of SRGAN, the authors conducted in-depth 
research on SRGAN and improved three key components: network 
structure, adversarial loss, and perceptual loss, to obtain an enhanced 
SRGAN (ESRGAN). The residual-in-residual dense block (RRDB) without 
batch normalization is introduced as the basic network building unit. In 
addition, the authors used the idea of relative error to let the discrimi-
nator predict the relative realism instead of the absolute value. Finally, 
the activation before the feature is used to improve the perceptual loss 
and provide stronger supervision for brightness consistency and texture 

Fig. 5. Illustration of the reconstruction framework from Guo et al., which includes PA raw data preprocessing and AS-Net reconstruction network.  

Fig. 6. The SRGAN structure. (a) The Generator Network of SRGAN structure.The main function is to generate parameters. (b) The Discriminator Network of SRGAN 
structure.The main function is to cooperate and build generate corresponding parameters which could be used to train Generator Network for improvement. 
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restoration. The network improvements are shown in Fig. 7. 
Fig. 7(a) shows the network flow of ESRGAN, where Residual Blocks 

in the SRGAN generator are treated as a type of feature extraction layer 
called Basic Block. Fig. 7(b) shows that ESRGAN removes the normali-
zation layer (BN, Batch Normalization) in the Residual Blocks and adds 
Dense Blocks as feature extraction layers after Residual Blocks. In each 
Residual Block, the BN layer appears twice to ensure that the network 
gradient does not explode, but it significantly slows down the network 
training speed and reduces the amount of feature information, which 
leads to a significant impact on the reconstruction effect. Dense Blocks 
can also solve the problem of gradient diffusion and explosion, and will 
not reduce the image reconstruction effect. The authors also proposed 
optimizing the loss function of the discriminator, which is different from 
the standard discriminator in SRGAN. It estimates the real probability of 
the input image, that is, trying to predict the probability that the real 
image is relatively more realistic than the fake image. This modification 
helps to learn sharper edges and more detailed textures. 

2.3. Residual blocks and residual networks 

U-Net is constantly developing in terms of width and depth in the 
field of photoacoustic imaging, especially in the areas of reconstruction 
and image processing in PAM. With the continuous improvement of 
imaging speed, image effectiveness, and the requirements for biaxial 
resolution, the ordinary U-Net network structure is difficult to meet the 
situation of deepening the width and depth. The introduction of Resid-
ual Blocks into U-Net has enabled the network to reach unprecedented 
depths, and Residual Blocks have been fully applied not only in U-Net 
but also in other network structures such as the generator network of 
SRGAN. Szegedy et al. summarized the impact of network structures 
including Residual Blocks on image recognition tasks [29]. The authors 
analyzed the inherent importance of residual connections for training 
very deep neural networks. High-performance networks are often very 
deep, and deep neural networks are difficult to train compared to 
shallow neural networks because of the problems of gradient vanishing 
and exploding, as well as the increased computational complexity that 
increases the hardware requirements for network training. Skip con-
nections are an important component structure of Residual Blocks, 
which can obtain weights from a certain layer of the network layer and 
quickly feedback to another layer, usually skipping connections to 
deeper layers. This structure can reflect the weights of the lower layers 
of the network in the next layers of the network, thereby avoiding 
gradient vanishing and exploding problems, and improving the effi-
ciency and stability of network training. Currently, it is common to use 
residual connections to replace filter cascading stages. 

The authors also pointed out that optimizing convolutional neural 
networks with recognition performance as the goal can also be 

transformed into performance improvements in other tasks. Using Re-
sidual Blocks to construct residual networks (ResNet) that can train deep 
networks not only has good results in image segmentation but can also 
be further extended to other fields such as medical imaging. He et al. 
first proposed ResNet to solve the problems of gradient vanishing and 
exploding in deep networks while successfully increasing the number of 
network layers to the order of 10^3 while ensuring the constraint of the 
loss function. ResNet is composed of Residual Blocks [30,31]. The pro-
posal of ResNet and Residual Blocks ensures the effectiveness of training 
deep neural networks. Even if the network depth reaches the level of 
103, the loss function can be optimized to ensure a reduction in training 
error. 

3. Application of deep learning in photoacoustic imaging 

3.1. Photoacoustic image reconstruction 

Deep learning methods, as a new information mining method, have a 
wide range of applications in multidimensional information processing, 
such as reconstruction, denoising, super-resolution, etc., and have ach-
ieved many good results.Currently, there are also some non-iterative 
reconstruction schemes proposed, such as direct estimation, PA signal 
model reconstruction, and PA signal or image enhancement through 
deep learning. 

The direct reconstruction method solves the PA wave equation, 
which captures the mapping from signal to image with the PA signal as 
input. Waibel et al. established a direct estimation from light and sound 
signal detector data to PA imaging [32], input the synthetic data of the 
128-element linear detector into an improved U-Net, and reconstructed 
the final initial PA pressure signal. Schwab et al. used deep learning to 
learn the weights of reflected data on different channels and trained 
neural networks for vessel phantom. Meanwhile, the model used 
Shepp-Logan phantom to verify. They also proposed a data-driven reg-
ularization method [33], which significantly suppresses noise by 
applying truncated singular value decomposition (SVD) [34] and then 
restoring truncated SVD coordinate coefficients. Lan proposed using 
three different sensor data (2.25 MHz, 5 MHz, 7.5 MHz) as input and 
using U-net for direct reconstruction. Feng et al. improved Res-Unet for 
direct reconstruction of simple phantoms and compared it with some 
U-net models [35]. Tong Tong [36] trained a feature pyramid network 
(FPnet) as post-processing using in vivo data. Mohammad Abu Anas 
et al. proposed a deep CNN network structure for beamforming PA data 
[37], which consists of five dense blocks consisting of convolutional 
layers with different sizes. The article discusses the influence of variable 
sound speed on this method and verifies its robustness under variable 
sound speed. 

In particular, in the PAI system, due to the existence of optical 

Fig. 7. ESRGAN Network; (a) ESRGAN flow; (b) Modified Residual Block and RRDB.  
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scattering, the effective excitation degree of deep targets is affected to a 
certain extent, which is a problem that cannot be ignored. To solve this 
problem, Johnstonbaugh et al. designed an encoder-decoder network for 
predicting objects in deep tissue [38]. This study introduced acoustic 
and optical attenuation in simulation and compared it with actual sit-
uations. Allman et al. used VGG16 beam to detect and eliminate re-
flections from point sources [39], and all experiments used simple 
(point) phantoms. This method uses neural networks to eliminate arti-
facts caused by reflections, which greatly improves imaging speed. 

In summary, there is currently widespread research on non-iterative 
reconstruction methods, indicating the urgent need for real-time pho-
toacoustic imaging. Not only in PAT, but also in PAM and PAE, there are 
various problems with real-time imaging. Factors affecting imaging 
speed in traditional PAM algorithms include the repetition rate of the 
excitation light pulse, scanning mechanism, signal preprocessing, and 
image post-processing. Common solutions such as increasing pulse 
repetition rate, sampling scanning method, and pixel stacking have been 
verified, but at the same time, they also face the lack of imaging quality. 
Considering the current research status of PAE, there are not many 
studies on PAE reconstruction using deep learning, so it will not be 
further described here. 

3.1.1. Photoacoustic tomography image reconstruction 
Image reconstruction is an important part of photoacoustic 

computed tomography (PAT), which is responsible for converting the 
raw signals received by the ultrasound transducer into an initial pressure 
distribution image. Due to the ill-posed nature of photoacoustic imaging 
and the lack of an accurate inverse model in practical situations (limited 
field of view and sparse sampling), photoacoustic tomography recon-
struction is still challenging. In PAT, the purpose of image reconstruc-
tion is to reconstruct the initial PA pressure distribution, which is 
positively correlated with the optical absorption intensity of biological 
tissues. The sensor array receives PA signals P (P (r, t) | r, t represents 3D 
position and time) excited by short-pulsed laser at different ionization 
levels, and based on these PA signals, the acoustic-thermal information 
H (r, t) is reconstructed through some inverse reconstruction methods, 
and then A (r) is further reconstructed, i.e., the distribution of tissue 
optical absorption intensity. Currently, the most commonly used inverse 
reconstruction methods include model-based methods such as back-
projection (BP) and time reversal (TR); sparse data-based reconstruction 
methods such as compressed sensing (CS), wavelet transform (WT), and 
discrete cosine transform (DCT); data mining methods such as deep 
learning; and model-based iterative methods. Among them, back-
projection method is the most widely used, while BP and its derived 
algorithms such as filtered backprojection (FBP) are considered the most 
famous PAT reconstruction algorithm due to their simple implementa-
tion [40,41]. 

If experimental conditions are sufficient, i.e., a sufficiently large and 
dense ultrasound transducer array is distributed on the inner radius of a 
circular or elliptical detector, the photoacoustic inverse problem of the 
backprojection method can be expressed as follows [40]: 

A(r)∝
∫

dθ
1
t

∂p(r0, t)
∂t

|t=(|r0 − r|/c) (1) 

Here, r is the position of the acoustic pressure; c is the speed of sound; 
θ is the angle between the ultrasound transducer and the acoustic 
pressure signal; r0 is any position of the ultrasound transducer on the 
inner radius of the circular or elliptical detector; p(r0, t) is the known 
condition for the inverse operation, i.e., the acoustic pressure signal 
received by the ultrasound array at that position; A(r) is the spatial 
distribution of tissue optical absorption intensity. 

Kim et al. proposed to modify 2D raw data (with time and detector 
dimensions) into a 3D array (with two spatial dimensions and one 
channel dimension), where the channel data packages correspond to the 
propagation delay distribution at a spatial point and serves as the input 
to the neural network [42]. Traditional popular machine learning 

methods train on incomplete images obtained under ill-posed conditions 
through standard reconstruction methods [43–46]. Due to the loss of 
previously captured weak information that is difficult to reconstruct, the 
fine structure of the reconstructed image is often unsatisfactory. Kim’s 
method trains on the basis of the first step of most traditional recon-
struction methods, greatly simplifying the learning process. The 
expansion of the channel dimension preserves more information and 
improves learning accuracy. 

Fig. 8(a) shows the input data of the neural network. Using simple 
acoustic propagation physics rules in r (x, z) and the linear array 
transducer system, 3D transformed data is obtained by the propagation 
delay distribution of specific image points at different depths, which are 
used as inputs to the network. 

Fig. 8(b) shows the CNN network architecture used in the study. 
Prior to data input into the network, pre-processing was performed by 
looking up a priori LUT tables on the original signal (2048 × 128 ob-
tained by adding noise to real images), converting it into a 
512 × 128 × 128 data array containing delay information. Reformat-
ting the original channel data into a multi-channel array as a pre- 
processing step improves learning efficiency for highly complex 
network structures. This neural network uses U-net as a basis and de-
composes the signal through multi-scale feature mapping. By combining 
trainable networks with transformation methods, the structure of 
vascular networks was simulated in simulations and experiments. 
Overall, this method significantly improves image quality compared to 
traditional methods for reconstructing PA data, but loses a little complex 
absorption body geometry and may produce small artifacts. 

Antholzer et al. proposed a direct and efficient reconstruction algo-
rithm based on deep learning for the sparse data problem in re-
constructions [47]. The first step uses the PAT filtered backprojection 
algorithm, followed by optimizing the reconstruction results using the 
U-net architecture. It not only solves the time-consuming forward and 
adjoint problems, but also has better imaging effects than direct filtered 
backprojection algorithms, and performs similarly to existing iterative 
methods for sparse data PAT.Because iterative algorithms have their 
own limitations. For example, the reconstruction quality strongly de-
pends on the used a-priori model about the objects to be recovered. For 
example, TV minimization assumes sparsity of the gradient of the image 
to be reconstructed. Such assumptions are often not strictly satisfied in 
real world scenarios which again limits the theoretically achievable 
reconstruction quality.On the other hand, iterative reconstruction al-
gorithms tend to be slower as they require repeated application of the 
PAT forward operator and its adjoint.Antholzer further proposed 
another three-layered S-net network for direct reconstruction for the 
sparse data problem, where the input is an image with artifacts and a 
real ground image obtained through a priori method. In simulation ex-
periments, S-net can effectively eliminate artifacts caused by sparse data 
and greatly improve reconstruction efficiency compared to traditional 
image reconstruction methods [48–51]. The author also summarizes a 
deep network generally used for image enhancement after PAT image 
reconstruction. In the first step, the FBP algorithm (or another standard 
linear reconstruction method, using FBP as an example here) is applied 
to sparse data. In the second step, a deep CNN is applied to intermediate 
reconstruction, which outputs an image with almost no artificial arti-
facts.This can be explained as a deep network with FBP in the first layer 
and CNN in the remaining layers. 

Image reconstruction is also an important part of functional imaging, 
including blood oxygen detection and various molecular detections. Due 
to the fact that hemoglobin is the main substance absorbed by human 
cells below 1000 nm, PAT can quantitatively detect hemoglobin (HbO2) 
and deoxyhemoglobin (HbR). Since the oxygen saturation (sO2) of he-
moglobin in normal tissue is higher than that in malignant tissue, sO2 is 
an important physiological index of the body [52–54]. sO2 is defined as 
the fraction of HbO2 relative to the total hemoglobin concentration in 
the blood: 
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sO2(x, y) =
CHbO2 (x, y)

CHbO2 (x, y) + CHbR(x, y)
× 100% (2) 

Here CHbO2 and CHbR represent the concentration of oxygenated and 
deoxygenated hemoglobin, respectively, while x and y denote the spatial 
position. According to the above formula, the basic principle of using 
photoacoustic tomography (PAT) for quantitative blood oxygen syn-
thesis imaging is that HbO2 and HbR have significant absorption dif-
ferences at different wavelengths of light. Similarly, quantitative 
spectroscopic photoacoustic imaging (QS-PAI) is an imaging technique 
that measures at multiple wavelengths of light to provide information 
related to molecular composition [55]. The aim is to convert 
multi-wavelength PA images into a final image that mainly highlights 
the quantitative and accurate estimation of chromophore spatial con-
centration changes in scattering media. The main problem with QS-PAI 
is essentially an inversion problem of light propagation operators. The 
current common two-stage inversion strategy can be summarized as 
follows: 1. determining the absorption coefficient; 2. determining the 
chromophore concentration. Due to the characteristics of scattering 
media, accurate nonlinear inversion of spatially structured light flux is 
difficult to achieve, and it is unrealistic to rely on strict conditions, such 
as known scattering coefficients and homogeneous background optical 
properties. In the inversion process, linear substitution instead of 
nonlinear inversion is used to determine the absorption coefficient by 

using multi-wavelength PA images and light flux related to the absorp-
tion coefficient and scattering coefficient, which may result in large 
errors. 

Cai et al. proposed the first deep learning framework Res-Unet for 
quantitative PA imaging [56]. Res-Unet takes the entire initial pressure 
image distributed at different wavelengths as input, so that recon-
struction can best utilize all measurement signals. To prevent the 
degradation of deep networks, residual learning mechanism is adopted. 
In Res-Unet, comprehensive contextual information is extracted from 
multispectral initial pressure images to quantitatively estimate chro-
mophore concentration or sO2. The CNN architecture implemented 
using U-net is used to measure object contours, perform optical inver-
sion, estimate the main absorbing chromophores and their absorption 
spectra, and perform linear decomposition. 

Yang et al. proposed a deep residual and recursive neural network 
(DR2U-net) for quantitative estimation of hemoglobin oxygenation in 
photoacoustic imaging [57]. The proposed DR2U-net can extract flux 
distribution information from the optical absorption image using only 
two wavelengths of light in Monte Carlo simulations, and then generate 
quantitative sO2 images. Through testing on simulated biological tis-
sues, the measured sO2 results have high accuracy, with an error as low 
as 1.27 %, compared to traditional linear mixing methods (48.76 %). In 
the network structure, deep networks can enrich feature information, so 

Fig. 8. System diagram. (a) Schematic of photoacoustic data acquisition; (b) CNN-Net.  

X. Wei et al.                                                                                                                                                                                                                                     

308



Neurocomputing 573 (2024) 127207

11

the article uses residual connections mentioned above to solve possible 
gradient explosion and improve training accuracy [58]. Batch normal-
ization is also used to accelerate convergence speed and reduce covar-
iate shift. This approach effectively reduces the nonlinear effect of 
scattered light flux while increasing system robustness and reducing 
noise interference. 

Rajendran and Pramanik proposed a novel deep learning architec-
ture for tangential resolution in circular-scan photoacoustic tomography 
(PAT) imaging system [59]. The article uses a U-Net-based convolu-
tional neural network combined with 9 residual blocks to improve the 
tangential resolution of PAT images. This is the first study to use a U-Net 
structure neural network for tangential resolution of PAT images. In 
general, in photoacoustic tomography, axial resolution does not change 
and is influenced by the detection bandwidth. However, tangential 
resolution will change with the size of the detector aperture. Especially 
when the aperture size is smaller, the tangential resolution is higher. 
However, if a small-aperture detector is used, the sensitivity of the 
sensor will decrease. Therefore, a large-aperture detector is the main 
choice for circular-scan PAT imaging systems. The proposed TARES 
network was implemented using Python 3.7 and TensorFlow v2.3 deep 
learning library [60]. The model was trained using simulated PA data 
and validated using experimental model data and human PA images 
[61–64]. The training model can detect data well and simulate body 
images of humans and animals. 

Gao et al. proposed a U-Net-based convolutional neural network to 
extract effective photoacoustic information hidden in speckle patterns in 
a vascular network image dataset under porous media [65]. As shown in  
Fig. 9, human skull belongs to a typical multi-scattering medium, and 
traditional ultrasound imaging has many challenges in imaging deep 
and fine structures due to significant scattering of sound signals during 
excitation and reception. The article uses photoacoustic imaging prin-
ciples and deep neural networks to solve the issues of frequency-domain 
wideband scattering in transcranial photoacoustic microvascular imag-
ing and superposition of spatial domain main lobe and side lobe signals 
[66,67]. In short, the neural network can effectively extract valid in-
formation from highly blurred speckle patterns for rapid reconstruction 
of target images, providing broad application prospects in transcranial 

photoacoustic imaging [68,69]. 

3.1.2. Photoacoustic microscopic imaging reconstruction 
Zhou et al. proposed a method using ResNet to improve the quality of 

sparse PAM images [70], which can simultaneously maintain good 
image quality and accelerate image acquisition speed [71–73]. In this 
work, the dataset used was PAM images of oak and magnolia leaf veins. 
Immerse the leaves in a container with black ink for more than 7 h, then 
place them on a glass slide and seal them with silicone gel (GE sealant). 
For each PAM image, use an OR-PAM probe with a resolution of 2 µ m, 
consisting of a beam profiler and 10 × Beam expander measurement at 
256 × Scan leaf samples at 256 scanning points with a scanning step of 
8 µ m. Finally, a real image dataset of 268 original fully sampled PAM 
images was obtained. Corresponding low pixel images pass through 
2 × And 4 × Downsampling acquisition. 

The proposed ResNet structure is shown in Fig. 10(a). The authors 
used 16 residual blocks and 8 squeeze and excitation (SE) blocks as the 
key part of feature extraction. Inspired by SRGAN [74], the residual 
block shown in Fig. 10(b) can extract features well in the SR task. The SE 
block with channel attention mechanism (as shown in Fig. 10(c)) helps 
network convergence and performance. The "Upconv" block consists of 
2× upsampling layers and standard convolution layers (kernel size 3, 
filter number 256, stride 1). The Tanh activation function is used after 
the final output layer. 

Zhao et al. proposed a multi-task residual dense network (MT-RDN) 
deep learning system and method [75]. The MT-RDN network adopts an 
innovative strategy combining multi-supervised learning, dual-channel 
sample collection, and reasonable weight allocation. The proposed 
deep learning method is combined with an improved OR-PAM system 
for application. This study obtained good images for the first time under 
ultra-low laser dose (reduced by 32 times). The network method aims to 
solve the challenges of image quality deterioration caused by low 
single-pulse laser energy and undersampling during high-speed imaging. 

In the proposed system method, the original images (i.e., under-
sampled images obtained under low excitation laser energy) are 
collected at 532 and 560 nanometer wavelengths and assigned to two 
different network input channels input1 and input2 respectively. The 

Fig. 9. Schematic diagram and method comparison diagram. (a) the schematic diagram of transcranial photoacoustic imaging; (b) the reconstruction effect of DAS 
and this network on plaque respectively; (c) and (d) the reconstruction effect of DAS and this network on whole image respectively. 
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low pixel input of the network is obtained by down-sampling the orig-
inal image using 2x and 4x undersampling images at half of the single- 
pulse laser energy (i.e., ANSI limit of single-pulse laser energy), and 
then segmenting the original image as input to the MT-RDN network. 
The 2x undersampled image is cut into slices of 100 × 100 pixels, and 
the 4x undersampled image is cut into slices of 50 × 50 pixels. MT-RDN 
has three sub-networks. The first sub-network is used to process data 
input 1 (i.e., 532 nm data) to obtain output 1, and the second sub- 
network is used to process data input 2 (i.e., 560 nm data) to obtain 
output 2. Outputs 1 and 2 are further combined and processed by Sub- 
network 3 to obtain output 3. Ground truth images 1–3 are obtained 
from full-sampled images obtained at 532 nm and 560 nm ANSI limits of 
single-pulse laser energy, and ground truth images obtained using the 
Paivef method [76]. 

3.2. Photoacoustic image processing 

The goal of image processing is to improve the quality and clarity of 
important details or targets in an image for specific applications by 
manipulating the image. Often, image enhancement is closely associated 
with the subsequent steps of photoacoustic image reconstruction. Image 
processing techniques such as noise reduction, smoothing, contrast 
stretching, sharpening, edge enhancement, and super resolution are 
commonly used to increase imaging readability and efficiency. These 
operations all belong to image processing, with the aim of improving the 
interpretability and effectiveness of the resulting image. Image pro-
cessing often follows image reconstruction algorithms. 

3.2.1. Improvement of signal-to-noise ratio of photoacoustic images 
In photoacoustic (PA) signals, the initially acquired PA signal and 

image often suffer from low signal-to-noise ratio (SNR) due to the weak 
amplitude of the PA signal and strong random noise from external in-
struments and the environment. In practice, the PA waves generated by 
low-cost, low-energy laser diodes are very weak and almost buried by 
noise. Additionally, deep tissue imaging is accompanied by severe 
attenuation, such as scattering, leading to the problem of low SNR in PA 
signals [77]. Consequently, the reconstructed PA images have poor 
quality with noise. Therefore, effective denoising techniques are 
required for reconstructing artifact-free PA images from measurements 
containing noise signals [78–80]. Although traditional Kalman filters 
(KF) [81,82] can remove Gaussian noise in the time domain [83–86], 
they lack adaptability under real-time estimation conditions due to their 
fixed model. The effectiveness of the traditional KF relies on the proper 
definition of two key parameters: the system noise matrix (Q) and the 
measurement noise matrix (R). However, it is often challenging to 

obtain accurate statistical data for these parameters in practical situa-
tions. To overcome this challenge, there are existing methods for elim-
inating white noise. The most common one is data averaging, which has 
been used in PAI. However, it requires additional storage space for data 
and imposes high requirements on time [87]. In addition to white noise, 
electrical noise generated by the photoacoustic imaging system [88,89] 
and interference in the acquired photoacoustic signals can significantly 
degrade image contrast in multispectral photoacoustic tomography 
(MSOT). 

He et al. proposed an attention enhanced GAN that uses an improved 
U-net generator to remove noise from PAM images [90]. The network 
does not need to manually select settings for different noisy images, but 
instead uses an attention enhanced generative adversarial network to 
extract image features and adaptively remove varying degrees of 
Gaussian, Poisson, and Rayleigh noise. The proposed method has been 
validated on both synthetic and real datasets, including phantom (leaf 
vein) and in vivo (mouse ear blood vessels and zebrafish pigment) ex-
periments. The network structure diagram and denoising effect are 
shown in Fig. 12. To effectively capture features and distinguishing in-
formation with varying importance, an attention mechanism is applied 
in their network Different from regular CNNs which may treat all in-
formation equally, attention blocks additionally introduce attention 
weights for different feature channels or spatial positions Specifically, 
this method utilizes the attention block, ie., the GC block, to enhance the 
attention to long range dependencies and that better handle unexpected 
noise instance of focusing on signal pixels The detailed structure of the 
GC attention block includes 1 × 1 conversions and layer normalization 
GC blocks are placed after each standard unit block of the encoder in the 
generator.Fig. 11(a) shows the GAN network structure diagram. The 
network structure includes a generator and a discriminator. Fig. 11(b) 
displays a comparison of the results of neural network imaging and other 
methods in the mouse ear vascular region. (Scale bar: 250 µm. All im-
ages, excluding zoom images, share the same scale bar. The values in the 
colorbar indicate relative PA intensity) On the left side of Fig. 11(c) is 
the sample image before denoising, which includes mouse ear blood 
vessels, zebrafish pigment, and enlarged color box areas in the above 
samples. On the right is the denoised image, which includes mouse ear 
blood vessels, zebrafish pigment, and enlarged color box areas in the 
above image. (Scale: 500 µm). 

3.2.2. Improvement of photoacoustic image resolution 
Deep learning methods can also be applied to improve the resolution 

of photoacoustic (PA) images. Traditional acoustic-resolution PA im-
aging systems are often limited to imaging resolutions on the order of 
100 micrometers due to the optical diffraction limit and the acoustic 

Fig. 10. Resnet Network diagram; (a) ResNet structure; (b) Residual Block structure; (c) Squeeze and Excitation (SE) Block.  
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diffraction limit. On the other hand, optical-resolution imaging systems 
can achieve spatial depths of around 1 mm due to the optical diffraction 
limit but have limited applicability in clinical medicine. Similar to the 
post-processing methods for sparse data or array-angle-limited problems 
in PA tomography (PAT), deep learning has been widely used in super- 
resolution reconstruction of photoacoustic images by implementing end- 
to-end image optimization. 

Cheng et al. proposed a deep-penetration high-resolution photo-
acoustic microscopy technique based on deep learning generative 
adversarial network (GAN) architecture [91]. This method employed 
Wasserstein GAN (WGAN) as the training network to learn from 
low-resolution absorption-reconstruction photoacoustic microscopy 
(AR-PAM) images towards high-resolution optical-resolution photo-
acoustic microscopy (OR-PAM) images at the same depth. In this WGAN 
network, the generator takes AR images as input and generates 
high-resolution images, which are then passed to the discriminator to 
determine their similarity to ground truth and high-resolution images. 
As mentioned earlier, this generative adversarial network involves an 
adversarial cooperative training between the generator (G) and the 

discriminator (D): G generates an image that closely resembles the target 
image or its label to deceive D, while D provides feedback by discerning 
between real and generated images. In general, the network aims to 
minimize the mutual information difference (also known as 
Jensen-Shannon divergence) between the produced data and the real 
data. The article employed Wasserstein distance as the selected objective 
instead of Jensen-Shannon divergence to address the issues of vanishing 
gradients and model collapse in the generator [92–94]. The imaging 
results are shown in Fig. 12(a)–(c). 

The degradation model of AR-PAM imaging is influenced by the 
imaging depth and the center frequency of the ultrasonic transducer, 
which may vary under different imaging conditions and cannot be 
processed using a single neural network model. To address this limita-
tion, Zhang et al. proposed a supplementary framework that combines 
the advantages of model based and learning based methods and avoids 
their limitations, which can be used to enhance the image quality of AR- 
PAM images [95]. Firstly, a deep convolutional neural network is used 
to implicitly capture the image statistical and structural information of 
the target vascular image, thereby obtaining a Plug and Play (PnP) prior, 

Fig. 11. Network structure diagram and denoising effect illustration. (a) Network structure diagram; (b) Representative results of the mouse ear blood vessel dataset 
acquired by in vivo experiment. Top raw: a representative sample from the synthetic noisy dataset; bottom row: a representative sample from the real noisy dataset; 
(c) Demonstration of denoising effects on mouse ear vasculature and zebrafish pigment. 
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Fig. 12. WGAN network results for mouse ear vasculature and results of an adaptive enhancement method with a deep CNN prior. (a-c) WAGAN network for mouse 
ear vasculature: (a) Network input AR-PAM image, (a1, a2, a3) enlarged regions selected by white dashed boxes; (b) Network output image, (b1, b2, b3) enlarged 
regions selected by white dashed boxes; (c) Ground truth OR-PAM image, (c1, c2, c3) enlarged regions selected by white dashed boxes; (d-i) Adaptive enhancement 
method with a deep CNN prior: (d) Example AR-PAM image enhancement in different iterations by model based equation (upper row) and FFDNet (bottom row); (e) 
AR-PAM imaging result; (f) OR-PAM imaging result; (g) Result enhanced using the FDU-Net on (e); (h) Enhancement result using the total variation algorithm on (e); 
(i) Result enhanced using the proposed algorithm on (e); (j) Signal intensity distribution along the vertical dashed line. (Scale bar: 1 millimeter). 
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while avoiding the process of designing complex manual regularization 
terms. Subsequently, this PnP prior is further inserted into the model 
based framework so that it can adaptively handle the variational 
degradation process. The proposed framework was first applied to 
simulation research and demonstrated its excellent performance and 
adaptability (with a huge dynamic range). In addition, some in vivo 
experiments were conducted to test the framework’s ability to handle 
various real imaging scenes. The results show that this method can 
adaptively enhance AR-PAM images obtained across different imaging 
systems and depths, expanding the application scenarios of this method. 
This work adopted a combination of network optimization and degra-
dation models, iterating eight times each other. The advantage of this 
approach is to use neural networks to correct artifacts generated by 
degradation methods, and model methods to correct images when the 
optimization effect of network images decreases, achieving the effect of 
improving image effectiveness and resolution.The iteration model and 
imaging results are shown in Fig. 12(d)–(j). In the three simulation 
scenarios created, the proposed algorithm achieved optimal perfor-
mance in terms of PSNR and SSIM values; In vivo testing results using 
this algorithm showed significant increases in SNR and CNR values from 
6.34 and 5.79, respectively, to 35.37 and 29.66, as shown in Fig. 12(j). 

3.2.3. Photoacoustic image segmentation and recognition processing 
Image detection and recognition involve the task of identifying 

specific elements in medical images [96–98]. In many cases, the images 
are three-dimensional, making efficient analysis crucial. The ability to 
differentiate and classify different elements is fundamental in medical 
image analysis, and image segmentation is a necessary method for 
processing medical images. Image segmentation has greatly benefited 
from the latest developments in deep learning. In image segmentation, 
the goal is to accurately delineate the contours of organs or anatomical 
structures, and methods based on convolutional neural networks (CNNs) 
have gradually become dominant in this field. Deep learning not only 
helps in selecting and extracting features but also aids in constructing 
new features[99–101]. Moreover, it can provide predictive models that 
not only diagnose diseases but also measure and predict targets, offering 
actionable insights to improve efficiency for medical professionals. 
There have been numerous successful examples of deep 
learning-assisted image processing in photoacoustic imaging, and the 
segmentation and recognition methods used in photoacoustic imaging 
can be applied to other medical imaging modalities as well. 

Zhang et al. proposed an emerging deep learning-based method for 
breast cancer diagnosis in photoacoustic tomography (PAT) [96]. This 
method employed a preprocessing algorithm to enhance the quality and 
uniformity of input breast cancer images. Additionally, a transfer 
learning algorithm was utilized to address the issue of insufficient 
training data, resulting in improved classification performance. The 
network categorized existing breast cancer datasets into six classes 
based on the BI-RADS level, helping doctors better diagnose and treat 
cancer based on breast imaging reports and data system levels. 

In magnetic resonance imaging (MRI) field, Wu et al. proposed an 
oriented novel attention-based glioma grading network (AGGN) [102]. 
By applying the dual-domain attention mechanism, both channel and 
spatial information can be considered to assign weights, which benefits 
highlighting the key modalities and locations in the feature maps. 
Multi-branch convolution and pooling operations are applied in a 
multi-scale feature extraction module to separately obtain shallow and 
deep features on each modality, and a multi-modal information fusion 
module is adopted to sufficiently merge low-level detailed and 
high-level semantic features, which promotes the synergistic interaction 
among different modality information. The results have demonstrated 
the effectiveness and superiority of the proposed AGGN in comparison to 
other advanced models, which also presents high generalization ability 
and strong robustness. 

Li et al. proposed a feature learning enhanced convolutional neural 
network (FLE-CNN) for cancer detection from histopathology images 

[103]. They built a highly generalized computer-aided diagnosis (CAD) 
system. The FLE-CNN included an information refinement unit 
employing depth- and point-wise convolutions is meticulously designed, 
where a dual-domain attention mechanism is adopted to focus primarily 
on the important areas. Experimental results demonstrate the merits of 
the proposed FLE-CNN in terms of feature extraction, which has ach-
ieved average sensitivity, specificity, precision, accuracy and F1 score of 
0.9992, 0.9998, 0.9992, 0.9997 and 0.9992 in a five-class cancer 
detection task, and in comparison to some other advanced deep learning 
models, above indicators have been improved by 1.23 %, 0.31 %, 1.24 
%, 0.5 % and 1.26 %, respectively. 

3.3. Photoacoustic signal processing 

Awasthi et al. proposed a deep learning-based photoacoustic (PA) 
sinogram super-resolution denoising model [104]. The loss function of 
this model is scaled root mean square error, which is used for 
super-resolution, denoising, and bandwidth (BW) enhancement of PA 
signals acquired at region boundaries [105]. The network and method 
presented in the paper have the following characteristics:It is the first 
single network that performs super-resolution, denoising, and BW 
enhancement of PA data in the sinogram domain. Most deep learning 
networks are proposed in the image space to improve reconstructed 
images. This network exhibits inherent robustness and generalization 
abilities. It also demonstrates robustness when trained on numerical 
models.The improved structure can be used to enhance raw data 
(sinogram) acquired experimentally, improving the results of inverse 
problems and inherently reducing biases introduced by image recon-
struction methods.The introduction of scaled root mean square loss 
function to train the network on sinogram data containing extremely 
low values can be extended to other applications with similar properties 
as PA data. Fig. 13(a) and (b) show the network flowchart and structure 
diagram. 

Similarly, Zhang et al. also proposed using sinogram data as input to 
remove artifacts produced by photoacoustic tomography imaging [106]. 
In their work, a two-dimensional brain PA numerical phantom dataset 
was generated based on magnetic resonance angiography (MRA) and 
T1-weighted images from the ixi dataset. The dataset was then used as 
input to a U-net network for training. The simulated artifact images were 
corrected against prior high-resolution images, resulting in a trained 
network that effectively corrects the acoustic aberration caused by the 
skull. Fig. 13(c) illustrates the experimental workflow, (d) presents 
comparisons of three sets of simulated brain imaging sinogram maps 
before and after artifact removal, and (e) shows a comparison of 
normalized signals from one of the models. 

In photoacoustic imaging, previous signal processing techniques 
have been found insufficient to eliminate the influence of electrical noise 
because they often rely on simplified models and fail to capture the 
complex characteristics of both the signal and the noise. Dehner et al. 
proposed a discriminative deep learning approach to separate electrical 
noise from the photoacoustic signal prior to image reconstruction as 
shown in Fig. 14 [107]. In Fig. 14(a), Data layout of a measured mul-
tispectral stack of sinograms. The depicted sinogram shows the recorded 
signals during a representative scan of a human breast lesion at 960 nm. 
Magnification of the marked signals, which were recorded prior to re-
sponses from tissue and thus are predominately comprised of electrical 
noise. Histogram and fitted Gaussian distribution (R2 = 99.5 %) for 
parts of the electrical noise with visually low amounts of parasitic noise 
(signals marked with the dashed rectangle) illustrating the character-
ization of the thermal noise of the system. In Fig. 14(b), there are Noisy 
sinogram from a representative scan of a human breast lesion.Electrical 
noise component inferred by the neural network on the left side. 
Denoised sinogram obtained by subtracting the above two. On the right 
side are Magnifications of the marked areas in the left charts. Quanti-
tative evaluation of the denoising performance below. There are Com-
parison of the SNR distributions in simulated photoacoustic sinograms 
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that are distorted by electrical noise before and after denoising. The 
mean gain is 10.9 dB. Evaluation of in vivo scans of human breast le-
sions. Mean SNR (SNRmean) of individual time samples. The average 
increase is 20.8 dB. Individual SNRmean of all detectors. The average 
increase is 22.4 dB. Average SNR gains (“SNR after denoising - SNR 
before denoising”) of the trained model for photoacoustic signals that 
were corrupted by a combination of measured electrical noise sinograms 
scaled with factor EN ∈{0, 0.5, 1,., 3}, and white Gaussian noise with 
standard deviations σGN ∈{0, 0.2, 0.4,., 2}. In Fig. 14(c), The first row 
shows the NMF spectra obtained from the original and denoised human 
breast lesion MSOT images from Dataset-BC, as well as the reference 
absorption spectra of the most prominent chromophores in breast tissue. 
The second and third rows show the before and after denoising com-
parison images, with the left column representing the pre-denoising 
image and the right column representing the post-denoising image. Vi-
sualizations of the NMF decomposition of a typical MSOT image are 
shown for pre-denoising and post-denoising at a depth of approximately 
2 cm in malignant breast tumor. The contribution of the three spectra to 
the image is color-coded, with these spectra corresponding to the ab-
sorption spectra of hemoglobin (second row), fat, and water (third row). 
The tumor location determined from the ultrasound image is delineated 
by white contours. The proposed deep learning algorithm is based on 
two key features. Firstly, it learns the spatiotemporal correlation be-
tween the noise and the signal by using the entire photoacoustic sino-
gram as input. Secondly, it is trained on a large dataset consisting of 
experimentally acquired pure noise and synthetic photoacoustic signals. 

The network utilizes a U-Net neural network architecture with 5 
depths and 64 channel widths [108,109]. The basic expressive power of 
the network is reduced by estimating the interference signal. The L1 
norm (L1 loss) is used as the loss function, and the ADAM optimizer 

[110] is employed with a learning rate of 0.0001, decayed linearly to 0. 
The ADAM optimizer has a batch size of 1, and the momentum param-
eters are set to β1 = 0.5 and β2 = 0.999. To speed up the learning pro-
cess, Dehner et al. used a neural network input value of a constant 0.004, 
which brings the signal range to [− 1; 1]. After passing through the 
artificial neural network, all signals were rescaled back to their original 
range. During training, the decomposition with the minimum loss over 
the data was validated, and the final model was selected. 

Gutta et al. proposed a deep learning-based method for bandwidth 
enhancement of photoacoustic (PA) data [111]. During the process of 
photoacoustic tomography (PAT), the acquired PA signals from the 
surface of the tissue are always limited to a certain frequency band, 
while finer details of the image often reside in the high-frequency region 
of the PA signal. By utilizing a deep learning network, it is possible to 
effectively enhance the bandwidth of the PA signal without increasing 
computational complexity, thereby improving the contrast restoration 
and reconstruction quality of PA images.The network is trained with 
limited-bandwidth signals as input and full-bandwidth signals as output. 
The enhanced acoustic (PA) signal is then used as input to analysis 
reconstruction algorithms such as backprojection. This approach en-
ables simple and efficient restoration of frequency band information but 
is limited by the constraints of prior algorithms and cannot achieve 
breakthroughs without real ground truth data. 

Zhou et al. proposed a conditional generative adversarial network 
(cGAN) for distinguishing the photoacoustic (PA) signals generated by 
fiber-separated dual-wavelength excitation lasers [112]. The time delay 
between the signals is approximately 38 nm. Improving the imaging 
speed of multi-parameter photoacoustic microscopy (PAM) is a key 
focus in this direction. To avoid temporal overlap, the A-line rate is 
limited to within 3 MHz due to the speed of sound in biological tissues.In 

Fig. 13. Application of Sinogram Graph as Network Input in PAT. (a) Network diagram proposed by Awasthi et al.; (b) Network structure. (c) The experimental flow 
chart proposed by Zhang et al., whose flow includes prior image segmentation, making skull simulation structure, optical simulation, acoustic simulation, sinogram 
image training and finally obtaining the artifact free image; (d) Normalized PA sinograms and normalized DAS reconstructed human brain PAT images from 
viscoelastic media acoustic model. (e) Normalized PA signal is taken as the first channel of one of the skull simulation models. Signals are reference PA signal, PA 
signal with skull aberration obtained from fluid media acoustic model, PA signal with skull aberration obtained from viscoelastic media acoustic model, PA signal 
with skull aberration obtained from fluid media acoustic model after U-net Correction, PA signal with skull aberration obtained from viscoelastic media acoustic 
model after U-net correction. 

X. Wei et al.                                                                                                                                                                                                                                     

314



Neurocomputing 573 (2024) 127207

17

order to achieve high-speed photoacoustic imaging of hemoglobin ox-
ygen saturation, stimulated Raman scattering in optical fibers is widely 
used as a conventional method for generating dual-wavelength excita-
tion at 558 nm from a commercially available 532 nm laser. However, 

the length of the fiber used for efficient wavelength conversion is typi-
cally short, resulting in only a small time delay being obtained, leading 
to significant overlap in the acquired A-line signals at the two wave-
lengths. The proposed cGAN network allows for PAM excitation using 

Fig. 14. The experiment is based on the schematic diagram of a handheld MSOT system, the evaluation diagram of signal signal-to-noise ratio, and the impact of 
denoising on the spectral content of photoacoustic images. (a) The experiment is based on the schematic diagram of the hand-held MSOT system Illustration of the 
scanning procedure using the handheld imaging probe of the test system. (b) Evaluation of the proposed denoising approach in the signal domain. (c) The impact of 
denoising on the spectral content of photoacoustic images. 

Fig. 15. Schematic of the cGAN and Dual wavelength A-scan signal graph. (a) The grayscale images are x – z projections of the three-dimensional dataset. A 
representative A-line, along the red dashed line, is shown above each ofthe x – z projection images. Scale bar: 300 µm. (b) 532-nm excited A-line (green) and digitally 
delayed 558-nm excited A-line (yellow). a.u., arbitrary units. Digital sum of the two A-lines. Non-overlapping A-lines (green: 532nmand yellow: 558 nm) generated 
by the cGAN. Percentage error of sO2 values as a function oftime delay. The error bars represent standard deviations. (c) Representative B-scans as the target, input, 
and output of the cGAN, consisting of 256 original, mixed, and unmixed A-lines, respectively. 
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multi-spectral laser pulses, addressing the issue of insufficient energy in 
single-color laser pulses as shown in Fig. 15. This technology presents an 
innovative approach towards achieving ultra-high-speed multi-param-
eter PAM. 

4. Summary and outlook 

4.1. Summary 

Deep learning, as a cutting-edge data acquisition technology, has 
been widely used in various fields of photoacoustic imaging such as 
image reconstruction, image processing, and signal processing. It can 
adjust parameters according to different network requirements to ach-
ieve a balance between strong robustness, high imaging speed, and 
artifact removal. 

Compared with the iterative reconstruction method, the overall error 
of the denoising process after back projection reconstruction is higher 
than that of the iterative reconstruction method, especially in the case of 
limited angle scanning, which will produce mechanical artifacts, and the 
error at the imaging boundary is also more obvious. However, it is 
known that both deep learning-based image processing algorithms and 
traditional iterative reconstruction algorithms can overcome these me-
chanical artifacts by using prior mapping relationships. Compared with 
the post-processing methods of sparse data reconstruction in PAM, the 
deep learning-based reconstruction method not only has faster recon-
struction speed but also greatly improves reconstruction efficiency. In 
addition, in terms of photoacoustic image processing, deep learning also 
has great advantages, including: higher flexibility and accuracy in 
handling complex and variable photoacoustic signals; outstanding per-
formance in many image processing tasks such as image segmentation, 
classification, and reconstruction; ability to handle large amounts of 
training data, thereby improving model generalization ability and pre-
diction performance; good scalability, allowing the model complexity to 
be adjusted based on task requirements and computing resources. 
Furthermore, deep learning models can utilize knowledge learned from 
other domains for transfer learning, thereby accelerating model training 
and improving performance. 

The application prospects of deep learning in the field of photo-
acoustic imaging are vast, with continuously emerging network archi-
tectures for reconstruction algorithms in photoacoustic tomography, as 
well as for subsequent processing and forward sinogram processing. 
There is also ample room for improvement in various aspects of pho-
toacoustic microscopy (PAM), such as scanning mechanism enhance-
ments, excitation mechanism improvements, and post-processing 
techniques. 

4.2. Data acquisition 

Big data is the core of deep learning, but there is currently no open 
dataset for photoacoustic image reconstruction. In current experiments, 
the test sets used to train and validate the CNN are generally obtained 
through three methods: real human photoacoustic imaging results, im-
aging results of phantoms, and computer-simulated images. Since pho-
toacoustic imaging has not been widely used for clinical diagnosis and 
treatment of diseases, the available clinical case data is severely lacking. 
The flexibility of phantom images is low, and the cost of making phan-
toms is high. Furthermore, it takes a long time to construct the data set 
required for deep learning. Computer simulation involves forward nu-
merical simulation of the optical forward problem (the propagation of 
pulsed laser in tissue) and the acoustic forward problem (the process of 
tissue absorbing light energy, expanding due to heating, then emitting 
ultrasonic waves and propagating towards the tissue surface), obtaining 
the simulated initial sound pressure distribution map as the expected 
output image. The low-quality images reconstructed from limited-angle 
photoacoustic measurement data using standard reconstruction algo-
rithms are used as input images to form the training set of the CNN. The 

authenticity and effectiveness of the sample still need to be further 
discussed. In summary, there is currently a lack of large-scale open 
source training samples for photoacoustic imaging. 

Gao et al. proposed a computing method of four-dimensional (4D) 
spectral-spatial imaging for PAD [113]，This method takes the optical 
and acoustic properties of heterogeneous skin tissues into account, 
which can be used to correct the optical field of excitation light, 
detectable ultrasonic field, and provide accurate single-spectrum anal-
ysis or multi-spectral imaging solutions of PAD for multilayered skin 
tissues. Simulation datasets obtained from the computational model 
were used to train neural networks to further improve the imaging 
quality of the PAD system.Most deep learning-based photoacoustic im-
aging needs thousands pairs of labeled input-output data to train the 
neural network, especially those applications in clinical skin imaging, 
which requires even larger amounts of data. However， in many cases 
the ground truth corresponding to the experimental data is inaccessible. 
This work as an efficient “learning from computational model” imple-
mented an efficient method for obtaining simulation data.Considering 
human skin tissues are multilayered physiopathological structures with 
variability in optical absorption and acoustic impedance, this work 
further verify the simulation method from angles such as beam type, 
ultrasonic transducer performance, laser focusing position, and multi-
spectral analysis.The article also proposes two neural networks trained 
on the dataset obtained through this method, namely the spread spec-
trum network and the enhanced imaging depth network.The feasibility 
of simulated datasets generated by computational modeling for neural 
network training was also demonstrated, helping to solve the major 
challenge of deep learning techniques in photoacoustic skin imaging 
that cannot obtain ground truth in many cases, with the potential to 
further improve the imaging quality of the PAD system through image 
reconstruction, information processing, and artificial intelligence 
methods as shown in Fig. 16(b–c). Fig. 16 (a) verifies the effectiveness of 
the simulation model under different luminous flux conditions of 
6 mJ/cm2, 12 mJ/cm2, and 18 mJ/cm2. Fig. 16(b) shows the results of 
palm skin imaging optimized by two networks. 

4.3. Interpretability 

In addition to the lack of widely available and specialized data, the 
reliability and interpretability of deep learning methods are also 
receiving increasing attention. Lisboa et al. published a review of 
interpretability discussions in machine learning in 2020 [114], in which 
they classified interpretability discussions corresponding to the devel-
opment of machine learning. 

The article further proposes that there is currently no complete 
consensus on how to evaluate the quality of interpretable or interpret-
able methods. The evaluation methods that can explain ML include the 
"Real Humans in Ieal Tasks" proposed by Doshi Velez and Kim and the 
"AI rationalization" proposed by Ehsan et al. The quality of a given 
explanation needs to be evaluated in the context of its task, measuring 
the extent to which the explanation promotes and improves decision- 
making. 

Salahuddin et al. published a review of interpretable methods for 
deep neural networks in medical image analysis in 2022 [115]. The 
article pointed out that interpretable artificial intelligence (XAI) refers 
to an AI solution that can provide some details about its functionality in 
a way that end users can understand. At present, the interpretability of 
deep neural networks is widely defined as attempting to explain the 
decision-making process of a model in a way that can be understood by 
end users. 

Dai et al. [116] used a conceptual alignment deep autoencoder to 
analyze tongue images that represent different body constituent types 
based on traditional Chinese medicine principles. Koh et al. introduced 
Concept Bottleneck Models for osteoarthritis grading and used 10 clin-
ical concepts such as joint space narrowing, bone spurs, calcification, 
etc.In their study, Dai et al. employed a novel deep autoencoder with 
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conceptual alignment to investigate tongue images, which are repre-
sentative of diverse body constituent types according to the principles of 
traditional Chinese medicine. The utilization of this approach enabled a 
comprehensive analysis and interpretation of the underlying features 
associated with each body type. 

Furthermore, Koh et al. [117] presented an innovative framework 
known as Concept Bottleneck Models for the purpose of osteoarthritis 
grading. This model incorporated ten important clinical concepts 
including joint space narrowing, bone spurs, calcification, among 
others. By leveraging these concepts, the researchers were able to 
establish a robust and informative grading system for the evaluation of 
osteoarthritis severity. 

The above two are both based on the perspective of conceptual 
interpretability, and there are also more interpretable classifications, 
including: Case based models, Counter actual interpretation, Language 
description et al. 

4.4. Conclusion and outlook 

In the switchable optical and acoustic resolution photoacoustic 
endomicroscope proposed by Ma et al. in 2020 [118], high-resolution 
imaging of the surface and deep layers is achieved by switching between 
optical and acoustic resolution systems at different depths in the skin. 
We can contemplate by acquiring a dataset from this system, the 
high-resolution surface images and deep-layer images are combined and 
fed into a deep neural network, enabling the high-resolution images to 
learn depth information from the deep-layer images, and the deep-layer 
images to learn resolution from the high-resolution images. This 
approach may ultimately lead to a single system that combines the ad-
vantages of both types of photoacoustic microscopy.There is also the 
possibility of mutual learning between systems with different numerical 
apertures (NA) and corresponding scanning mechanisms, or between 
different excitation wavelengths. Can we achieve complementary effects 

between penetration depth and imaging resolution? These are all worth 
considering.Furthermore, in the field of photoacoustic endoscopy, the 
lack of corresponding datasets has limited the widespread use of deep 
learning methods. Therefore, exploring deep neural network-based ap-
proaches for photoacoustic endoscopy is also an important area of 
research. 

In the previous article [94], the example of learning from low reso-
lution AR-PAM images to high-resolution OR-PAM images can improve 
a certain imaging performance and expand the applicability of the sys-
tem through learning between different imaging systems. In the field of 
photoacoustic imaging microscopy, AR-PAM and OR-PAM are comple-
mentary in imaging depth and resolution, OR-PAM can currently ach-
ieve an imaging depth of around 1.5 mm, with resolution at the micron 
or submicron level, while AR-PAM has an imaging depth of over 10 mm, 
but the corresponding resolution also has an order of magnitude atten-
uation. If a prior method can be used to obtain a prior of OR-PAM images 
at the same depth, the image features of this prior can be retained 
through a neural network method and applied in the corresponding 
AR-PAM system, that is, the results of the AR-PAM imaging system can 
be obtained through a neural network, and a high depth AR-PAM image 
with corresponding OR-PAM resolution can be obtained. Compared with 
general prior methods, the biggest advantage of OR-PAM prior is that it 
preserves the basic features of photoacoustic images, and its feedback 
signal composition is also ultrasound. This brings great convenience to 
the preservation of image features of tissue signal strength and phase. It 
is obvious that the combined imaging system can effectively improve 
imaging quality and obtain high-quality images at corresponding depths 
that were previously difficult to obtain. The corresponding potential 
mutual learning work can be envisioned. For example, OR-PAM learns 
imaging depth from AR-PAM images. Although the resolution of 
AR-PAM images is not as good as that of OR-PAM, it is possible to learn 
the intensity of AR-PAM signals from the perspective of photoacoustic 
signals by preserving the features of OR-PAM images, aiming to discover 

Fig. 16. The model adopts focused Gaussian beam images with different power densities of 532 nm wavelength incident beams and network generalization test 
results. (a) When the power densities are 6 mJ/cm2, 12 mJ/cm2, and 18 mJ/cm2 and he three dimensional imaging result; (b) 3D PA image of palm skin and 3D PA 
image obtained after the spread spectrum network and the depth enhanced network processing (c) The corresponding color slices in the figure. 
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weak photoacoustic signals in deep tissues. Due to the complementarity 
between AR-PAM and OR-PAM in the field of photoacoustic microscopy, 
it can be imagined that their mutual learning will become a reality in the 
near future. Photoacoustic tomography, on the other hand, has a higher 
imaging depth, and its imaging speed and imaging range are signifi-
cantly different from microscopic systems. Its image features and system 
application scenarios are also inconsistent with microscopic systems. 
Therefore, the mutual learning between fault systems and microscopic 
systems still requires further development and integration of photo-
acoustic imaging. Not only is there mutual learning within photo-
acoustic imaging, but this approach can also be applied in bimodal 
imaging systems and in conditions of different system parameters. 
Bimodal imaging refers to the combination of two or more imaging 
techniques to obtain different types of information simultaneously or 
sequentially for image reconstruction and analysis. Mutual learning can 
be extended to, for example, mutual learning between ultrasound im-
aging and photoacoustic imaging, mutual learning between 1064 nm 
and 532 nm wavelength systems, and mutual learning between different 
NA systems.In summary, the ultimate goal of potential mutual learning 
currently lies in improving the system’s penetration ability or imaging 
quality, provided that the two imaging systems are close or the imaging 
results can learn from each other. 

The achievements of deep learning in photoacoustic imaging are 
undeniable, such as its applications in image reconstruction, signal-to- 
noise ratio improvement, and super-resolution. These achievements 
provide new ideas and methods for the development of photoacoustic 
imaging technology. However, there are still some challenges and lim-
itations for deep learning models in photoacoustic imaging. For 
example, deep learning models require high training data demands, 
requiring a large amount of labeled data and computing resources. 
Although many network methods, such as U-Net structure and unsu-
pervised learning, attempt to solve the data problem, there is still 
considerable room for improvement. Additionally, interpretability of 
deep learning models is also an issue that needs to be addressed. 

In future research, we can try to further optimize the performance 
and interpretability of deep learning models to better meet the appli-
cation requirements of photoacoustic imaging technology in clinical 
medicine and life sciences. At the same time, we can also explore 
combining deep learning with other technologies to discover more po-
tential applications. As mentioned earlier, the work of Zhang et al. [95] 
is a good application and extension of neural network methods. For the 
interpretability of neural network methods, the author proposed a new 
approach that combines network and model methods. The model 
method corrected the image content forward, while the neural network 
corrects image artifacts. This alternating iteration method greatly 
improved the interpretability of neural networks. However, the draw-
back of this method is that the training difficulty and reconstruction 
time of the network have increased. Perhaps a more efficient network 
structure can be used as an alternative to iterative methods to improve 
imaging speed. In short, the idea of combining the principle of preser-
ving models with neural networks is worth learning and continuing. Can 
deep learning also be better applied and explained from the perspective 
of photoacoustic signals? In photoacoustic tomography, the quality of 
the sine wave of the signal determines the quality of the reconstructed 
image. Unlike general image learning neural networks such as Awasthi 
[104] and Zhang [106], training photoacoustic signals to achieve signal
amplification and denoising is also a way of applying deep learning. In
future work, a collaborative learning approach can be envisioned. The
signal learning network provides deep imaging signals and amplifies
them, while the image learning network provides deep image features to
achieve joint learning, discover deep structures, and efficiently image.

This review focuses on deep learning enabled photoacoustic imag-
ing, and analyzes recent deep learning work from four perspectives: 
photoacoustic imaging PAT reconstruction, PAM reconstruction, image 
processing, and signal processing. The article also starts from neural 
network structures such as U-Net, GAN network, and Dense Block, 

organizing their early work in the field of biomedical imaging, and 
introducing readers to common neural network structures and their 
origins in the biomedical field. Finally, the article summarizes the 
analysis and summary of deep learning in improving imaging capabil-
ities from four perspectives, proposes the current problems and diffi-
culties of neural networks, and further provides ideas for solving the 
problems. In summary, the rapid development of neural networks has 
continuously empowered photoacoustic imaging and even biomedical 
imaging in recent years. They have made epoch-making contributions to 
the depth and quality of imaging results, as well as to the improvement 
of imaging system efficiency and imaging speed. 
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封底文章·特邀综述第  61 卷  第  16 期/2024 年  8 月/激光与光电子学进展

深度学习在超分辨显微成像中的研究进展（特邀）

鲁心怡 1，2， 黄昱 3， 张梓童 4， 吴天筱 1，2， 吴洪军 1，2， 刘永焘 1，2*， 方中 3**， 左超 1，2***， 陈钱 1，2

1南京理工大学电子工程与光电技术学院智能计算成像实验室，江苏  南京  210094；
2南京理工大学江苏省光谱成像与智能感知重点实验室，江苏  南京  210094；

3南京理工大学机械工程学院，江苏  南京  210094；
4深圳萨米医疗中心 （深圳市第四人民医院） 感染管理科，广东  深圳  518118

摘要  超分辨显微成像技术打破了传统显微镜存在的衍射极限限制，提供了前所未有的细节观察能力，使人们得以观察

到衍射极限以下的微观世界，有力地推动了生物医学、细胞学、神经科学等领域的发展。然而，现有的超分辨显微成像技

术存在成像速度慢、重建图像含有伪影、对生物样品光损伤大、轴向分辨率低等缺陷。近年来，得益于人工智能技术的快

速发展，深度学习被用于研究克服超分辨显微技术的各种缺陷，突破了超分辨显微成像技术的发展瓶颈。聚焦于主流超

分辨显微成像技术存在的缺陷，总结了深度学习对超分辨显微技术的优化效果，并根据超分辨显微成像技术原理的特异

性，介绍了不同网络在超分辨显微技术上的应用成效，最后对深度学习在超分辨显微成像领域应用中存在的问题进行了

分析，并对其发展进行了展望。

关键词  深度学习；图像重建；显微成像；超分辨

中图分类号  O436   文献标志码  A DOI： 10.3788/LOP241455

Advances in Deep Learning for Super-Resolution Microscopy (Invited)
Lu Xinyi1,2, Huang Yu3, Zhang Zitong4, Wu Tianxiao1,2, Wu Hongjun1,2, Liu Yongtao1,2*,

Fang Zhong3**, Zuo Chao1,2***, Chen Qian1,2

1Smart Computational Imaging Laboratory, College of Electronic and Optical Engineering, Nanjing University of 
Science and Technology, Nanjing 210094, Jiangsu, China; 

2Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing University of Science and Technology, 
Nanjing 210094, Jiangsu, China; 

3School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China;
4Infection Management Department of Shenzhen Sami Medical Center (Shenzhen Fourth People’s Hospital), 

Shenzhen 518118, Guangdong, China

Abstract Super-resolution microscopy imaging technology surpasses the diffraction limit of traditional microscopes, thereby 
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1　引   言

在人类探索生命奥秘的漫长过程中，显微镜发挥着

不可忽视的作用。自 16 世纪显微镜诞生起，人类对生

命活动的探索踏入了微观领域。1873年，阿贝提出了阿

贝衍射极限，指出传统光学显微镜分辨率不可超过入射

波长的一半，因此对于生物成像而言，基于可见光的传

统显微镜分辨率局限于 200 nm，难以分辨如线粒体、肌

动蛋白、活细胞微管等微小结构。为了进一步探索微观

世界，突破传统光学显微镜衍射极限的超分辨显微成像

技术应运而生［1］。超分辨显微成像技术的出现，成功将

光学显微镜的观测分辨率由微米级带入了纳米级，分辨

率提升至 20~70 nm。如今，超分辨显微成像技术已经

成为了人类探索和发现微观世界的重要手段［2］。

随着超分辨显微成像技术的不断发展，诞生了诸

多 超 分 辨 方 法 ，例 如 受 激 发 射 损 耗 荧 光 显 微 镜

（STED）［3］、随机光学重构显微镜（STORM）［3］、光活化

定位显微镜（PALM） ［4］、结构光照明显微镜（SIM）［4］、

多光子非线性超分辨率成像（MPUM）［5-8］等。每种超

分辨显微技术利用了不同的手段突破了衍射极限，根

据其成像原理，不同的超分辨技术存在着不同先天优

势和固有缺陷［9］。在生物样品的显微成像过程中，空

间分辨率决定了是否能区分两个精细结构，时间分辨

率决定了显微镜是否能完整捕捉生命活动过程，成像

深度决定了对生物深组织成像的质量，光漂白、光毒性

决定了成像对生物样品所带来的损伤程度。因此对于

不同的超分辨成像技术，应根据其特性以及生物成像

的需求进行针对性优化。

深度学习是机器学习的一个分支，其通过多层人

工神经网络对数据进行计算处理，根据是否需要已标

注数据进行训练进行区分，网络可以分为有监督学习

和无监督学习两种学习方式。近年来，深度学习快

速发展，产生了诸多神经网络框架，如：卷积神经网络

（CNN）［10］、生成对抗网络（GAN）［11］、U-Net［12］、ResNet［13］、

Faster R-CNN［14］网络等。神经网络具有极强的自适

应性，可以通过反向传播算法对自身不断优化，实现更

好的数据拟合，同时其具备端到端的学习能力，实现输

入端到输出端的直接映射。基于深度学习的优秀特

性，使其在图像超分辨、图像去噪、图像分割等方面表

现出色，这吸引了超分辨显微成像领域研究者的注意，

他们将深度学习与超分辨显微技术进行结合，进一步

提升成像分辨率，并克服了传统方法的超分辨显微技

术缺陷。

本文讨论了深度学习在超分辨显微成像领域中的

研究进展，以主流超分辨成像技术为脉络，介绍了不同

超分辨显微成像技术的成像原理，分析其存在的优点

以及缺陷，利用深度学习的方法应对不同技术所存在

的缺陷。对于 STED，着重降低其光毒性，提升其成像

速度以及轴向分辨率；对于 STORM 和 PALM，着重

提升其成像速度，以及分子定位精度，提高重建分辨

率；对于 SIM，着重提升其成像质量，去除重建图像

伪影，并进一步减少图像重建所需帧数，降低光损伤。

图 1［15-27］总结了不同神经网络对超分辨成像技术的优

化方法与优化效果。
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图 1　深度学习在超分辨率成像领域应用框架图 [15-27]

Fig.  1　Framework of deep learning in super-resolution imaging[15-27]

2　深度学习在受激发射损耗显微术中

的应用

STED 是 目 前 主 流 的 超 分 辨 技 术 之 一 ，如

图 2[15,16,28]所示，，STED 是先用一束高斯激发光经由物

镜照射到样品上，同时引入一束环形光束通过受激辐

射将外围区域的荧光分子淬灭，两束激光精准对齐进

而产生环形光中心未被淬灭的发射轮廓 [29]。STED 凭

借其空间分辨率高、实时成像、无需后期图像重建的优

点得到科学家们的广泛关注。

STED 实现超分辨的关键在于损耗光的功率以及

受激辐射与自发荧光相互竞争中的非线性效应，淬灭

光功率越强，激发光斑的光斑外围受到的抑制越强，产

生的有效荧光光斑越小，空间分辨率越高，但使用强耗

损光的同时会带来光漂白、光毒性、光损伤等问题，这

限制了 STED 活细胞中的应用 [30-32]。此外，STED 使

用点扫描成像，因此其成像速度慢，时间分辨率较低。

同时，在应对厚样品时，其轴向分辨率仍有待进一步

提升。

理论上，减少对生物样品的曝光时间即可降低光

损伤 [33]，但较短的像素驻留时间会导致较差的信噪比

（SNR），进而降低图像分辨率 [34]。为实现低 SNR 下的

高质量超分辨率成像，美国佛罗里达大学的 Ebrahimi
等 [17] 在 2023 年 提 出 使 用 多 阶 段 渐 进 图 像 恢 复

（MPRNet）的方法，实现了 STED 的像素停留时间减

小 1~2 个数量级，进而减少对样品的光漂白与光损

伤 。 MPRNet 基 于 U-Net 和 残 差 通 道 注 意 力 网 络

（RCAN）架构，使用 U-Net 网络架构进行上下采样，绕

过低频信号，获取特征图像，然后使用 RCAN 网络进

行图像重建，其网络框架图如图 3（a）所示，该方法可

以精准重建低曝光图像，获得高信噪比超分辨图像，实

现在保证原有分辨率的前提下将 STED 的像素停留时

间减少至原本的 3. 125%，成像速度极大提升。传统

STED 在 1. 0 mm×0. 78 mm 大小的区域记录 744 张

大小为 2048 pixel×2048 pixel 的图像需要 12 h，而使

用 MPRNet 仅需要 21 min。图 3（b）为 MPRNet 对噪

声 STED 图像的恢复效果图。

2023 年 Chen 等 [35]将寿命调谐分离（SPLIT）技术

与 STED 技术相结合，使用时间分辨采集和相量分析

成功区分有效荧光区域中心和外围发射的光子，实现

了在不增加光损伤的同时提高分辨率。在此基础上，

他们进一步将 SPLIT-STED［11］与 GAN 网络框架相结

合 ，形 成 了 基 于 GAN 估 计 的 荧 光 寿 命 成 像 网 络

（flimGANE），利用 GAN 网络对光子匮乏的相量图形

去噪，以提供更高质量的相量图像，提升了 SPLIT 的

重建水平，进而提升了系统的分辨率和鲁棒性，较单一

SPLIT-STED 实现了 1. 45 倍的分辨率增强。图 3（c）、

（d）为 flimGANE 网络框架图以及 Chen 等在实验中获

得的两种耗尽激光强度下共聚焦、pSTED、pSTED、

SPLIT 和 STED flimGANE 图像的比较。

理论上，STED 可以达到的最佳横向分辨率为

20 nm，但由于光毒性的限制，在实际活细胞的应用中

横向分辨率往往只能达到 100 nm。为进一步提升横

向分辨率，2020 年伦斯勒理工大学的 Li［18］提出深度对

抗网络（DAN-based），根据 STED 原理，对较低分辨率

图像使用物理建模进行计算，并输出对应的高分辨率
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图 2　STED 光路原理图 [15,16,28]

Fig.  2　Schematic diagram of STED[15,16,28]
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2　深度学习在受激发射损耗显微术中

的应用

STED 是 目 前 主 流 的 超 分 辨 技 术 之 一 ，如

图 2[15,16,28]所示，，STED 是先用一束高斯激发光经由物

镜照射到样品上，同时引入一束环形光束通过受激辐

射将外围区域的荧光分子淬灭，两束激光精准对齐进

而产生环形光中心未被淬灭的发射轮廓 [29]。STED 凭

借其空间分辨率高、实时成像、无需后期图像重建的优

点得到科学家们的广泛关注。

STED 实现超分辨的关键在于损耗光的功率以及

受激辐射与自发荧光相互竞争中的非线性效应，淬灭

光功率越强，激发光斑的光斑外围受到的抑制越强，产

生的有效荧光光斑越小，空间分辨率越高，但使用强耗

损光的同时会带来光漂白、光毒性、光损伤等问题，这

限制了 STED 活细胞中的应用 [30-32]。此外，STED 使

用点扫描成像，因此其成像速度慢，时间分辨率较低。

同时，在应对厚样品时，其轴向分辨率仍有待进一步

提升。

理论上，减少对生物样品的曝光时间即可降低光

损伤 [33]，但较短的像素驻留时间会导致较差的信噪比

（SNR），进而降低图像分辨率 [34]。为实现低 SNR 下的

高质量超分辨率成像，美国佛罗里达大学的 Ebrahimi
等 [17] 在 2023 年 提 出 使 用 多 阶 段 渐 进 图 像 恢 复

（MPRNet）的方法，实现了 STED 的像素停留时间减

小 1~2 个数量级，进而减少对样品的光漂白与光损

伤 。 MPRNet 基 于 U-Net 和 残 差 通 道 注 意 力 网 络

（RCAN）架构，使用 U-Net 网络架构进行上下采样，绕

过低频信号，获取特征图像，然后使用 RCAN 网络进

行图像重建，其网络框架图如图 3（a）所示，该方法可

以精准重建低曝光图像，获得高信噪比超分辨图像，实

现在保证原有分辨率的前提下将 STED 的像素停留时

间减少至原本的 3. 125%，成像速度极大提升。传统

STED 在 1. 0 mm×0. 78 mm 大小的区域记录 744 张

大小为 2048 pixel×2048 pixel 的图像需要 12 h，而使

用 MPRNet 仅需要 21 min。图 3（b）为 MPRNet 对噪

声 STED 图像的恢复效果图。

2023 年 Chen 等 [35]将寿命调谐分离（SPLIT）技术

与 STED 技术相结合，使用时间分辨采集和相量分析

成功区分有效荧光区域中心和外围发射的光子，实现

了在不增加光损伤的同时提高分辨率。在此基础上，

他们进一步将 SPLIT-STED［11］与 GAN 网络框架相结

合 ，形 成 了 基 于 GAN 估 计 的 荧 光 寿 命 成 像 网 络

（flimGANE），利用 GAN 网络对光子匮乏的相量图形

去噪，以提供更高质量的相量图像，提升了 SPLIT 的

重建水平，进而提升了系统的分辨率和鲁棒性，较单一

SPLIT-STED 实现了 1. 45 倍的分辨率增强。图 3（c）、

（d）为 flimGANE 网络框架图以及 Chen 等在实验中获

得的两种耗尽激光强度下共聚焦、pSTED、pSTED、

SPLIT 和 STED flimGANE 图像的比较。

理论上，STED 可以达到的最佳横向分辨率为

20 nm，但由于光毒性的限制，在实际活细胞的应用中

横向分辨率往往只能达到 100 nm。为进一步提升横

向分辨率，2020 年伦斯勒理工大学的 Li［18］提出深度对

抗网络（DAN-based），根据 STED 原理，对较低分辨率

图像使用物理建模进行计算，并输出对应的高分辨率
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图像，并以此对网络进行训练，极大提高了网络模型的

重建分辨率。同时，使用感知损失计算器替代了传统

的均方误差损失函数，增强了网络对图像细节以及图

像结构的提取能力，该网络模型可实现将 60 nm 的

STED 图像分辨率优化至 30 nm，图 3（e）、（f）为其成像

效果图。

STED 成像作为一种点扫描成像方式，其实现三

维（3D）成 像 需 要 使 用 3D 扫 描 完 成 ，Bessel-Bessel 

STED（BB-STED）实现了 STED 的 3D 扫描，但其图

像仅是二维（2D）投影的结果，并没有实现轴向超分

辨。目前，提升轴向分辨率、获取轴向信息的常用手

段是使用螺旋点扩散函数，如单螺旋点扩散函数

（SH-PSF）[36]和双螺旋点扩散函数（DH-PSF）[37]，螺旋

点扩散函数可将不同深度的荧光点扩展到不同的方

位角，进而获取荧光点的轴向位置信息，提升轴向分

辨率，但该方法无法准确分辨轴向密集荧光点。为
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图 3　不同网络框架图和实验结果。（a） MPRNet 网络架构 [17]；（b） U2OS 细胞中 β-微管蛋白（STAR635P）的 MPRNet 重建图像 [17]；

（c） STED-flimGANE 网络结构图 [35]；（d）功率耗损极端条件下的强度图像 [35]；（e）低噪声 SRDAN 与其他方法的核孔成像对比

图 [18]；（f）各算法核孔图像的线强度分布 [18]

Fig.  3　Different network framework diagrams and experimental results.  (a) MPRNet network architecture[17]; (b) MPRNet 
reconstruction images of β-tubulin (STAR635P) in U2OS cells[17]; (c) STED-flimGANE network structure diagram[35]; 
(d) intensity images under extreme conditions of rate depletion[35]; (e) comparison of nuclear hole imaging between low noise 

SRDAN and other methods[18]; (f) line intensity distribution of core hole images in each algorithm[18]
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此，Ji 等 [38]在 2024 年基于 BB-STED，使用单螺旋点扩

散函数并结合深度学习算法实现轴向超分辨。单螺

旋点扩散函数相较于双螺旋点扩散函数具有更高的

信噪比和更大的有效深度，使用模拟密集单螺旋点图

像对基于 CNN 的解码器 -编码器网络进行训练，将原

始图像输入训练模型，精确定位荧光点相对于光斑中

心的方位角。在保证横向分辨率 50 nm 的同时，该方

法的轴向分辨率可达到 50 nm，高于 4Pi-STED。同

时，在荧光点密度 n=20 的情况下，该方法的轴向分

辨率可达到 63 nm。

3　深度学习在单分子定位显微镜中的
应用

单分子定位显微镜（SMLM）技术通过在多次循

环中重复随机地激发稀疏分布的荧光分子，并结合相

关定位算法，实现对不重叠荧光分子的精确定位，最后

将定位图像集进行整合重建，生成超分辨图像 [39]，

SMLM 成像原理如图 4[19]所示。SMLM 主要分为两

种，一种是 2006 年由哈佛大学庄小威团队首次提出的

使用荧光小分子的随机光学重构显微镜（STORM）［3］；

另一种是同年由 Betzig 团队提出的使用荧光蛋白的光

活化定位显微镜（PALM）[40]。由 SMLM 原理成像可

知，SMLM 图像重建，需要对样品进行大量的图像采

集，因此传统 SMLM 存在着时间分辨率低、无法实现

活体动态成像、对样品存在光毒性和光漂白的问题。

此外，由于需要对采集的图像集进行分子定位和重建

处理，传统 SMLM 成像质量受制于分子定位算法精

度，成像时间受制于分子定位算法速度。而对于多色

单分子定位成像，则需要消除其在图像采集时的光谱

串扰以及采集速度慢的问题。综上所述，对于 SMLM
的优化主要集中在降低定位所需帧数、提高定位精度

及速度、提升多色成像颜色区分水平上 [41]。

3. 1　提高重建速度

在单分子定位显微镜中，单个荧光点的位置通常

由高斯函数对 PSF 拟合来获取，对于荧光点重叠密度

高的区域，其拟合过程更为复杂，导致 SMLM 图像重

建过程产生大量数据。因此，传统 SMLM 计算成本极

高，成像速度缓慢，且拟合重建精度依赖于对拟合参数

调试，专业性要求高。为了降低重建图像所需的计算

成本，提高成像速度，Nehme 等 [20]在 2018 年提出了无

参数超分辨率图像重建方法 Deep-STORM，其网络基

于传统的编码器（encoder）-解码器（decoder）架构和

CNN，通过简单网络结构实现快速图像重建与无参数

化。在荧光点与微管的重建实验中，Deep-STORM 已

被证明比传统算法更快、更准确，Deep-STORM 对微

管的重建效果如图 5（a）所示。但 Deep-STORM 算法

高度依赖于训练数据，因此在成像参数存在实质性差

异时会产生伪影，为此 Sahel 和 Eldar [42]提出了 Self-

STORM，该网络使用自监督学习方案代替监督学习，

不再仅由原始图像映射到重建图像训练，而是利用单

个图像中信息的内部递归来组成编码器，该编码器仅

从低分辨率图片中学习，不需要频繁调整优化参数，降

低了对外部训练样本的需求。该模型可以训练出与

Deep-STORM 成像质量相当的图像，且泛用性更强，

其网络框架以及对比重建效果如图 5（b）、（c）所示。

2021 年 Li 等 [43]受 Deep-STORM 启发，结合递归神经

网 络 （RNN） 提 出 了 Deep Recurrent-Supervised 
Network-STORM（DRSN-STORM），RNN 能够捕捉图

像时序信息，可以在不增加网络深度的情况下提取时

间数据中的额外特征，生成高效率模型。与经典的

Deep-STORM 方法相比，DRSN-STORM 的运行时间

可以至少节省 40%，其网络框架图和微管实验结果如

图 5（d）、（e）所示。

为实现快速单分子 3D 定位，Boyd 等 [44]于 2018 年

图 4　单分子定位显微成像原理 [19]

Fig.  4　Principle of single molecule localization microscopy[19]
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提出了 DeepLOCO 网络架构。该网络基于经典 CNN
网络，使用残差连接防止产生梯度问题，并利用含不同

种类噪声的模拟 PSF 训练网络，创新性地将最小化贝

叶斯风险作为优化目标。该设计使得 DeepLOCO 具

备了快速定位分子位置的能力，较传统算法实现了几

个数量级的提升，且适用于不同噪声的图像。使用长

序列微管蛋白数据集的进行重建测试，DeepLOCO 在

保证定位精度的前提下，在 1 s 内分析了 20000 帧的

3D SMLM 数据。

传统算法使用的最大似然估计（MLE）在重建过

程中需要不断地调整参数以确保定位的精准度，在分

子高密度标记的情况下极大地增加了重建难度。针对

该问题，Zelger 等 [45]基于 VGG16 架构，对单帧图像实

现了 3D 分子定位。该网络实现了与 MLE 相当的定位

精度，定位速度可达 22000 s−1，相较于传统的 MLE 算

法速度提升了 3 个数量级以上。此外，Speiser 等 [46]于

2021 年利用深度学习对 MLE 方法进行了优化，提出

了一种基于 U-Net 网络的 Deep Context Dedependent
（DECODE）架构，通过 U-Net 网络将每一帧的荧光分

子特征与前后帧特征相融合，获得更强的网络表达能

力，加快了网络重建图像的速度，减少了高密度分子标

记下成像所需时间。Speiser 等使用 DECODE 实现了

超高标记密度的微管成像。在检测精度和定位误差

方面，DECODE 在 12 个数据集上的表现均优于其他

常用模型，其在 LLS-PAINT 图像上的重建效果如

图 5（f）所示。

3. 2　少帧重建

单分子定位显微镜重建对图像帧的稀疏性要求使

得在分子高密度情况下，需要采集大量帧进行图像重

建，为缩短图像采集时间，提升成像速度，应尽可能减

少重建所需图像帧数。为此 2018 年 Ouyang 等 [47]基于

pix2pix[48]网络开发出了 ANNA-PALM，相较于传统算

法，ANNA-PALM 利用生物图像的结构冗余，从采样

帧数不足的 SMLM 数据中重建高质量图像。ANNA-

PALM 网络使用了三层损失函数设计：第一层使用多

尺度结构相似指数（MS-SSIM）评价网络输出图像与

密集 PALM 图像重建之间的差异；第二层引入 CNN
预测网络，生成模型输出的超分辨图像对应的低分辨

率宽场图像，并与实际宽场图像进行对比，评价二者的

一致性；第三层使用 cGAN 鉴别器比较稀疏 PLAM、
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图 5　提高图像重建速度相关网络与重建结果。（a） Deep-STORM 重建效果对比图 [20]；（b） Self-STORM 网络架构 [42]；（c） Self-
STORM 重建效果对比图 [42]；（d） DRSN-STORM 网络架构，特征提取模块（FEM）、推理模块（IM）、重建模块（RM）［43］；

（e） DRSN-STORM 微管图像重建效果 [43]；（f） DECODE 重建效果图 [46]

Fig.  5　Network and reconstruction results related to improving image reconstruction speed.  (a) Deep-STORM reconstruction effect 
comparison[20]; (b) self-STORM network architecture[42]; (c) self-STORM rebuild effect comparison diagram[42]; (d) DRSN-

STORM Network architecture,feature extracting module (FEM), inference module (IM), and reconstruction module (RM)[43]; 
(e) DRSN-STORM microtubule image reconstruction effect[43]; (f) DECODE reconstruct effect image[46]

宽场图像与密集 PLAM 和网络输出图像之间的差异。

该设计使得网络训练只需要少量的密集 PLAM 图像，

且不会过度拟合。该网络模型实现了短时间采集情况

下的高质量超分辨率图像重建，并且可以预测出重建

可能出错的位置。在免疫染色微管成像实验中，

ANNA-PALM 使用宽场图像与 9 s 采集的 300 帧图像

相结合作为输入，其重建图像达到了与使用 10 min 采

集的 60000 帧图像重建的 PALM 相同水平，ANNA-

PALM 实现了帧数减少两个数量级情况下的高质量

图像重建，其架构与重建结果如图 6（a）、（b）所示。

光谱单分子定位显微镜（sSMLM）可以同时提供

单分子的位置信息和光谱信息，为单个样品提供纳米

级的多色超分辨成像，然而这需要大于 104的连续衍射

帧才能实现高分辨率图像重建，长时间的图像采集，不

仅会影响活细胞成像，同时会带来光漂白降低图像质

量。针对该问题，Gaire 等 [21]基于 CNN 网络，首先使用

分子定位算法对图像分子进行定位，再利用网络模型

恢复光谱分类后的稀疏图像，生成高分辨率图像，最后

再将不同光谱的图像合成，生成彩色高分辨率图像。

在 COS-7 细胞双色成像实验中，该方法使用 3000 帧和

23300 个定位点进行图像重建，实现了与传统方法使

用 19997 帧和 134900 个定位点相同的成像质量，极大

减少了重建所需帧数，其架构与重建结果如图 6（c）、

（d）所示。

单分子定位显微镜对重建帧数的高需求使其时间

分辨率较低，极大地限制了其在样品动态成像中的应

用。2023 年 Saguy 等 [49]将双向卷积神经网络（CNN）与

长 短 期 存 储 器（CNN-LSTM）相 结 合 ，提 出 了 一 种

Data Base Link（DBlink）网络。该网络将超分辨定位

图的连续帧作为输入，通过捕捉不同输入帧之间的长

期相关性，输出动态超分辨结构视频，实现了超时空分

辨率的视频重建。在活细胞时空分辨率重建上，实现

了微管和内质网 30 nm 空间分辨率和 15 ms 时间分辨

率的超分辨率重建，其网络结构如图 6（e）所示。

3. 3　提升定位精度

在单分子定位显微镜中，单分子的定位精度决定

了图像的空间分辨率，而定位精度取决于拟合算法的

优越性，因此使用深度学习优化拟合算法，提高单分子

的定位精度，进而实现 SMLM 的空间分辨率提升。实

现单分子的精确定位需要消除背景噪声的影响，对背景

信号参数进行精确估计。然而，由于局部背景信号的变

化，背景信号参数的估计过程往往较为困难［12］。为此，

Möckl 等[22] 基 于 U-Net 架 构 提 出 了 Background Net
（BGNet）网络。利用 U-Net 网络强大的图像分割能

力，剥离原始图像背景，同时模拟生成不同轴向位置的

不同形状 PSF 训练网络，提升背景分割的精准度。该

网络模型对于标准开孔径（OA）点扩散函数、2 μm 轴

向范围的双螺旋（DH）点扩散函数和 6 μm 轴向范围的
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图 6　减少图像重建帧数相关的网络架构以及重建结果。（a） ANNA-PAM 网络架构 [47]；（b） ANNA-PAM 重建与 PALM 对比 [47]；

（c）多色单分子图像重建 CNN 框架 [21]；（d）多色单分子网络重建效果 [21]；（e） DBlink 网络架构 [49]

Fig.  6　Reduce the network architecture and reconstruction results related to the frame rate of image reconstruction.  (a) ANNA-PAM 
network architecture[47]; (b) ANNA-PAM reconstruction compared with PALM[47]; (c) multi-color single molecule image 

reconstruction CNN framework[21]; (d) multicolor single molecule network reconstruction effect[21]; (e) DBlink 
network architecture[49]
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宽场图像与密集 PLAM 和网络输出图像之间的差异。

该设计使得网络训练只需要少量的密集 PLAM 图像，

且不会过度拟合。该网络模型实现了短时间采集情况

下的高质量超分辨率图像重建，并且可以预测出重建

可能出错的位置。在免疫染色微管成像实验中，

ANNA-PALM 使用宽场图像与 9 s 采集的 300 帧图像

相结合作为输入，其重建图像达到了与使用 10 min 采

集的 60000 帧图像重建的 PALM 相同水平，ANNA-

PALM 实现了帧数减少两个数量级情况下的高质量

图像重建，其架构与重建结果如图 6（a）、（b）所示。

光谱单分子定位显微镜（sSMLM）可以同时提供

单分子的位置信息和光谱信息，为单个样品提供纳米

级的多色超分辨成像，然而这需要大于 104的连续衍射

帧才能实现高分辨率图像重建，长时间的图像采集，不

仅会影响活细胞成像，同时会带来光漂白降低图像质

量。针对该问题，Gaire 等 [21]基于 CNN 网络，首先使用

分子定位算法对图像分子进行定位，再利用网络模型

恢复光谱分类后的稀疏图像，生成高分辨率图像，最后

再将不同光谱的图像合成，生成彩色高分辨率图像。

在 COS-7 细胞双色成像实验中，该方法使用 3000 帧和

23300 个定位点进行图像重建，实现了与传统方法使

用 19997 帧和 134900 个定位点相同的成像质量，极大

减少了重建所需帧数，其架构与重建结果如图 6（c）、

（d）所示。

单分子定位显微镜对重建帧数的高需求使其时间

分辨率较低，极大地限制了其在样品动态成像中的应

用。2023 年 Saguy 等 [49]将双向卷积神经网络（CNN）与

长 短 期 存 储 器（CNN-LSTM）相 结 合 ，提 出 了 一 种

Data Base Link（DBlink）网络。该网络将超分辨定位

图的连续帧作为输入，通过捕捉不同输入帧之间的长

期相关性，输出动态超分辨结构视频，实现了超时空分

辨率的视频重建。在活细胞时空分辨率重建上，实现

了微管和内质网 30 nm 空间分辨率和 15 ms 时间分辨

率的超分辨率重建，其网络结构如图 6（e）所示。

3. 3　提升定位精度

在单分子定位显微镜中，单分子的定位精度决定

了图像的空间分辨率，而定位精度取决于拟合算法的

优越性，因此使用深度学习优化拟合算法，提高单分子

的定位精度，进而实现 SMLM 的空间分辨率提升。实

现单分子的精确定位需要消除背景噪声的影响，对背景

信号参数进行精确估计。然而，由于局部背景信号的变

化，背景信号参数的估计过程往往较为困难［12］。为此，

Möckl 等[22] 基 于 U-Net 架 构 提 出 了 Background Net
（BGNet）网络。利用 U-Net 网络强大的图像分割能

力，剥离原始图像背景，同时模拟生成不同轴向位置的

不同形状 PSF 训练网络，提升背景分割的精准度。该

网络模型对于标准开孔径（OA）点扩散函数、2 μm 轴

向范围的双螺旋（DH）点扩散函数和 6 μm 轴向范围的

PALM(k=300) PALM(k=30,000)

Low-resolution blink data

Time Time

Conv Relu… …

… …

Frame list

Localizationlist

N frames

…

High-density image

Low-density image

Minimize loss

function

Qframes

Network output 

Qframes

Deep CNN

Optimize network

parameters
Time

localization

ANNA-PALM(k)PALM(k)

Error Map

0 kΔt time

k<<K

Per-frame

Single molecule
localization

Bidirectional

LSTM

Localization maps

DBlink Super-resolved video 

reconstruction

3000 frames CNN reconstruction 19997 framesANNA-PALM(k=300)

(c)

(b)

(a)

(d)

(e)

图 6　减少图像重建帧数相关的网络架构以及重建结果。（a） ANNA-PAM 网络架构 [47]；（b） ANNA-PAM 重建与 PALM 对比 [47]；

（c）多色单分子图像重建 CNN 框架 [21]；（d）多色单分子网络重建效果 [21]；（e） DBlink 网络架构 [49]

Fig.  6　Reduce the network architecture and reconstruction results related to the frame rate of image reconstruction.  (a) ANNA-PAM 
network architecture[47]; (b) ANNA-PAM reconstruction compared with PALM[47]; (c) multi-color single molecule image 

reconstruction CNN framework[21]; (d) multicolor single molecule network reconstruction effect[21]; (e) DBlink 
network architecture[49]
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四足点扩散函数  （Tetra6 PSF） 均可实现精准的背景

去除，显著提升了分子定位精度。在微管成像实验中，

用 BGNet 估计的结构化背景与恒定的背景相比，克服

了严重伪影、虚假定位、细节丢失等缺陷，重建了高质

量微管超分辨图像，其网络架构与去背景效果如

图 7（a）、（b）所 示 。 此 外 ，Cascarano 等 [50] 基 于 Deep 
STORM 和正则化反卷积 CEL0，提出了 DeepCEL0 网

络，该网络将 CNN 网络作为骨架，并使用 CEL0 作为

训练损失函数。该设计使得 DeepCEL0 网络成功集合

了 CEL0 高精度分子定位和 DeepSTORM 重建速度

快 ，无 需 参 数 计 算 的 优 势 。 与 标 准 方 法 相 比 ，

DeepCEL0 可以在不影响计算成本的情况下提供高精

度的定位图像，DeepCEL0 对 IEEE ISBI 微管数据集

的重建结果如图 7（c）所示。对于密集标记样品中单

个 荧 光 点 的 精 确 3D 定 位 ，Nehme 等 [51] 提 出 了

DeepSTORM3D，利用 CNN，对高密度荧光点进行精

确定位，CNN 在高密度情况下的定位精度远远优于基

于拟合删减的匹配追踪法，同时，Nehme 等联合优化

PSF 和定位网络，引入了一个可微的物理模拟层，该模

拟层利用相位掩模调控显微镜 PSF，并将其 3D 荧光图

像编码为对应的低分辨率 2D 图像，再将该图像传输给

CNN 网络，使用反向传播算法不断优化相位掩模和

CNN 参数，其流程图如图 7（d）所示。该方法所学习的

产生 PSF 在低密度情况下与四足 PSF 效果相当，但当

荧光点密度大于 0. 2 μm-2时，学习 PSF 重建效果优于

四足 PSF，荧光点密度为 0. 197 μm-2时的四足 PSF 和

学习 PSF 的定位结果如图 7（e）所示。对 U2OS 细胞

核内端粒进行成像实验，在 20 μm2的细胞核内含有数

十个端粒，在轴向范围 3 μm 内，四足 PSF 的 CNN 网络

仅能恢复 62 个端粒中的 49 个，而使用学习 PSF 的
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图 7　高精度分子定位相关网络与重建结果。（a） BGNet 网络架构 [22]；（b） BGNet 对三种 PSF 成像方式的背景估计 [22]；（c）各算法在

IEEE ISBI 微管数据集的重建结果对比，上半部分为二值化图像，下半部分为标准化图像 [50]；（d）物理模拟反馈流程 [51]；（e）四

足 PSF 和学习 PSF 的定位结果 [51]

Fig.  7　High precision molecular localization related networks and reconstruction results.  (a) BGNet network architecture[22]; 
(b) background estimation of three PSF imaging methods using BGNet[22]; (c) reconstruction results of IEEE ISBI microtubule 
data set are compared, the top half is binary image, and the bottom half is standardized image[50]; (d) physical simulation 

feedback flow[51]; (e) tetrapod and learned PSF localization results[51]
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CNN 网络能够恢复 57 个，仅有两个呈假阳性。

3. 4　提取光谱信息

点扩散函数中包含了丰富的信息，如：分子位置、

荧光发射波长等。同时，分析单分子发光模式对于探

索分子标记目标的结构和生理信息，以及进一步清楚

地了解它们的相互作用和细胞环境至关重要。近年

来，人们通过深度学习，实现了从衍射受限图像中提

取 PSF 的隐藏信息。2018 年，Zhang 等 [52]提出了一种

用 于 多 路 单 分 子 分 析 的 深 度 神 经 网 络 Single-

Molecule Net（smNet），该网络由卷积层、残差块和全

连接层组成，由于光子在小区域内的分布体现了 PSF
的额外特征，为准确提取特征信息，Zhang 等在初始层

内使用较大内核，堆叠多层卷积层和残差块，尽可能

准确地捕获特征信息。同时，设定单分子测量误差与

每个训练图像的 Cramér-Rao lower bound（CRLB）理

论极限的相对差值作为系统的损失函数，使得 smNet
能够提取到大范围的探测光子以及背景水平的相关

信息。在三维单分子开关纳米显微镜图像重建实验

中，传统高斯方法的重建结构存在大量的伪影，而

smNet 通过读取 PSF 中的额外信息，获得像差等额外

参数并依次建模，使得其在样品不同深度均实现了高

精度，无伪影的图像重建，其网络架构与重建的 COS-

7 细胞中线粒体蛋白 TOM20 的超分辨体成像结果如

图 8（a）所示。
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图 8　深度学习从 PSF 中提取附加光谱信息的网络及成像结果。（a） smNet网络架构和重建效果图 [52]；（b）颜色分离与轴向定位架构

与重建效果 [23]；（c）优化相位掩模的图像颜色分类过程图 [53]；（d）荧光标记的 HeLa 细胞成像图 [53]；（e） COS-7 细胞的颜色分类

图像 [57]

Fig.  8　Deep learning extracts additional spectral information from PSF networks and imaging results.  (a) smNet network architecture 
and reconstructed image[52]; (b) color separation and axial positioning architecture and reconstruction effects[23]; (c) image color 
classification process diagram of optimized phase mask[53]; (d) fluorescent-labeled HeLa cell imaging[53]; (e) color classification 

image of COS-7 cells[57]
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多色显微成像常使用的方法是在多个传感器之间

划分发射光谱，使用光谱滤波片进行光谱分类需要对

通道之间进行精确配准，否则将影响重建图像精度，而

使用单色光源对样品依次成像进行光谱分类则无法对

生物样品进行动态成像，且其较慢的采集过程易使重

建图像产生伪影。为实现多色超分辨显微成像，Kim
等 [23]使用颜色区分网络和轴向定位网络神经从 PSF 中

分别预测单个分子的轴向位置和荧光颜色，每当输入

一个单分子图像，模型会先将单分子图像定位在二维

平面中并进行颜色区分，然后对颜色分离的单分子图

像进行轴向定位，再将所得颜色信息和轴向位置信息

与每个分子的二维定位相结合，最终生成多维 SMLM
数据。该网络输入的全部数据通过一次成像采集，因

此该方法规避了传统多色图像重建过程中的对准问

题，其方法架构与重建效果如图 8（b）所示。在 COS-7
细胞双色染色实验中，该方法在光子数为 3000 的情况

下，实现了图像的高精度分色重建，且优于传统方法在

5000 光子数下的重建水平，其重建结果如图 8（c）所

示。此外，2019 年 Hershko 等 [53]利用神经网络对多色

超分辨成像进行了两步优化：首先，其利用神经网络构

建灰度图像颜色分类模型，由灰度图像实现高精度的

颜色分类；然后，利用神经网络并结合相位调制算法，

予以不同波长不同的相位延迟，生成编码 PSF，以便颜

色分类模型对于荧光点进行精确的颜色区分，提高颜

色分类模型的分类精度。该网络在四色荧光点分类实

验中，正确预测分类了 96. 8%±2. 1% 的荧光点，在对

荧光标记的 Hela 细胞成像实验中，成功区分了不同荧

光标记的微管和线粒体结构，其网络架构及成像效果

如图 8（c）、（d）所示。

为获得额外的光谱信息，研究人员将单分子显微

镜与光谱收集通道相结合，构成了光谱单分子定位显

微镜（sSMLM）。每个被系统收集到的光子只能随机

进入一个光谱通道，因此光谱收集通道的增加会导致

每个光谱通道内的光子数减少 [54‑56]，进而导致光谱间分

类错误率较高，光谱信息获取困难。为解决该问题，

Zhang 等［57］利用机器学习分析荧光分子的全谱图，其

网络使用全连接层，并将交叉熵作为损失函数，并使用

Adam 算法对网络进行优化。与传统的光谱质心（SC）
法相比，该方法提高了 10 倍的分类正确率和 2 倍的光

谱数据利用率。在微管蛋白与线粒体的双色成像实验

中，传统 SMLM 方法难以识别出线粒体结构，而该网

络模型清晰分辨了两种结构，且未发生光谱串扰的现

象。其网络架构与对光谱分类效果如图 8（e）所示。

4　深度学习在结构光照明显微术的
应用

结构光照明显微镜（SIM）使用图案照明激发荧

光，通过横向相移和旋转不同的离散角度，获取一系列

原始图像，并利用图像重建算法生成超分辨图像。这

种超分辨显微方法利用了摩尔条纹的拍频原理，将难

以观测的高频信息转移到低频空间中，并在傅里叶域

中分离低频信息和高频信息，将分离的信息移动到正

确位置并重新组合，从而实现两倍的分辨率增强，其原

理图如图 9［58-60］所示。SIM 相较于其他的超分辨显微

QWP

Camera

3D-SIM

DM

TIRF-SIM PCA-SIM

(a) (b)

(c)

图 9　SIM 成像光路以及原理图。（a） SIM 成像光路图［58］；（b） SIM 的光谱扩展［58］；（c） SIM 成像图  ［58-60］

Fig.  9　SIM imaging optical path and schematic diagram.  (a) SIM imaging optical path diagram[58]; (b) spectrum extension of SIM[58]; 
(c) SIM imaging image[58-60]
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技术，具有极高的光子利用效率，因此其可以降低激发

荧光所需的光功率，且成像速度快，这些特性使得 SIM
非常适合应用于活细胞成像。但是，由于多次采集不

同角度和相位图像的需求，SIM 仍存在着光漂白和光

损伤的问题，影响荧光光强稳定性及其图像重建效果，

限制了其在生物样品中的进一步应用。此外，SIM 图

像重建算法对计算资源要求高，对噪声敏感，因此在成

像过程中的光照畸变、采样速率不足、参数估计错误等

会导致重建图像产生伪影。综上所述，对于 SIM 的优

化主要集中在进一步减少成像所需帧数、提高定位精

度以及定位速度、去除重建图像伪影上［61， 62］。

4. 1　降低光毒性

在传统的 SIM 方法中，为了分离原始图像中的低

频信息和高频信息，往往需要在同一方向上的三张移

动照明图像，同时，为了提高同性分辨率还需要至少在

三个角度上获得移动照明图像，因此重建超分辨 SIM
图像至少需要 9 张图像，而对于 3D-SIM 图像重建每个

轴向切片则需要 15 张图像，因此传统 SIM 方法仍存在

较强的光漂白和光毒性。为进一步减少成像所需要的

光剂量，增强 SIM 在生物样品中的应用，最直接的办法

就是减少 SIM 重建所需的原始图像。在过去，研究人

员开发了多种算法对 SIM 的图像重建进行提升，但这

些方法需要对图像形成进行假设，受环境及噪声影响

较大，不仅需要使用者具备先验知识，且泛用性较差。

因此，2020年 Jin等［24］利用深度学习的方法，基于 U-Net
网络，使用堆叠 U-Net将 15张原始 SIM 图像作为输入，

并使用传统 SIM 重建的超分辨图像作为真值进行训

练，得到了 U-Net-SIM15，使用该网络对未输入过网络

的陌生细胞结构进行成像得到了与传统 SIM 重建水平

相当的结果。此外，Jin 等在此基础上进一步减少了原

始图像的输入量，通过使用三张原始 SIM 图像对网络

进行训练，得到了与 U-Net-SIM15相当的成像质量，该

方法被称为 U-Net-SIM3。为最大化降低光损伤，Jin等

降低了所使用的激光功率以及曝光时间，并训练了另

一个 U-Net网络用于获取低曝光图像中的信息，并将该

网络的输出结果导入 U-Net-SIM15，利用 skiplayer 连
接这两个网络形成了新的网络架构，得到了 scU-Net-
SIM。该网络可恢复低曝光原始图像，获得与传统 SIM
成像质量相当的成像结果，相较于传统 SIM 其所用原

始图像减少为 1/5，光子数减少为 1/100，其网络架构

与 scU-Net 重建对比如图 10（a）、（b）所示。类似地，

2020年 Ling等［63］提出使用 CycleGAN 网络实现由三张

具有单向相移的原始结构光图像重建出与传统算法相

同水平的超分辨率图像。该网络的特点是在训练时不

需要训练集与真值集一一对应，相较于 Jin等使用的 U-

Net网络训练效率更高，极大地减少了成像使用的光子
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图 10　深度学习在结构光超分辨显微成像中的成像结果。（a） U-Net-SIM3 网络架构［24］；（b）弱光条件下 U-Net-SIM5 和 scU-Net 的
重建结果［24］；（c）使用 CycleGAN 网络的 SIM 纳米珠成像图［63］；（d）低信噪比下 caGAN 微管成像［64］；（e）DFCAN 的傅里叶注

意机制原理示意图［65］；（f）DFCAN 重建 f-肌动蛋白细胞骨架图像［65］

Fig.  10　Imaging results of deep learning in structured light super-resolution microscopy imaging.  (a) U-Net-SIM3 network architecture[24]; 
(b) reconstruction results of U-Net-SIM5 and scU Net under low light conditions[24]; (c) SIM nanobead imaging using
CycleGAN network[63]; (d) caGAN microtubule imaging under low signal-to-noise ratio[64]; (e) schematic diagram of the Fourier

attention mechanism principle of DFCAN[65]; (f) DFCAN reconstruction of f-actin cytoskeleton images[65]
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数，其对纳米珠重建效果如图 10（c）所示。

对于 3D-SIM，Qiao 等［64］于 2021 年基于 GAN 网络

架构，建立了一种通道注意力网络（caGAN）用于进行

3D-SIM 重建。使用该方法对微管和溶酶体的动态相

互作用进行成像，在记录了 200 个时间点后，样品没有

出现明显的光漂白现象，在生物样品上表现优秀。

caGAN-SIM 最大的优势在于它可以在图像数量相较

于传统 SIM 减少为 1/7. 5、总光子数减少为 1/15 的情

况下依旧保证良好的成像质量，其微管图重建效果如

图 10（d）所示。同年，Qiao 等［65］基于傅里叶域中不同

特征映射的功率谱特征提出了傅里叶通道注意网络

（DFCAN）并结合生成对抗网络构建 DFGAN，傅里叶

通道注意机制可以依照功率谱中包含的频率分量综合

贡献自适应地调整每个特征映射，相较于空间通道注

意机制，可以更精确地推断出精细结构。对于传统

SIM，线粒体的动态成像过程中需要长时间曝光或高

强度照明获得多张原始图像，这会对线粒体造成强光

毒性，难以获取完整线粒体的运动过程。而 DFCAN
和 DFGAN 成功实现了对线粒体的超微结构运动的成

像。因为 DFCAN 对于单帧的光子数要求远低于传统

SIM，可以长时间对活细胞进行成像，可获取的成像帧

数超过 1000 帧，成像时间较传统 SIM 提高了 10 倍，其

原理与 f-肌动蛋白细胞骨架重建如图 10（e）、（f）所示。

在 2022 年，Cheng 等［66］利用深度学习进一步减少

了 SIM 重建所需的图像帧数，他们提出的快速轻量级

SIM 超分辨网络（FLSN）可以实现将任何角度或相位

拍摄的原始帧 SIM 图像转化成相应的超分辨结果，该

方法称为 SF-SIM。SF-SIM 相较于传统的 SIM，其成

像速度提升了 14 倍，其中 FLSN 中设计的多内核多尺

度网络可以帮助 SF-SIM 适应不同的样本，同时基于

Haar小波设计，可以使网络更好地去除图像的噪声。

4. 2　提升成像质量

优秀可靠的算法是获得高分辨 SIM 重建图像的

重要途径，SIM 的图像重建算法是 SIM 领域的研究热

题，研究者们开发了诸多算法用于对原始图像进行高

分辨率重建，例如 fairSIM［67］、CC-SIM［68］、OpenSIM［69］

等，但这些算法对重建原始图像的信噪比要求较高。

在实际成像过程中，由于样品光漂白、成像时间过短、

激发光功率较低等问题，原始图像信噪比较低，重建结

果分辨率下降，重建图像出现伪影。针对这一问题，

2021 年 Shah 团 队［25］提 出 将 经 典 的 计 算 重 建 方 法

fairSIM 与残差编码器 -解码器网络（RED-Net）相结

合，并将该工作流程称为 RED-fairSIM。他们对 RED-

Net 网络进行了改进，在其编码块后增加了一个上采

样块，使其能够对输入的图像在较低维度时进行去噪，

减少了训练时间。研究发现，将 fairSIM 重建后图像输

入使用了高噪声原始图像训练后的 RED-Net 网络，最

终的成像结果解决了 fairSIM 无法重建高分辨率的图

像和重建图像存在伪影的问题。该方法在不同噪声程

度的骨肉瘤细胞微管上得以验证，无论是在低噪声水

平还是高噪声水平的原始图像上都出色地完成了高质

量图像重建任务，其网络架构与对 U2OS 骨肉瘤细胞

重建效果如图 11（a）、（b）所示。

传统的 SIM 图像重建，需要原始图像的高对比

度，这对实验所使用的光源以及实验的光学精准度要

求 较 高 ，为 了 克 服 该 问 题 ，Chen 等［70］在 2024 年 于

Optics Express 上提出基于残差神经网络构建的 CR-

SIM。该网络的训练集包含了低对比度图像，在对具

有较大背景噪声以及厚度的样品测试时，CR-SIM 的

图像重建质量显著高于传统的 fairSIM、IM-SIM ［71］。

除此之外，Chen 等还发现该网络可以很好地弥补数字

微镜器件结构照明显微镜（DMD-SIM）所存在的缺

陷。DMD-SIM 具有结构紧凑、成本低，成像质量高度

依赖于原始图像对比度的特点，将 CR-SIM 网络用于

DMD-SIM，在 huFIB 细胞微管极低对比度成像实验

中，Fair-SIM、IM-SIM 算法均因为投影系统的低通滤

波特性，其调制曲线抑制了高频条纹对比度，无法正

确计算出图像的相位以及频率，但 CR-SIM 的特殊设

计可以使其避开高频调制的限制，提高成像质量。此

外，在不同样品的成像测试中，CR-SIM 表现出了极

好泛用性，在微观、网格蛋白包覆凹坑、f-肌动蛋白和

线粒体结构中均成功实现了高质量图像重建，且没有

引入伪影的现象，其对细胞微管重建效果如图 11（c）
所示。

对于多焦点结构照明显微镜（MSIM），其重建过

程包含了针孔成像、局部缩放、求和与反卷积，因此对

于 MSIM 而言，高效的重建算法非常重要。针对这一

特点，2023 年 Liao 等［72］提出使用 CNN 网络，直接建立

原始 MSIM 图像与重建后的 MSIM 的映射关系，对图

像重建过程进行加速。该方法实现了将 MSIM 的原

始图像帧数减少 3/4，在不增加光毒性和光漂白情况

下提高 MSIM 体内成像的时间分辨率，且网络对低噪

声和高噪声的原始图像都具有一定的重建能力，使得

网络只需要训练一次，所得训练权重可以适用于不同

的噪声水平的原始数据。在深度为 100 μm 的斑马鱼

活 体 内 成 像 实 验 中 ，Deep-MSIM 相 较 于 传 统 的

MISM，实现了成像时间由 162. 63 s 到 72. 87 s 的提

升，其对细胞微管重建效果如图 11（d）所示。

传统的 SIM 重建仅在横向分辨率上实现了超分

辨，轴向分辨率仍有待提升，2008 年 Gustafsson 等［73］提

出使用三束相干光束实现 SIM 重建图像的轴向分辨

率两倍提升的 3D-SIM，在此基础上，Burns 等［26］于

2021 年提出使用 RCAN 网络实现从 2D-SIM（两束相

干光，三个角度）重建达到 3D-SIM 的轴向分辨率，不

仅去除了高图像计数引起的伪影，同时降低了样品光

漂白。该网络以 2D-SIM 图像作为输入，以波长减小

1/ 2 的共聚焦图像作为真值图像，并通过减少共聚

焦图像堆栈中的切片厚度来实现真值图像的轴向分辨

率提升。该方法在 24个看不见的模拟染色质结构的测

试中，RCAN 重建的半峰全宽（FWHM）为 436. 8 nm
（标准差为 21. 8），对比传统 SIM 平均值的 669. 67 nm
（标准差为 207. 2），轴向分辨率得到了显著提升。

4. 3　增强神经网络的泛用性

深度学习在 SIM 领域被广泛应用，但神经网络的

泛用性仍有待提升，一是深度学习在各研究小组里的

广泛应用，二是神经网络在不同样品上的泛用性。

2021 年 Qiao 等在 Nature Methods 上发文，讨论了

深度学习在具体什么水平的原始图像重建时，深度学

习的方法要优于传统 SIM 技术，同时他们搭建了多模

态 SIM 系统，该系统包含了 TIRF-SIM、GI-SIM、非线

性 SIM 以及在宽信噪比内获得一一匹配的低分辨率

和高分辨率图像。Qiao 等［65］使用该系统对网格蛋白

包覆凹坑、内质网、微管和肌动蛋白成像，对每一样品

记录 10 种不断提升的激发强度下的 50 组原始 SIM 图

像，并保证在最高激发光强下所有原始 SIM 图像具

有 足 够 高 的 信 噪 比 ，足 以 重 建 高 质 量 SIM 图 像 。

该成像数据集被命名为 BioSR，如图 12（a）所示，并可

以公开获取。在此基础上，Qiao 等对卷积神经网络

（SRCNN）、增强型深度神经网络（EDSR）、 条件图像

转换生成对抗神经网络（Pix2Pix）和跨模态生成对抗

神经网络（CMGAN）进行了重建分析，并以归一化均

方根误差、多尺度结构相似性指数以及分辨率作为评

价标准，划定了在不同样品下传统 SIM 的适用范围，

以及每一神经网络重建效果优于传统 SIM 的范围。

他们的工作为后续的深度学习 SIM 网络提供了训练

数据，为评估深度学习超分辨显微网络提供了高质量

基准。

目前应用于超分辨显微成像领域的深度学习神经

网络大多数采用有监督学习的方法，这些网络结构存

在两个缺陷：1）需要训练集和真值集，且大部分网络需
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图 11　提升 SIM 图像重建质量的  网络架构以及重建结果图。（a） RED-fairSIM 深度学习网络架构图［25］；（b） U2OS 骨肉瘤细胞

RED-fairSIM 成像结果图［25］；（c） CR-SIM huFIB 细胞微管成像图［70］；（d） Deep-MSIM 微管成像效果图［72］

Fig.  11　Network architecture and reconstruction result graph for improving the quality of SIM image reconstruction.  (a) RED-fairSIM 
deep learning network architecture diagram[25]; (b) RED-fairSIM imaging results of U2OS osteosarcoma cells[25]; (c) CR-SIM 

huFIB cell microtubule imaging image[70]; (d) Deep-MSIM microtubule imaging effect[72]
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1/ 2 的共聚焦图像作为真值图像，并通过减少共聚

焦图像堆栈中的切片厚度来实现真值图像的轴向分辨

率提升。该方法在 24个看不见的模拟染色质结构的测

试中，RCAN 重建的半峰全宽（FWHM）为 436. 8 nm
（标准差为 21. 8），对比传统 SIM 平均值的 669. 67 nm
（标准差为 207. 2），轴向分辨率得到了显著提升。

4. 3　增强神经网络的泛用性

深度学习在 SIM 领域被广泛应用，但神经网络的

泛用性仍有待提升，一是深度学习在各研究小组里的

广泛应用，二是神经网络在不同样品上的泛用性。

2021 年 Qiao 等在 Nature Methods 上发文，讨论了

深度学习在具体什么水平的原始图像重建时，深度学

习的方法要优于传统 SIM 技术，同时他们搭建了多模

态 SIM 系统，该系统包含了 TIRF-SIM、GI-SIM、非线

性 SIM 以及在宽信噪比内获得一一匹配的低分辨率

和高分辨率图像。Qiao 等［65］使用该系统对网格蛋白

包覆凹坑、内质网、微管和肌动蛋白成像，对每一样品

记录 10 种不断提升的激发强度下的 50 组原始 SIM 图

像，并保证在最高激发光强下所有原始 SIM 图像具

有 足 够 高 的 信 噪 比 ，足 以 重 建 高 质 量 SIM 图 像 。

该成像数据集被命名为 BioSR，如图 12（a）所示，并可

以公开获取。在此基础上，Qiao 等对卷积神经网络

（SRCNN）、增强型深度神经网络（EDSR）、 条件图像

转换生成对抗神经网络（Pix2Pix）和跨模态生成对抗

神经网络（CMGAN）进行了重建分析，并以归一化均

方根误差、多尺度结构相似性指数以及分辨率作为评

价标准，划定了在不同样品下传统 SIM 的适用范围，

以及每一神经网络重建效果优于传统 SIM 的范围。

他们的工作为后续的深度学习 SIM 网络提供了训练

数据，为评估深度学习超分辨显微网络提供了高质量

基准。

目前应用于超分辨显微成像领域的深度学习神经

网络大多数采用有监督学习的方法，这些网络结构存

在两个缺陷：1）需要训练集和真值集，且大部分网络需
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RED-fairSIM 成像结果图［25］；（c） CR-SIM huFIB 细胞微管成像图［70］；（d） Deep-MSIM 微管成像效果图［72］

Fig.  11　Network architecture and reconstruction result graph for improving the quality of SIM image reconstruction.  (a) RED-fairSIM 
deep learning network architecture diagram[25]; (b) RED-fairSIM imaging results of U2OS osteosarcoma cells[25]; (c) CR-SIM 

huFIB cell microtubule imaging image[70]; (d) Deep-MSIM microtubule imaging effect[72]
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要配对的训练集和真值集，但高分辨率的真值图像往

往获取困难，通常需要使用其他的超分辨技术获取；

2）监督训练的网络对应用对象类别的敏感度较高，当

训练网络应用于不同对象时，重建图像可能会表现出

训练集特征。为进一步提升深度学习模型的泛用

性 ，2023 年 加 利 福 尼 亚 大 学 的 Burns 等［26］在 Optics 
Express 上提出将深度学习网络与 SIM 正演模型相结

合，构建出物理信息神经网络（PINN），其网络架构与

在多种对象类型上的优化效果如图 12（b）、（c）所示，

在不使用训练集和真值集的情况下，对有限分辨率的

图像直接进行优化。该网络为一个类似于 U-Net网络

框架，低分辨率图像输入网络后，通过 SIM 照明调制

后输出一个图像，该图像再经过 SIM 的正向过程生成

一系列的子图像，并对比该图像与之前的输入图像，直

至二者之间的损失函数趋于稳定，实现高分辨率图像

输出。该网络在线性 SIM、非线性 SIM，以及 f-肌动蛋

白、网格蛋白包被凹坑（CCP）、内质网和微管等不同结

构上均表现优秀，提高了成像分辨率，且不需要对网络

进行多次训练，具有鲁棒性。

5　跨模态超分辨成像

除去在现有超分辨技术使用深度学习克服其缺陷

使其达到更好的成像效果的方法外，研究者们还尝试

使用深度学习将非超分辨成像技术所成图像直接转换

为超分辨图像，即跨模态超分辨成像（CM）。由于在

相同的成像质量下，共聚焦显微镜的激发功率比

STED 所需的激发功率低 1/10~1/3，如果能在该情况

下使共聚焦显微镜获得与 STED 相同的分辨率，则可

以极大地降低成像所需的光剂量，进而减少光漂白和

光毒性。为此 Wang等［74］于 2018年在 Nature Methods上
提出利用深度学习实现荧光显微镜的跨模态转换，他

们使用 GAN 实现了共聚焦图像与 STED 相匹配的分

辨率，全内反射荧光显微镜（TIRF）图像获得与基于

TIRF 的结构光照明显微镜相匹配的分辨率。该方法

降低了超分辨成像的门槛，使超分辨显微成像可以在

更多系统上普及，其网络框架、共聚焦到 STED 的跨模

态转换图像以及对纳米珠重建效果如图 13（a）、（b）
所示。

2023 年 Huang 等［27］提出一种双通道注意力网络

（TCAN），该网络基于条件生成对抗网络（cGAN），生

成器使用了 U-Net 和深度傅里叶通道注意力网络

（DFCAN），这样的设计使得该网络不仅可以提高跨

不同数据集的预测性能，还可以精准地学习图像的高

频信息，获得更精准的映射结果。该方法在直径

23 nm 的纳米珠测试实验中由 TCAN 输出的共聚焦网

络 图 像 PSF 的 FWHM 达 到 了（58±1）nm，而 传 统

STED 图像仅为（83±9）nm. 在 HeLa 细胞核成像实验

中，TCAN 比 STED 图像能更好地解析密集标记的核

孔复合物（NPC），并降低了背景噪声，在保留有用信

息和去噪之间实现了折中。最后，在多种生物结构以

图 12　BioSR 数据集和 PINN 网络相关图像。（a）BioSR 数据集［65］；（b）PINN 网络架构［26］；（c）基于 PINN 的非线性 SIM 分辨率在多

种对象类型上的优化结果图［26］

Fig.  12　BioSR data set and PINN network related images.  (a) BioSR data set[65]; (b) PINN network architecture[26]; (c) optimization 
results of nonlinear SIM resolution based on PINN for multiple object types[26]

及肌动蛋白微观双色成像实验中，将双色共聚焦图像

的分辨率从 230 nm 提升到 110 nm，其网络架构以及对

微管重建效果如图 13（d）、（e）所示。

6　结束语

现有的超分辨显微技术由于其成像原理而存在着

成像速度慢，重建图像存在伪影，对生物样品光损伤大

等问题，使用传统物理方法或算法解决这些问题往往较

为复杂，或者难以取得期望效果。深度学习以其优秀的

解决图像重建逆问题能力而极大地克服了超分辨显微

成像技术中存在的各种缺陷，但深度学习方法在超分辨

显微成像领域中的应用仍面临着一系列的挑战：1） 目
前在超分辨显微成像领域中使用的神经网络主要还是

以有监督学习为主，为获取精确高质量模型，需要使用

大量一一对应的低分辨率图像和高分辨率图像，但高分

辨率图像往往获取困难，这限制了深度学习方法在超分

辨显微成像领域中的广泛应用。2） 深度学习模型训练

成本高，神经网络越深越复杂，其训练模型的准确性越

高，但这需要使用大量的计算资源，训练时间较长。

3） 深度学习模型重建图像的可信度有待提升。深度学

习模型不同于传统的具有严密理论推导与证明的光学

理论模型，其直接建立图像间的特征映射的特点使其更

像一个“黑盒”，因此在学界缺乏理论说服力。

针对以上几种挑战，可以从如下几个方面寻求解

决方法：1） 建立高质量、样本种类丰富的公共数据集，

促 进 深 度 学 习 的 广 泛 应 用 。 如 Qiao 等［65］建 立 的

BioSR 的 SIM 数据集，包含多样的样本和对应的高低

分辨率图像，以供研究人员共享和使用。2） 根据训练

任务设计神经网络，轻量化网络模型，使用特殊设计减

少神经网络的层数，减少计算资源的使用和训练所需

要的时间。3） 提高网络的泛用性。推进无监督网络

模型在超分辨显微成像领域的进一步应用，降低模型

训练的高分辨图像需求，同时增强网络鲁棒性，也可以

借鉴迁移学习的方法，将在一个样本上学到的特征映

射迁移到另一个相关任务上，使得网络适用于不同的

应用场景。4） 提高模型的可解释性。通过可解释性

机制，深度学习模型的决策过程更加透明。采用可视

化技术、注意力机制和可解释性网络设计等方法，使用

户可以更清晰地了解到模型网络的机制，提高网络的

可信度。

综上所述，深度学习目前已经在超分辨显微成像

领域取得了诸多优秀的成果，尽管其仍存在一定的问

题，但可以预见的是，随着深度学习理论进一步完善以

及实践的不断进步，这些问题将被逐步解决，深度学习

技术将大力推动着超分辨显微成像技术的持续进步，

创造更多优秀的成果！
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图 13　深度学习实现跨模态转换网络结构图以及结果图。（a）深度学习实现荧光显微镜的跨模态转换网络框架［74］；（b）从共聚焦到

STED 的跨模态图像转换结果图［74］；（c） TCAN 网络生成器部分网络结构图［27］；（d） DFCAN 机制网络图［27］；（e） TCAN 对微

管进行超分辨率成像结果图［27］

Fig.  13　Deep learning implements cross modal transformation network structure diagram and result diagram.  (a) Deep learning 
implementation of cross modal transformation network framework for fluorescence microscopy[74]; (b) results of cross modal 
image conversion from confocal to STED[74]; (c) partial network structure diagram of TCAN network generator[27]; (d) DFCAN 

mechanism network diagram[27]; (e) TCAN super-resolution imaging results of microtubules[27]
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及肌动蛋白微观双色成像实验中，将双色共聚焦图像

的分辨率从 230 nm 提升到 110 nm，其网络架构以及对

微管重建效果如图 13（d）、（e）所示。

6　结束语
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解决图像重建逆问题能力而极大地克服了超分辨显微

成像技术中存在的各种缺陷，但深度学习方法在超分辨
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前在超分辨显微成像领域中使用的神经网络主要还是

以有监督学习为主，为获取精确高质量模型，需要使用

大量一一对应的低分辨率图像和高分辨率图像，但高分

辨率图像往往获取困难，这限制了深度学习方法在超分

辨显微成像领域中的广泛应用。2） 深度学习模型训练

成本高，神经网络越深越复杂，其训练模型的准确性越

高，但这需要使用大量的计算资源，训练时间较长。

3） 深度学习模型重建图像的可信度有待提升。深度学

习模型不同于传统的具有严密理论推导与证明的光学

理论模型，其直接建立图像间的特征映射的特点使其更

像一个“黑盒”，因此在学界缺乏理论说服力。

针对以上几种挑战，可以从如下几个方面寻求解

决方法：1） 建立高质量、样本种类丰富的公共数据集，

促 进 深 度 学 习 的 广 泛 应 用 。 如 Qiao 等［65］建 立 的

BioSR 的 SIM 数据集，包含多样的样本和对应的高低

分辨率图像，以供研究人员共享和使用。2） 根据训练

任务设计神经网络，轻量化网络模型，使用特殊设计减

少神经网络的层数，减少计算资源的使用和训练所需

要的时间。3） 提高网络的泛用性。推进无监督网络

模型在超分辨显微成像领域的进一步应用，降低模型

训练的高分辨图像需求，同时增强网络鲁棒性，也可以

借鉴迁移学习的方法，将在一个样本上学到的特征映

射迁移到另一个相关任务上，使得网络适用于不同的

应用场景。4） 提高模型的可解释性。通过可解释性

机制，深度学习模型的决策过程更加透明。采用可视

化技术、注意力机制和可解释性网络设计等方法，使用

户可以更清晰地了解到模型网络的机制，提高网络的

可信度。

综上所述，深度学习目前已经在超分辨显微成像

领域取得了诸多优秀的成果，尽管其仍存在一定的问

题，但可以预见的是，随着深度学习理论进一步完善以

及实践的不断进步，这些问题将被逐步解决，深度学习

技术将大力推动着超分辨显微成像技术的持续进步，

创造更多优秀的成果！
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图 13　深度学习实现跨模态转换网络结构图以及结果图。（a）深度学习实现荧光显微镜的跨模态转换网络框架［74］；（b）从共聚焦到

STED 的跨模态图像转换结果图［74］；（c） TCAN 网络生成器部分网络结构图［27］；（d） DFCAN 机制网络图［27］；（e） TCAN 对微

管进行超分辨率成像结果图［27］

Fig.  13　Deep learning implements cross modal transformation network structure diagram and result diagram.  (a) Deep learning 
implementation of cross modal transformation network framework for fluorescence microscopy[74]; (b) results of cross modal 
image conversion from confocal to STED[74]; (c) partial network structure diagram of TCAN network generator[27]; (d) DFCAN 

mechanism network diagram[27]; (e) TCAN super-resolution imaging results of microtubules[27]
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In this Letter, we report a new long-range synthetic aperture
Fourier ptychographic imaging technique, termed learning-
based single-shot synthetic aperture imaging (LSS-SAI).
LSS-SAI uses a camera array to record low-resolution inten-
sity images corresponding to different non-overlapping spec-
tral regions in parallel, which are synthesized to reconstruct
a super-resolved high-quality image based on a physical
model-based dual-regression deep neural network. Com-
pared with conventional macroscopic Fourier ptychographic
imaging, LSS-SAI overcomes the stringent requirement on
a large amount of raw data with a high spectral overlap-
ping ratio for high-resolution, high signal-to-noise imaging
of reflective objects with diffuse surfaces, making single-shot
long-range synthetic aperture imaging possible. Experi-
mental results on rough reflective samples show that our
approach can improve the peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM) by 10.56 dB and 0.26,
respectively. We also demonstrate the single-shot ptychog-
raphy capability of the proposed approach by the synthetic
aperture imaging of a dynamic scene at a camera-limited
speed (30 fps). To the best of our knowledge, this is the
first demonstration of macroscopic Fourier ptychography to
single-shot synthetic aperture imaging of dynamic events.
© 2023 Optica Publishing Group

https://doi.org/10.1364/OL.479074

Acquiring high-resolution images has emerged as an indispens-
able requirement in application scenarios such as astronomy,
remote sensing, and geological exploration. A major limitation
of remote imaging detection is the spatial resolution, which is
jointly capped by the finite aperture size and pixel size cor-
responding to the Nyquist sampling frequency. Astronomers
attempted to extend the effective aperture of the system by either
employing a well-designed large-aperture lens or splicing the
primary mirror, posing significant challenges for lightweight
designs. This approach also tends to introduce optical aber-
rations with bulky dimensions, which precludes its feasibility
in practical imaging. Pioneering research has emerged to

circumvent the inherent limitations of imaging systems, e.g.,
coherent optical detection [1] and flat plate interference [2].

As a promising and elegant computational imaging approach,
Fourier ptychographic microscopy (FPM) [3], invented in 2013,
breaks the trade-off between the large field of view and high-
resolution (HR) with a combination of synthetic aperture radar
(SAR) [4] and optical phase retrieval [5]. Combined with the
concept of Fourier optics, the imaging process can be under-
stood as sampling the different regions of the HR Fourier domain
of an object. Its application potential has been demonstrated
in both microscopic biomedical imaging [6–8], and remote
sensing [9,10], and meanwhile, the technology has been incor-
porated in the latest Fourier optics publications. Undoubtedly,
during each acquisition, a certain amount of redundant informa-
tion (at least 35% aperture overlapping percentage [11] in the
Fourier domain) needs to be leveraged to perform the lost phase
information decoupling, as the sensor can only record inten-
sity information. The converged intensity and phase images
are yielded by iterative optimization, jointly imposing both
space and frequency-domain constraints on the observed data.
This, in turn, is laborious, which implies it is less suitable for
dynamic scenes, hampering its application in dynamic scenarios
(default: the observed scene remains stationary over a time-
lapse). Adaptive compensation [12] and simulated annealing
correction algorithms [13] have also been proposed successively
to tackle the artifact phenomenon in the reconstruction results,
providing fast convergence speed with few computational over-
heads. Motivated by the rise of convolutional neural network
(CNN) techniques [14] and their flexibility to the prior latent fea-
tures as network layers, many efforts [15–17] to refine the FPM
framework have been catalyzed. It has been proven that Neu-
ral networks can simultaneously restore the envisaged images
by aggregating multi-scale features and nonlinear mappings
[18,19], notably in the field of phase recovery.

In this Letter, we report a new super-resolution technique,
termed learning-based single-shot synthetic aperture imaging,
which is capable of “regenerating” the lost spatial resolution
with deep learning. The proposed method leverages the advan-
tages of deep learning data fitting to address the problem of

0146-9592/23/020263-04 Journal © 2023 Optica Publishing Group
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Fig. 1. Overview of the proposed LSS-SAI framework. The
object is illuminated by a fiber laser, and the Fourier spectrum
is formed at the aperture plane. The specific optical path tracing
diagram is shown in the upper left-hand corner.

speckles and artifacts in reconstruction, rekindling sparse aper-
ture, single shot, and ambiguity-free super-resolved imaging.
Inspired by a priori knowledge in image processing, we could
impute the extension of the Fourier spectrum to the physical prior
of four elaborate-designed parallel network architectures. CNN
can excavate more texture features from the original multiple
encoded images, refining the details while balancing the speckle
interference. The iterative non-negativity constraint was further
employed to compute the filling of the missing information,
yielding optimal outcomes. As a similar concept, the learning-
based network [20,21] has achieved tremendous success in
searching the map functions (statistical model of desirable target
and the observational data) for various underdetermined imag-
ing problems, verifying the feasibility of constraining the inverse
problem through the network.

In the construction system, as shown in Fig. 1, a coherent
laser is introduced to illuminate the 3 × 3 camera array on the
receiver side. The sub-aperture will receive the wave vector of
the incident beam from different angles, and the specific imaging
process can be expressed as follows:

ooutput(x, y) = h(x, y) ⊗
[︁
oinput(x, y) eium,nx+ivm,ny]︁ , (1)

where oinput(x, y) and ooutput(x, y) represent the complex ampli-
tudes of the input and output optical fields, respectively; ⊗

represents the two-dimensional convolution process; eium,nx+ivm,ny

denotes the wave vector of the mth row and nth column of the
angled incident plane light wave. The light field at the imaging
aperture plane can be described as Ψ(u, v) for the sensor, which
can only record intensity information, and the measurements
are phaseless, whereupon the intensity information recorded is
formulated as follows:

I (x, y) =
|︁|︁F −1 [Ψ(u, v) · P (u − uc, v − vc)]

|︁|︁2 , (2)

where (uc, vc) is the center of the aperture; P(u, v) is the Fourier
transform of h(x, y), i.e., the coherent transfer function of the
optical imaging system (NA/λ). It is also the intrinsic concept
of FP to increase the resolution by obtaining the sub-spectrum
at different locations, thus extending the range of the equiva-
lent spectrum and widening the size of the equivalent aperture.
We mainly focus on the reconstruction quality enhancement of

the long-range rough reflective samples. Therefore, it is neces-
sary to consider the influence of phase fluctuations on the rough
surface, which implies that a random phase distribution will
be integrated. The ingenious exploitation of angular illumina-
tion to mitigate the influence of speckle noise is a thoughtful
approach to coherent synthetic aperture imaging. Object infor-
mation is encrypted in disordered-seeming speckles, especially
those related to the phase fluctuations of the surface, which can
be decoded by inverse transmission matrices and CNN. From the
perspective of information optics, the whole reflection process
can be analogized to the dot product between the scattering layer
and the smooth non-diffuse target [9]. We set the scattering inten-
sity A and the corresponding phase φ randomly distributed in
the interval [0, 1] and [0, 2π], respectively. Thereby, the complex
amplitude distribution S can be expressed as S = A exp(iφ).

The proposed verification platform contains nine imaging sen-
sors (pixel size of 1.85µm) equipped with the FUJINON lens
(75 mm focal length, F# from 2.8 to 16). Coherent illumina-
tion conditions are required to be satisfied in FP imaging. The
illumination source employed in the demonstration is a semi-
conductor laser with a wavelength of 632 nm and a maximum
power of 5 mW. The distance between the measured object
and our system is 2.3 m. The specific imaging optical path
is shown in Fig. 1, and we can observe that each sub-camera
is tightly arranged (non-overlapping) with the corresponding
acquired images presented in the right-hand corner. For cap-
tured image pairs, the sequence captured by the camera with a
lens (F-number 4) is recorded as the ground truth HR sequence,
and the sequence captured by the camera with a lens (F-number
12) is adapted to generate the corresponding LR sequence, gen-
erating a dataset for 3× super-resolved imaging. Based on this
setup, we built a dataset containing 1000 raw data tailored
by off-the-shelf detectors for the proposed network. Figure 2
reveals the intrinsic model of the proposed network, which is
a nine-path CNN. It is noteworthy that the method takes the
form of a “forward generation–reverse regression” procedure.
The network attempts to recover an estimate of the envisioned
object from the degraded image by prior mapping knowledge
(e.g., the system transfer function). Physics-informed learning
seamlessly incorporates both data and mathematical models to
address the under-determined problem, even in noisy and high-
dimensional contexts. Nine non-overlapping intensity data were
fed into the network simultaneously to derive a high-resolution
super-resolved image with high signal-to-noise. We hypothesize
that the training process can be regarded as a prior learning

Fig. 2. Proposed network follows the form of a “forward gen-
eration–reverse regression” procedure. The proposed method is a
nine-input, single-output supervised network.
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process, including illumination angle, speckle noise, and acqui-
sition position, which will further bolster the interpretability of
the model.

The proposed algorithm is flexible since once the training task
is completed, no further manual adjustment of parameters is
required to optimize the reconstruction performance. In order to
yield reasonable predictions, the forward generation process and
the reverse regression process are simultaneously constrained
in the network model, and the dual loss functions compen-
sate each other to produce the entire loss function balance. In
the constructed network environment, the Adam optimizer is
installed to implement structure feedback, with initial learning
rate, batch size, and epoch setting to 10−4, 4, and 200, respec-
tively. The model was operated on the configured computer
with an Nvidia RTX2080Ti graphics card and an Intel Core
TM i7-9700K CPU @ 3.60GHz×8 processor. The training and
testing times for the entire network are 7.7 hours and 0.2 sec-
onds, respectively. The network feeds back/refines the fitting
errors between the data through the optimizer to avoid produc-
ing contrived results, thus, effectively retaining latent texture
information. The mathematical expression of the loss function
is presented as

Loss =
N∑︂

i=1

Loss1 [F (xi) , yi] + λ Loss2 [D (yi) , xi] , (3)

where xi and yi represent the input LR and output HR images,
respectively; Loss1 [F (xi) , yi] and Loss2 [D (yi) , xi] describe the
loss functions of forward regression and inverse regression
tasks, respectively. The super-resolved image F(xi) is constantly
approaching the similarity with its corresponding HR image
in the training process. Simply put, the similarity between
the predicted map D(yi) and the forward-fed map is continu-
ously approached during the regression process. Hinting that
the forward loss value is preferred, hereby, we set the weight
distribution λ of the hybrid loss function to 0.1.

We evaluated the proposed method on both synthetic and
real-world datasets. To test the effectiveness of the proposed
method, we first reconstructed the low-resolution scene with-
out coherent speckles (dataset was created by DIV2K [22]). To
establish the unique advantages of the proposed method over tra-
ditional ptychography imaging, we conduct quantitative analyses
in terms of input images having different overlaps, as illus-
trated in Figs. 3(a1)–3(a4). The bottom row of Figs. 3(a1)–3(a5)
presents the line profile along the red dotted line. As one would
expect, the robustness of the network is boosted, and more tex-
ture components of the image are reproduced with the increasing
amount of data fed into the network. We also perform the
reconstruction of diffuse reflective objects (rough paper), as
shown in Fig. 3(b), and the corresponding zoomed-in areas are
shown in Figs. 3(b1)–3(b5) and Figs. 3(c1)–3(c5). It is noted
that the proposed network results still defeat the other network
method [23], such as Generative Adversarial Network, in terms
of the maximum improvement of 3.38 dB in peak signal-to-noise
ratio (PSNR). The learning-based single-shot synthetic aperture
imaging (LSS-SAI) approach supports significant improvement
(extreme reduction from 50 minutes to 0.2 seconds) in imaging
speed with a negligible decline in reconstruction quality against
the related methods.

Furthermore, we selected a coin made of metal alloy with
a diameter of 27 mm as the object, as shown in Fig. 4. Fig-
ures 4(c1)–4(c5) demonstrate the different reconstruction results

Fig. 3. Comparison of network reconstruction results. (a) Simu-
lation reconstruction results of specular objects. (b) Performance of
the LSS-SAI platform for the smooth object. (a1)–(a5), (b1)–(b5),
(c1)–(c5) Corresponding region reconstruction results.

Fig. 4. Comparison of reconstruction results in the case of dif-
fuse reflection. (a) The original images fed into the network. (b)
Predicted reconstruction results of the network. (c1)–(c5) Results
of image quality evaluations for the region of interest in different
cases/methods (the reference image with an aperture F-number of
4 is selected as the label).

in the magnified region of interest for the commemorative
coin. The gray scale profile of the magnified region is plot-
ted below the corresponding one, for which the smooth profile
indicates lower scattering noise. Figure 4(c1) illustrates that
the signal-to-noise ratio and the resolution of the coin are too
inferior to distinguish the features. As shown in Fig. 4(c2),
although the noise is partially suppressed as a result of tak-
ing the cumulative average of the nine sub-aperture maps, the
detailed components of the images are not yet reproducible.
Theoretically, with enough low-resolution images, this method
is able to increase the resolution of the image by a factor of
two. Although the high-frequency components of the image are
a super-resolved reconstruction, there is still significant speckle
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Fig. 5. Constructed vehicle dynamic pursuit imaging results. (a)
Comparison of the recorded low-resolution image (under F-number
12) with the predicted super-resolved image. (b1)–(b5) Magnifica-
tion of the regions in the low-resolution images. (c1)–(c5) Super-
resolution reconstruction results of the corresponding regions. (d)
Comparison of the PSNR and SSIM curves of the original image
and the reconstructed image in the dynamic experiment. (e) The
corresponding curves of displacement distance versus time for the
two vehicles.

noise in Fig. 4(c3). Moreover, the same trade-off between mas-
sive data volume (temporal resolution) and spatial resolution has
to be compromised. On the contrary, the reconstruction result
of the proposed method is presented in Fig. 4(c4), improv-
ing 10.56 and 0.26 in both PSNR and structural similarity
(SSIM) indexes, respectively. The proposed method demon-
strates efficient noise suppression capabilities while improving
image resolution, elegantly solving the problems of conventional
methods.

Moreover, we demonstrate the high temporal resolution
of LSS-SAI by performing super-resolved videography of a
dynamic scenario containing two isolated samples (See Visu-
alization 1 for the whole video recording). The established
system is depicted in Fig. 5, which employs a linear displace-
ment stage to push the movement of both toy vehicles separately
and places a stationary sign at the rear. Figure 5(b) shows that the
reconstructed result from raw low-resolution data is too coarse
to identify the model tire and steering sign details, which is
capped by the combined limitation of aperture diffraction and
laser speckle noise. In contrast, the proposed LSS-SAI yielded
the best super-resolved reconstruction with well-reproduced sur-
face details, as shown in Fig. 5(c), which is almost reproduced to
the ground-truth data. The reconstruction method improves the
PSNR and SSIM metrics by up to 0.12 and 15.23, respectively,
compared with the original image for 1500 consecutive frames.
Furthermore, we also performed the corresponding linear fits
for the two moving targets, which can be inversely calculated as
0.6 cm/s and 1.5 cm/s for the two vehicles, respectively. Experi-
ments show that the proposed algorithm is a powerful approach
for improving the performance of Fourier ptychography even if
containing complex speckle noise.

In this Letter, we have presented a learning-based single-shot
synthetic aperture imaging, endowing the capability to overcome
the reconstruction quality deterioration and stringent overlap-
ping ratio constraints in conventional FP. Moreover, thanks to
its single-shot nature, LSS-SAI is fundamentally immune to arti-

fact induced by object motion. The proposed method has great
potential for performing super-resolution imaging of macro-
scopic diffuse reflectance observations. More modifications and
innovations remain to be implemented in further, e.g., whether
it is promising to reconstruct the phase information of far-field
diffuse scattering objects.
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As the representative of flexibility in optical imaging media, in recent years, fiber bundles have emerged
as a promising architecture in the development of compact visual systems. Dedicated to tackling the
problems of universal honeycomb artifacts and low signal-to-noise ratio (SNR) imaging in fiber bundles,
the iterative super-resolution reconstruction network based on a physical model is proposed. Under the
constraint of solving the two subproblems of data fidelity and prior regularization term alternately, the
network can efficiently “regenerate” the lost spatial resolution with deep learning. By building and
calibrating a dual-path imaging system, the real-world dataset where paired low-resolution (LR) - high-
resolution (HR) images on the same scene can be generated simultaneously. Numerical results on both
the United States Air Force (USAF) resolution target and complex target objects demonstrate that the
algorithm can restore high-contrast images without pixilated noise. On the basis of super-resolution
reconstruction, compound eye image composition based on fiber bundle is also embedded in this pa-
per for the actual imaging requirements. The proposed work is the first to apply a physical model-based
deep learning network to fiber bundle imaging in the infrared band, effectively promoting the engi-
neering application of thermal radiation detection.
© 2022 China Ordnance Society. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
1. Introduction advantages of infrared imaging [4] and fiber-optic sensing can

provide more valuable technical approaches to the field of detec-
The fiber bundle imaging technique has demonstrated its suc-
cess in military periscope, life detection, and endoscopic imaging
[1], owing to the inherent flexibility of fiber optics. In the military
field, the fiber bundle periscope combines the flexible passive fiber
optic image transmission system with the internal sighting scope,
enabling the shooter to conveniently utilize corners, tree trunks,
trenches, high platforms, and other terrain features for periscopic
hidden observation and rapid aiming and firing on targets. By
constructing a compact set of lenses, multiple LR sub-images are
formed in the compound eye system [2,3], and composited sub-eye
images are achieved by post-processing. In addition, combining the
Spectral Imaging and Intelli-
ology, Nanjing, Jiangsu Prov-

ce Society

services by Elsevier B.V. on behalf
c-nd/4.0/).
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tion and open up a variety of applications. Meanwhile, in turn,
limited by its geometric nature (irregular layouts of fiber cores),
images taken by such systems have penetrated honeycomb-like
fixed pattern noises [5,6]. Infrared images are accompanied by a
significant non-uniformity effort, which damages the imaging
performance rather than helping it [7,8]. In addition, the effective
imaging resolution of a fiber bundle system is capped by the
inherent physical fiber core diameter and fiber density rather than
the optical system or the detector pixel size. Image restoration
possibility is also considered the potential of the compound-eye
system, which is yet to be explored fully. Therefore, there is an
urgent requirement for an effective algorithm to improve the
spatial imaging resolution while separating the honeycomb pat-
terns, which is the motivation of this paper.

Most current imaging applications of fiber bundles are applied
in micro-endoscopic, which are typically accompanied by poor
light transmission (incoming light intensity information) due to the
minor incident numerical aperture of the fiber bundle. Therefore,
of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-
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the low SNR in far-field imaging is also a huge challenge, which
progressively hinders the accurate analysis of objects. In order to

2. Methods
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optimize the imaging perception of the optical fiber bundle tech-
nique, it is necessary to explore implementable methods to elimi-
nate the impact of honeycomb patterns and compensate for the
mixed texture information. Corresponding optimization methods
have been presented successively. Earlier computational methods
were generally implemented a prior by the regularity of fiber
pattern arrangement. Rupp [9] borrowed the interpolation method
in the spatial domain to establish the exact position relationship of
each fiber center pixel point and subsequently interpolates the
cladding pixels based on the values of the neighboring pixel points.
Shinde [10] proposed that the honeycomb structure image is
regularly arranged in the frequency domain, and the envisioned
data can be recovered using the band-stop filtering technique, yet it
is hugely challenging to determine the threshold of the band-stop
filter, which normally results in part of the valuable information
being filtered as well. However, previous computational methods
only eliminated undesired pixelated patterns without substantial
improvement in spatial resolution.

Super-resolution is an ill-posed problem [11e14] that deals with
restoring an HR image from a single or a series of raw images based
on either specific a prior knowledge or just an assumed generic
notion about the tighter correspondence imaging model. The deep
learning technique [15e17] breaks the dependence of traditional
methods on prior knowledge and efficiently utilizes the raw in-
formation “hidden” in the original honeycomb patterns. Mini-
mizing the optimization problem by mapping massive data
samples [18,19] (deep learning methods gradually reduce the loss
function through multiple epochs and update the weight parame-
ters through feedback), is conducive to precisely learning the high-
resolution image. In particular, U-Net [20] has achieved tremen-
dous success in searching the mapping functions (observation
models and noise statistics) for various underdetermined medical
imaging problems, verifying the feasibility of constraining the in-
verse problem through the network. Ravi [21] estimated the
pseudo ground truth image by a video alignment algorithm and
then tried to recover the fiber bundle image by three different
convolutional neural networks. Simultaneously, Shao [22] imple-
mented a generative adversarial restoration neural network
(GARNN) or a 3D convolution network to remove the foveal effect
and restore the “hidden” features. The feasibility of super-
resolution reconstruction of infrared images through the network
was also verified in previous work [23e25]. Perhaps not surpris-
ingly, conventional deep-learning algorithms lack interpretability
to some extent and heavily rely on abundant examples to train the
network without incorporating any physical degradation model
constraints [26e28]. Each model training can only focus on a single
situation-specific image reconstruction project and lacks the flex-
ibility to cope with different tasks or different scale factors. To
address the above issues, we propose an image-resolved algorithm
based on the physical-model deep learning network, which is
promising in regenerating high-resolution and non-honeycomb
pattern images. In this research work, the primary options
focused on the infrared radiation band, yet actual visible light im-
ages could also be employed. Based on this research work, it seems
reasonable to pursue a similar set of fiber-optic bundle system
configurations in future military research.

The remaining structures of this paper are as follows. Section 2
depicts the basic principle of our proposed method and presents
the details of the proposed network for infrared fiber bundle super-
resolution. Abundant experimental results and analysis are
demonstrated in Section 3. Finally, Section 4 enforces a discussion
and summarizes the paper.
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2.1. Theoretical analysis

The optical fiber image bundle is composed of multiple fibers,
and each core conveys an individual image element. The current
fiber bundle has a trade-off between the field of view and the core
sampling rate. In order to combine the field of view and luminous
flux of a single fiber, the diameter of currently manufactured fibers
is empirically chosen to be slightly larger. The inherent fiber bundle
physical limitation interrupts the information and weakens the
imaging resolution, leading to a honeycomb pixelation (fixed
pattern noise) of the sample.

In order to quantitatively investigate the correspondence be-
tween image quality and parameters of the optical fiber bundle
imaging system, the concept of the average modulation transfer
function (MTF) [29e31], commonly employed in the discrete
sampling system, is introduced as the evaluation metric. The
average MTF of the system can be indicated by the product of the
Fourier transforms of each discrete sampling distribution function,
which is expressed as follows:

MTFsys ¼ MTFobject,MTFfib,MTFrelay,MTFdetector (1)

where MTFsys, MTFobject, MTFfib, MTFrelay, and MTFdetector represent
the MTFs of the overall system, the fore-objective lens, the optical
fiber imaging bundle, the relay lens, and the detector, respectively.
The dual sampling of both fiber bundle and detector exists in the
proposed system, and the imaging process of the fiber bundle in-
cludes low-pass filtering followed by the integral sampling of the
fiber core and the discrete decimation of each fiber in the dense
arrangement. MTFfib is composed of the fiber integral function
MTFfib�int and the fiber sampling function MTFfib�sam. Therefore,
MTFsys can be expressed as

MTFsys ¼ MTFobject,MTFfib�int,MTFfib�sam,MTFrelay,MTFCCD

¼ MTFobject,MTFrel,
�
2J1ðpdf Þ

pdf

�2
,jsincðDf Þj,jsincðpf Þj (2)

Among them, J1 refers to the first-order Bessel function, d is the
diameter of the fiber core, f is the spatial frequency, D represents
the fiber core center distance, and p represents the detector pixel
size.

Our system adopts the chalcogenide glass infrared fiber bundle
with a core diameter of 40 mm and a core center distance of 50 mm.
Furthermore, infrared sensors with a pixel size of 15 mm and a
center wavelength of 4.2 mm are chosen for data collection. As
shown in Fig. 1, under the premise of this invariant optical system,
the system MTF mainly relies on the fiber bundle MTF. In this case,
the cutoff frequency and spatial resolution of the system are not
limited by the pixel size of the sensor or the diffraction effect.
Instead, they are dramatically trapped by the fiber core center
distance and core diameter (MTFfib). Due to the dual discrete
sampling mechanism of the optical fiber bundle imaging system,
honeycomb-like fixed patterns are imposed on its output images. In
the optical imaging system, the multiplication of MTF in the fre-
quency domain is equivalent to the convolution of the point spread
function (PSF) in the spatial domain. The PSF (blur kernel) of the
system is also a crucial indicator of imaging resolution capability. In
light of the above analysis, the system degradation model is mainly
affected by the fiber bundle, and the simulated blur kernel of the
fiber bundle imaging systemwith the hexagonal structure is shown
in Fig. 1. The proposed method is also dedicated to solving the



dilemma of incompatibility between sensor and fiber bundle
sampling in fiber optic imaging systems. Lmðx; zÞ¼1ky � SHzk2 þ lFðxÞ þ mkz � xk2 (4)

Fig. 1. Schematic diagram of the dual-path imaging system. The blue dashed line illustrates the PSF of the simulated system, and the red dashed line represents the MTF of the
simulated system.
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The “one-to-one” dual-path imaging system is established to
obtain HR images and degraded LR images simultaneously, as
shown in Fig. 1. To obtain the true observation image (label) and
fiber image (input image) simultaneously, we introduced a beam
splitter to split the light from the object into two paths. By physi-
cally adjusting the distance between the lens and the object, the
image alignment error of the two imaging paths is at the sub-pixel
level. Further, the post-alignment algorithm accomplishes the tiny
alignment of the dual-channel images.

2.2. Proposed algorithm and network architecture

In this section, we investigate how to adapt the deep-learning
method for honeycomb artifacts removal and far-field image
restoration. As such, we resort to theoretical analysis and formulate
the image restoration problem in a framework. Generally, image
super-resolution is an inverse problem [32] where the objective is
to recover the latent HR image x from its blurred, decimated, and
noisy observation y ¼ SHxþ n, where S denotes the standard
down-sampler, H represents the convolution operation with blur
kernel, and n is the additive noise. The model-based deep learning
method with degradation constraint is interpretable compared
with conventional deep learning methods. According to the
maximum a posteriori (MAP) framework, the HR image can be
performed by solving the following optimization problem:

bx ¼ argminx
1
2
ky � SHxk2 þ lFðxÞ (3)

where 1
2ky � SHxk2 is the data fidelity term related to the model

likelihood, FðxÞ is the prior regularization term associated with the
image prior information, and the role of the l is to weigh the
importance of the prior regularization term relative to the data fi-
delity term. For the purpose of acquiring the further unfolding
inference, the half-quadratic splitting (HQS) algorithm introduces
an auxiliary variable z and transforms Eq. (3) into an approximate
equivalent problem
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2 2

where m is a regularization parameter associated with the quadratic
penalty term, and such a problem can be solved via the following
iterative scheme:

zk ¼ argminzky � SHzk2 þ mkkz � xk�1k2 (5)

xk ¼ argminx
mk
2
kzk � xk2 þ lFðxÞ (6)

Mathematically, the data fidelity term and prior regularization
term are decoupled into two individual subproblems, which can
facilitate each other to realize blur elimination and detail recovery.
Therefore, the model-based iterative network (MBIN) can be
designed, whose framework consists of a data fidelity module and a
prior regularization module iteratively. Fig. 2 illustrates the overall
architecture of MBIN with k iterations.

The data fidelity module imposes a degradation model
constraint on the solution, which can be leveraged and incorpo-
rated into the network construct to guarantee more precise and
reliable reconstruction. Specifically, the data fidelity module is
related to a quadratic regularized least-squares problemwhich has
various solutions for different degradation kernels. A direct solu-
tion is given by

zk ¼
�
HTSTSH þ mkI

��1�
HTSTyþmkxk�1

�
(7)

We assume that the convolution is performed under circular
boundary conditions. Hence, the fast Fourier transform can be
adapted to efficiently implement Eq. (7).

For the prior regularization module, Eq. (6) can be reformulated
as

xk ¼ argminx
1

2
� ffiffiffiffiffiffiffiffiffiffi

l=mk
p �

2
kzk � xk2 þ FðxÞ (8)



Treating zk as the “blurred” image, Eq. (8) minimizes the residue
between zk and the “clear” image x using the prior FðxÞ [33]. The

operation in the contractive and expansive branch, we adopt 2 � 2
stridden convolution (SConv) and 2 � 2 transposed convolution

Fig. 2. The overall architecture of MBIN with iterations k ¼ 8. MBIN consists of two main iterative modules, the data fidelity module to guarantee the solution complies with the
degradation process and the prior regularization module to enforce desired properties of the output.
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corresponding minimization function is also named the so-called
loss function. The latent mapping between “blurred” and “clear”
maps can be learned by training the prior module, which acts as a
detail enhancer for high-frequency recovery.

Inspired by the prior knowledge in information optics, we may
impute the expansion of high-frequency components to the image
prior rooted in the elaborately designed architectures. Physics-
informed learning seamlessly incorporates both data and mathe-
matical models to address the under-determined problem, even in
noisy and high-dimensional contexts. In fact, the physical prior was
integrated into the forward generation process in earlier in-
vestigations. The optimized values of the physical prior are derived
by gradient descent applying a back-propagation algorithm of de-
rivatives, which is akin to the deep learning optimization process.

The process of cross introducing the optimization iterations of
the physical model together with the fitting function of deep
learning will significantly strengthen the interpretability of the
network. Notably, in Fig. 2, we introduce the physical iterative
process and further incorporate the system's PSF into the network
model. Quite the contrary, if only end-to-end learning is done
without any physical model intervention, the image quality will
undoubtedly suffer degradation. In previous super-resolved
reconstruction projects, numerous efforts neglected the introduc-
tion of physical models as the most critical aspect.

U-Net, widely formed in multi-scale image-to-image trans-
forms, is adopted to construct this module. As illustrated in Fig. 2,
the fundamental structure of the prior regular module involves a
contractive branch and an expansive branch with four folds.
Moreover, the module takes advantage of Resnet [34] to enhance
network capacity and performance by introducing residuals. A set
of two residual blocks are integrated on each scale of the branch
[35], as shown in Fig. 2. Specifically, the number of channels from
the first scale layer to the end layer is set to 64, 128, 256, and 512,
respectively, in that order. For the down-sampling and up-sampling
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(TConv), respectively, which are not followed by the activation
function. In addition, skip connection can not only transfer image
feature information but also alleviate the problem of gradient
disappearance, enabling convenient transmission of valuable in-
formation in the network. In respect of the loss function, we adopt
the L2 loss to evaluate the peak signal-to-noise ratio (PSNR) per-
formance. In the network, the batch size is set to 48. Adam solver
[36] is adopted to optimize the parameters with the learning rate
initialized as 10�4. The hardware platform of the network for model
training is Intel Core™ i7-9700 K CPU 3.60 GHz equipped with the
RTX2080Ti graphics card, and the software platform is PyTorch
1.6.0 under the Ubuntu 16.04 operating system.

3. Experimental results and analysis
3.1. Dataset preparation

For the validation of our proposed method, the dataset is pre-
pared by simulations, which dispenses with the available extra
imaging system to provide well-registered pairs of fiber bundle
images and their corresponding ground truth data. To obtain the LR
counterpart from each mapped HR image, we impose the PSF for
each hexagonal arranged core to the mapped HR image. The
convolution operation of PSF, followed by the down-sampling
operation, implements a weighted sum of HR pixels to yield an
LR image pixel.

In recent years, deep learning is emerging as a powerful tool to
address problems by learning from data, largely driven by the
availability of massive datasets. Unfortunately, such simple degra-
dation models could not faithfully describe the complex degrada-
tion processes in the real world. This motivates us to build a real-
world SR dataset to narrow the synthetic-to-real gap. Our
training data set consists of 1000 paired LR-HR images and their
corresponding ground truth data. To monitor the accuracy of the



neural networks on data never seen before, we created a validation
set by setting apart 50 images from the original training data. A

can be regarded as finished, and only the displacement between
pixel levels remains for the registration error with respect to two
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representative dataset in our proposed network is depicted in
Fig. 3. Note that our proposed network is still based on supervised
learning. We consider the training process of the network as the
task of learning the image prior, including fiber fixed noise, lumi-
nance bias, frequency characteristics, etc. The network attempts to
recover an estimate of the envisioned sample from the degraded
image by prior mapping knowledge (e.g., the system transfer
function). Therefore, a sufficient variety of images should be
included in our datasets to construct the network mapping func-
tion as much as possible. The reconstruction process of the network
is also not a magic trick, which requires a sufficient amount of prior
information to support the fitting process of the parameters. Only
when the dataset is guaranteed to a certain extent the nonlinear
mapping will perform well in a massive sample.

For the data collected from the dual-path imaging system, HR
images captured from Sensor 1 have the same pixel dimensions of
1024 � 1024, while LR images recorded by Sensor 2 are cropped to
256 � 256 pixels from 640 � 480 pixels. The end-to-end networks
demand that LR images are interpolated to the same size as HR
images, and image pairs are aligned by sequentially applying coarse
and fine registrations for the network to learn the direct mapping
relations. When using experimental data as ground truth, the
reconstructed performance is inevitably contaminated by noise.
Geometric changes such as rotation, translation, and deformation
are implemented in images by finding inter-image feature points to
eliminate the distortion errors between different lenses. When the
distortion error is eliminated, we consider that coarse registration
Fig. 3. A representative dataset

Fig. 4. Schematic diagram of the dual-
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images. Consequently, the frequency domain cross-correlation
method [37] is adopted for precise registration to achieve sub-
pixel error correction between image pairs. Considering the
invariant characteristics of the imaging system, we could complete
the registration of all datasets by performing only one-time coarse
and fine registration, as shown in Fig. 4.

3.2. Quantitative evaluation based on the USAF resolution target

A USAF resolution target was employed to quantitatively vali-
date the performance of the proposed method in terms of image
resolution. Depending on the system parameters mentioned in
Subsection 2.1, the forward model of the system is simulated with
explicit degradation to acquire LR-HR image pairs in Subsection 3.1.
The cellular fiber image in Fig. 5(a) is generated from the original
high-resolution infrared image, which is shown in Fig. 5(e), through
the dual discrete sampling of the fiber bundle imaging system.
Figs. 5(b)e5(d) presents the reconstructed results using U-Net,
super-resolution convolutional network (SRCNN) [38], and MBIN
methods, respectively. It is clearly observed from Fig. 5 that the
MBIN method addresses nearly all the major limitations of the
other methods.

Although all methods exhibit removal of the honeycomb pat-
terns, images reconstructed by U-Net and SRCNN still survive with
distinct pixelated patterns along the edge of bars, where the
recovered edges are jagged rather than smooth. On the contrary,
MBIN eliminates these artifacts along edges, maintaining
in our proposed network.

path image alignment processing.



uniformity in intensity closer to the original image. As shown in
Fig. 5(a), the minimum line pairs that can be resolved in the syn-

Obviously, high-resolution images can be effectively recon-
structed using our proposed method, and more specifically, our

Fig. 5. Comparison of U-Net, SRCNN, and MBIN on the synthetic USAF resolution target: (a) Input USAF target image; (b)e(d) Reconstructed images respectively used U-Net, SRCNN
and MBIN methods; (e) Original USAF target image (ground truth); (f)e(h) Zoomed-in images of the region of interest (ROI) in (b)e(d); (i) Cross-sectional profile of dash line shown
in (b)e(d).
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thetic image is the element of the third group on the left, with a
corresponding line width of 0.92 mm. To intuitively compare the
performance of the three methods, we intercept regions of the
rectangular box for comparison, as shown in Figs. 5(f)e5(h). Note
that results reconstructed byU-Net and SRCNN are blurred, and line
pairs cannot be distinguished in the zoomed-in area.
Fig. 6. (a) Comparison of fiber bundle image reconstruction; (b) The average Loss value and
The dual-path imaging system.
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method can enhance the original resolution to the third group on
the right, corresponding to a line pair resolution of 0.54 mm. The
proposed method extends the imaging resolution to 1.7 folds,
successfully breaking through the imaging resolution limited by the
physical size of the original intrinsic system. Furthermore, we can
be surprised to observe that the intensity profile of MBIN in Fig. 5(i)
average PSNR value of the validation dataset against the number of training epochs; (c)



achieves the best performance in both contrast and resolution.
Evidentially, the proposed MBIN demonstrates apparent advan-

validation dataset against the training epoch number of MBIN in
Fig. 6(b). Such two curves oscillate in the early epochs and converge
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tages in terms of linewidth and sharpness exhibited in the recon-
structed image.

3.3. The network performance on real datasets
To further demonstrate that the proposed MBIN indeed im-
proves the image performance, we conducted real scene data ex-
periments with the dual-path imaging system. For the sake of
efficient learning of the end-to-end mapping relations, except for
the interpolation and registrations mentioned in subsection 3.1, the
LR images are pre-processed with background noise reduction and
infrared image enhancement before feeding into the network
model. We compared the MBIN with two state-of-the-art restor-
ative neural networks to verify the network's performance capa-
bilities. In Fig. 6(a), the patterns are partial images captured by the
system oriented to the blackbody radiator and different hollow
boards. The soldering iron and the tank model belong to self-
heating objects directly recorded by the system. Obviously, these
results indicate that all three methods could exhibit favorable
performance in recovering the hidden information from the hon-
eycomb patterns, whereas the high-frequency edges of the restored
images obtained by U-Net and SRCNN are blurred. In contrast,
sharper images reconstructed byMBIN distinguish finer details. We
plot the average loss value and the average PSNR value for the

Table 1

Measurement of different reconstruction methods on PSNR/SSIM.

Object/Algorithms U-Net PSNR/SSIM SRCNN
PSNR/SSIM

MBIN
PSNR/SSIM

Character “w" 23.05/0.889 23.52/0.898 28.63/0.942
Character “400 22.45/0.904 23.08/0.896 28.54/0.963
Musical symbol 25.81/0.921 25.58/0.904 29.34/0.968
Soldering iron 30.39/0.964 31.30/0.966 36.74/0.981
Tank model 28.18/0.880 28.75/0.896 32.88/0.965

Fig. 7. Stitching results based on the fiber bu
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stably after more training epochs.
In order to further quantitatively evaluate the results obtained

by different methods, the PSNR value and the structural similarity
(SSIM) value are calculated for each reconstructed image relative to
the corresponding ground truth, as listed in Table 1. It is obviously
desirable that MBIN has the highest metrics values in all cases.
Specifically, it shows superior performance in both SSIM and PSNR,
which are, on average, 5% and 5 dB greater than other methods,
respectively. Perhaps not surprisingly, the principle behind this
result is that the proposed network removes the honeycomb pat-
terns effectively, and the hidden details are restored extremely
similar to their ground truth, with higher PSNR and SSIM values
representing more satisfactory results.

In the practical engineering application, multiple sub-eyes of
the single-aperture fiber bundle can be arranged in the form of a
compound eye array to capture multiple images at the same time,
achieving high resolution and large field of view simultaneously by
stitching multiple adjacent images with overlapping regions. Based
on the super-resolution reconstruction method in this paper, the
2 � 1 compound eye array system with infrared fiber bundles is
established. The system can be shifted horizontally to physically
scan corresponding areas of the hollow board in front of the
blackbody radiator continuously for acquiring 2 � 5 sub-images.
Following that, a large-field image of the target is obtained by
stitching sub-images, as shown in Fig. 7, expanding the horizontal
field of view angle from 21.48� to 65.31�.

4. Conclusions

We have established and investigated a computational
compound-eye imaging system with super-resolution reconstruc-
tion. The real-world infrared fiber bundle images and their corre-
sponding ground truth images are both generated by the
development dual-way imaging system. Image registration and
rectification algorithms are developed to progressively align the
ndle and corresponding sub-eye images.



image pairs. The constructed dataset can address the real-world
image super-resolution problem with better performance. We

reconstruction. In: 2008 IEEE international conference on acoustics, speech
and signal processing. Las Vegas, NV, USA: IEEE; 2008. p. 833e6. https://
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also find that with the aid of introducing a physical model-based
network, the solution can be incorporated to preclude some dis-
turbing terms in the ill-posed inverse problem and possibly comply
with the imaging model. As such, we gain insights into questions
concerning image restoration problems. Finally, simply utilizing
larger dimension imaging sensors and coordinating with multiple
sub-eye images could, in principle, further push the imaging field of
view and spatial resolution. The proposed MBIN method promises
to enable new measurement opportunities for military defense
detection and evolve our knowledge in the photoelectric detection
field.
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In this paper, we propose a deep-learning-based infrared-visible images fusion method based on encoder-decoder 

architecture. The image fusion task is reformulated as a problem of maintaining the structure and intensity 

ratio of the infrared-visible image. The corresponding loss function is designed to expand the weight difference 

between the thermal target and the background. In addition, a single image super-resolution reconstruction 

based on a regression network is introduced to address the issue that traditional network mapping functions are 

not suitable for natural scenes. The forward generation and reverse regression models are considered to reduce 

the irrelevant function mapping space and approach the ideal scene data through double mapping constraints. 

Compared with other state-of-the-art approaches, our experimental results achieve superior performance in terms 

of both visual effects and objective assessments. In addition, it can stably provide high-resolution reconstruction 

results consistent with human visual observation while bridging the resolution gap between the infrared-visible 

images. 

1. Introduction 
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Image fusion techniques [1–3] aim to generate an informative im-

ge with specific algorithms from multiple source images. Thanks to the

bility to recombine disparate information, infrared and visible image

usion technology plays a pivotal role in the detecting imaging systems.

ence, the fused result has a more distinct and complete depiction of the

cene, which is beneficial to human perception and machine processing.

he fusion image can synthesize a novel image with complementary in-

ormation of the source images. Maximizing the integration of interest

nformation is an essential bottleneck to reveal novel insights and fun-

amental scientific issues in biomedicine [4] , forest fire fighting [5] ,

nd safe driving. For example, it is common to generate high dynamic

ange (HDR) images by applying the multiple exposure fusion (MEF) [6–

] approach. HDR imaging method can provide more prosperous image

etails, making reconstructed images more distinct and pleasing to hu-

an visual observation. Based on this approach, the infrared and visible

usion algorithm [9–11] can integrate the advantages of each informa-

ion. Generally speaking, infrared images lack texture information and

annot effectively characterize the scene. Notwithstanding, it has been

idely applied own to its inherent thermal radiation characteristics and

he ability to realize cloud penetration imaging in long-wave infrared
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et recognition and conforms to the human visual system. However,

he visible image also has a fatal disadvantage: it is impossible to ob-

ain a high-quality image under low illumination conditions. Therefore,

isible-infrared imaging is interdependent and jointly promoted. 

Although the image fusion technology has made significant improve-

ents, the pixel size of the long-wave infrared detector has approached

he physical limit (17 μm) due to limitations in software algorithms and

ardware technology. Meanwhile, with the imaging resolution increas-

ng, the manufacturing cost of the device will also dramatically ex-

and. Therefore, the current dual-band image fusion technology is in-

ufficient to stably realize all-weather high-resolution imaging. At this

ime, the traditional super-resolution (SR) models and algorithms are

o longer suitable, and their computational complexity adds the pres-

ure of massive calculation to the application. Recently, deep learning

DL) [12,13] has emerged as a powerful technique in the field of im-

ge fusion owing to its outstanding feature extraction, representation

apability, strong robustness, and efficient reconstruction performance.

rom the artificial intelligence robot developed by Deepmind company

o the powerful robot dog in Boston, promising news came one after an-

ther. Artificial intelligence [14–17] produces a familiar word around
April 2022 
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Fig. 1. Structural diagram and imaging reconstruction notion of the cross-modal fusion imaging system. 

us. This is a remarkable manifestation of the gradual replacement of 

manual operation by intelligent machines. This trend is being driven by 
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ial network (GAN) [32–34] . A majority of representative works have 

been proposed on this challenging problem. 
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he increasing demand for the emergence of multi-dimensional sensors

oupled with artificial intelligence computing technology. Over the past

ecades, deep learning technology has become a research hotspot in the

ra of massive data. Both academia and industry show strong interest

o this technology, especially in computer vision [18,19] . As a ”Data-

riven ” technology that has emerged in recent years, it has achieved

urpassing achievement in many applications such as image classifica-

ion [20] , object detection [21,22] , and recognition [23,24] . And as

hown in Fig. 1 , overcoming the pixelation imaging problem caused by

nadequate spatial sampling is also the novelty of Multi-image super-

esolution fusion (Multi-SR-Fusion) technology. 

The remaining structures of this paper are as follows. In Section 2 , we

riefly review related works on deep learning frameworks. Section 3 de-

icts the basic principle of our proposed method. Section 4 presents the

etails of the proposed Multi-SR-Fusion network for infrared and visible

mage fusion. Abundant experimental results and analysis are illustrated

n Section 5 . Finally, Section 6 provides a discussion and summarizes the

aper. 

. Related works 

At present, benefiting from the powerful feature extraction ability

f DL convolution operation and learning mapping function parame-

ers from massive data, the DL method has rapidly evolved the most

otential direction in the field of image fusion. The traditional single-

rame image SR [25,26] problem refers to the process of recovering

rom low-resolution (LR) images to high-resolution images, constantly

ushing the limits to obtain higher real-world perception. In the field

f computer vision, the introduction of convolutional neural networks

CNNs) [27] has extensively promoted the development of single image

R technology. The researchers continuously optimize the SR network

odel by introducing residual models, deep convolutional structures,

nd dense connectivity structures to enhance the reconstruction perfor-

ance. However, due to the ill-posedness of the single image SR issue,

ost existing methods will generate artifacts and even lose the detailed

exture under the condition of the sizeable scaling factor. Therefore, it is

till a challenge to accurately reconstruct the high-frequency image de-

ails. Of the prominent DL-based methods, there are two mainstreams:

onvolutional neural network (CNN) [28–31] and generative adversar-
353
In ICCV 2017, a classical fusion method, termed as DeepFuse [35] ,

as put forward to tackle the exposure image fusion task. On this ba-

is, Li et al. replaced the convolution network in the previous part with

ense-block for improvement [36] . The fusion network is composed of

he encoder, fusion layer, and decoder structure. Considering the sim-

larity between the fused features and the original image, Zhang et al.

reated the proposed method better focused on the effective extraction

f image features [37] by the continuous feedback of feature informa-

ion from each layer. With the rapid development of the GAN network,

cholars have also applied it to the field of infrared and visible images.

a et al. proposed a detail-preserving learning-based fusion model for

nfrared and visible images [38] . The dual loss functions of detail loss

nd target edge enhancement loss are designed to improve the qual-

ty of detail information and sharpen the edges of IR targets, respec-

ively, in the adversarial network generation framework. Nonetheless,

his method does not fully consider the characteristics of infrared and

isible images, and the fused images are challenging to highlight the tar-

et information. According to the aspects of infrared-visible imaging, Li

t al. proposed a GAN network with a multi-scale attention mechanism

39] . The multi-scale attention mechanism generator focuses on the tar-

et information of the infrared image and the background detail infor-

ation of the visible image so that the fusion network can concentrate

n the specific area of the source image to reconstruct the fusion image.

enerally speaking, the method based on DL can produce satisfactory

esults without manually designed decomposition processing and fusion

ules. However, they can not highlight important targets while retaining

ackground information, resulting in low contrast of fusion results. Due

o the limitations of the manufacturing process, power consumption, or

he cost of the sensor, the pixel imaging of infrared images has not been

ufficiently solved. Zou et al. successfully realized the SR reconstruc-

ion of infrared images by employing the encoder-decoder network and

lso verified the application potential in image SR and feature extrac-

ion [40] . Therefore, if the SR structure can be added to the network,

he fusion result will be predictable improved. 

Gatys et al. proposed the neural style transfer method [41] and first

pplied the DL method to the style transfer task. The network maintains

he consistency of the basic information of the two images through con-

ent loss constraints and updates the style of the input image by back-

ropagation iterations. By continuous forward propagation calculation

oss and backpropagation optimization loss and updating the pixel value
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of the reconstructed image, the optimal reconstructed image is eventu- 

ally obtained. The essence of image style migration is the fusion of two 
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Table 1 

The number of layers in the network structure. 

Layer Parameter Numbers 

Convolution layer 1 × 1, Strides = 1, padding = SAME 4 

Convolution layer 3 × 3, Strides = 1, padding = SAME 21 

Convolution layer 3 × 3, Strides = 2, padding = SAME 4 

Convolution layer 5 × 5, Strides = 1, padding = SAME 4 

ReLU layer - 12 

LReLU layer alpha = 0.2 16 

Concat layer - 6 

Deconvolution layer 3 × 3 4 

Element-max later - 1 

Global average pooling layer - 4 

Fully connected layer - 8 

Sigmod layer - 4 

Pixelshuffle layer 2 × 2 2 

Max-pooling layer 2 × 2 4 

the fusion layer. The fusion structure contains multi-scale feature ex- 

traction and residual channel attention blocks (RCAB), which enables 
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3 
ifferent style images. In a sense, infrared and visible images can also

e regarded as two separate ”style ” images. Therefore, this proposed

ethod utilizes the notion of neural style transfer to alleviate the prob-

em of infrared and visible image fusion. 

As mentioned above, in recent years, infrared and visible image

usion technology based on the neural network has essential research

rospects. In the task of infrared and visible image fusion, the following

roblems are still faced: 

1) End-to-end imaging datasets. DL reconstruction algorithms are based

on multiple datasets, while fewer datasets are available for infrared

and visible image fusion tasks. How to utilize the existing data to

realize the network training model is one of the challenges. And the

most critical point is that the current fusion networks do not consider

the resolution of infrared images, and the quality of input infrared

images is too poor, resulting in unsatisfactory reconstruction results.

2) The resolution gap between the infrared-visible images. In the task

of infrared-visible fusion, generally speaking, the resolution of the

infrared detector will generally be much worse than the visible de-

tector. Therefore, whether the infrared imaging quality can be im-

proved through the mapping function to enhance the quality of fu-

sion image is also one of the critical contents of this paper. 

3) Network structure. Image fusion is a low-level task in computer vi-

sion, and the network structure should be as lightweight as possible.

And how to give full play to the network ability and trade-off the

weight between two images is also one of the fundamental problems.

4) Loss function. In the network training process, the network training

parameter needs to be modified by the loss function, which puts

forward more strict requirements for the loss function design. 

. Proposed methods 

For the human visual system, the ”conspicuity area ” that contain-

ng essential targets is more attractive. Based on the above analysis, the

roblem of infrared–visible image fusion is how to maintain the high-

requency detail information and the thermal radiation information so

s to realize a multi-dimensional data fusion process. The primary task

f the proposed method is to improve the resolution of the infrared im-

ge and then carry out the weighted fusion of the heterologous image

hile obtaining a high-quality image resolution. Therefore, efficiently

xtracting the feature information of each image and assigning fusion

eight is the focus of our research. Based on the concept of U-net seman-

ic segmentation and style transfer [42] , the thermal radiation informa-

ion of the infrared image can be effectively segmented, and then the

hermal image and visible texture information are transferred by style

ransfer structure. In our workflow, the coding-decoding fusion struc-

ure is employed for end-to-end learning, as shown in Fig. 2 , so that the

etwork can not only center on the ”conspicuity area ” information but

lso learn the image SR mapping function. The image merge problem

s transformed into the issue of maintaining the structure and intensity

atio of infrared and visible images. The corresponding loss function is

esigned to expand the weight distinction between the thermal target

nd the background. Aiming at the shortage that the traditional net-

ork mapping function is ill-posed in the actual scene, the additional

onstraint of inverse regression is embedded to reduce the space of the

ossible mapping function. Lastly, the pseudo color SR reconstruction

ased on the scene is realized by expanding the number of channels. By

oing so, the reconstructed image is more in line with the human visual

ffect. 

Note that our method takes the infrared image and visible image as

he input image and obtains the colorized fusion image through end-to-

nd supervised network. Multi-scale feature extraction is performed in

nfrared and visible images by applying the diverse dimensions kernels.

ubsequently, the infrared and visible fusion image is generated through
354
aluable feature mapping and suppresses unimportant feature mapping.

he coding-decoding SR structure realizes the functions of feature ex-

raction and reconstruction, respectively. Meanwhile, the introduction

f the skip connection structure can transfer the image feature informa-

ion from the encoding part to the decoding part of the network, solving

he problem of gradient disappearance. 

.1. Problem formulation 

To express the mapping relationship of the network more clear, the

etwork model can be defined as: 

 𝑜𝑢𝑡 ( 𝑥, 𝑦 ) = 𝐹 𝜔,𝜃
[
𝐼 𝐿𝑅 1 ( 𝑥, 𝑦 ) , 𝐼 𝐿𝑅 2 ( 𝑥, 𝑦 ) 

]
(1)

here, 𝐹 𝑤,𝜃[ . ] represents the nonlinear mapping function of the network,
 and 𝜃 respectively describe the weight and deviation trainable param-

ters in the network, 𝐼 𝐿𝑅 1 ( 𝑥, 𝑦 ) describes the input long-wave infrared
mage, 𝐼 𝐿𝑅 2 ( 𝑥, 𝑦 ) describes the input visible image, and 𝐼 out ( 𝑥, 𝑦 ) is the
R image output by the network. Detailed network parameters are il-

ustrated in Table 1 . 

The network structures contain the convolution, deconvolution,

lement-addition or multiplication, channel-fusion, max-pooling, and

lement-max layers. The input image of the 𝑋 𝑖 layer is represented by 𝑖 ,

nd the convolution layer and deconvolution layer are represented as: 

 

(
𝑋 𝑖 

)
= max 

(
0 , 𝑊 𝑘 ∗ 𝑋 𝑖 + 𝐵 𝑘 

)
(2)

here, 𝑊 𝑘 and 𝐵 𝑘 represent filter and deviation respectively. For con-

enience, ∗ represents convolution or deconvolution. 
For the element-addition layer, the output is the addition of two in-

uts of the same size, followed by Leaky Rectified Linear Unit(LReLU)

ctivation: 

 

(
𝑋 𝑖 , 𝑋 𝑗 

)
= 

{ 

𝑋 𝑖 + 𝑋 𝑗 , 𝑋 𝑖 + 𝑋 𝑗 ≥ 0 
𝛼 ∗ 

(
𝑋 𝑖 + 𝑋 𝑗 

)
, 𝑋 𝑖 + 𝑋 𝑗 < 0 

(3)

here, 𝑋 𝑖 and 𝑋 𝑗 represent layer 𝑖 + 1 and layer 𝑗 + 1 respectively, and
= 0 . 01 . 
For the element multiplication layer, the output is the multiplication

f two elements of the same size, followed by LReLU activation: 

 

(
𝑋 𝑖 , 𝑋 𝑗 

)
= 

{ 

𝑋 𝑖 ⋅𝑋 𝑗 , 𝑋 𝑖 ⋅𝑋 𝑗 ≥ 0 
𝛼 ∗ 

(
𝑋 𝑖 ⋅𝑋 𝑗 

)
, 𝑋 𝑖 ⋅𝑋 𝑗 < 0 

(4) 

For the channel fusion layer, the output is the sum of two input chan-

els of the same size: 

 

(
𝑋 𝑖 , 𝑋 𝑗 

)
= 𝑋 𝑖 ⊕𝑋 𝑗 (5)

For the max-pooling layer, the output image size is half of the input

mage, which is expressed by the following formula: 

 

(
𝑋 𝑖 

)
= 𝑑𝑜𝑤𝑛 

(
𝑋 𝑖 

)
(6)
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Fig. 2. Super-resolution fusion network structure of heterogeneous images based on encoding-decoding structure. 

where 𝑑𝑜𝑤𝑛 represents pooling function, and this paper adopts max- 

pooling. 
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4 
For the element-max layer, the size of the output image is the same

s the input image, which is expressed by the following formula: 

 

(
𝑋 𝑖 , 𝑋 𝑗 

)
= max 

(
𝑋 𝑖 , 𝑋 𝑗 

)
(7)

For the sub-pixel convolution layer, the output image size is twice of

he input image, which is expressed by the following formula: 

 

(
𝑋 𝑖 

)
= 𝑝𝑖𝑥𝑒𝑙𝑠ℎ𝑢𝑓 𝑓 𝑙𝑒 

(
𝑋 𝑖 

)
(8)

.2. Loss function 

Weight distribution is the core problem of image fusion, which di-

ectly determines the quality of fused image. To perform network train-

ng, we need to accurately evaluate the information similarity between

he fused image and the input image pair to minimize information loss,

hus effectively preserving the thermal radiation information from the

nfrared image and the textural detail information from the visible im-

ge. Therefore, in this paper, the image fusion problem is transformed

nto the issue of maintaining the structure and intensity ratio of infrared-

isible images. The intensity distribution and gradient information can

haracterize the thermal radiation and structural information, respec-

ively. In order to preserve the representative features of the source im-

ge to the greatest extent, a hybrid loss function is designed to retain

aluable feature information. Thus, the loss function of our proposed

odel is set to: 

𝑜𝑠𝑠 = 

𝑁 ∑
𝑖 =1 
𝐿𝑜𝑠𝑠 1 

(
𝐹 
(
𝑥 𝑖 
)
, 𝑦 𝑖 

)
+ 𝜆𝐿𝑜𝑠𝑠 2 

(
𝐷 

(
𝑦 𝑖 
)
, 𝑥 𝑖 

)
(9)

here 𝑥 𝑖 and 𝑦 𝑖 respectively represent the input LR and output HR im-

ges. 𝐿𝑜𝑠𝑠 1 
(
𝐹 
(
𝑥 𝑖 
)
, 𝑦 𝑖 

)
and 𝐿𝑜𝑠𝑠 2 

(
𝐷 

(
𝑦 𝑖 
)
, 𝑥 𝑖 

)
describe the loss functions

f forward regression and inverse regression tasks, respectively. During

he training process, the reconstructed images 𝐹 ( 𝑥 𝑖 ) continuously con-
erge to the corresponding HR images. Similarly, the similarity between

he predicted image 𝐷( 𝑦 𝑖 ) and the forward input LR image is continu-
usly approached in the regression process. Here we set 𝜆 to 0.1 for the

eight distribution of the hybrid loss function. 

If 𝐹 ( 𝑥 𝑖 ) is the accurate HR image, the image 𝐷( 𝑦 𝑖 ) in the inverse
egression model should be dramatically similar to the LR image. With

his constraint, we can reduce the possible mapping function so as to

chieve robust image reconstruction. 

𝑜𝑠𝑠 1 = 𝛼
‖‖‖𝑦 𝑖 − 𝐹 

(
𝑥 𝑖 
)‖‖‖2 2 + 𝛽

‖‖‖∇ 𝑦 𝑖 − ∇ 𝐹 
(
𝑥 𝑖 
)‖‖‖2 2 (10)

here, ‖ ∙ ‖2 defines the 𝐿 2 norm, ∇ represents the gradient operator. 𝛼

nd 𝛽 are two factors that balance these two terms, 𝛼 = 𝛽 = 0 . 5 in this
355
𝑜𝑠𝑠 2 = 

‖‖‖𝐷 

(
𝑦 𝑖 
)
− 𝑥 𝑖 

‖‖‖2 2 (11)

This formulation is an improved fusion method by taking SR into

ccount. The forward generation process and reverse regression process

f the input-output image are simultaneously constrained, and the dual-

oss functions compensate each other to produce the whole loss function

alance. The mixed loss between the input-out images is computed to

pdate network parameters. By minimizing the loss, the network per-

orms accurate reconstruction of the input data in the training phase,

mphasizes the valuable information, and suppresses the irrelevant in-

ormation. 

. Network architecture 

.1. Multi-scale feature extraction (encoding) module 

An essential part of SR reconstruction is how to extract the features

f the input image. Suppose the different dimensions information can

e obtained. In that case, it will conduce for signal restoration. On the

ther hand, the image feature information is generally extracted by a

onvolution kernel. Therefore, the idea of extracting the image with

arge convolution to obtain a more extensive receptive field has been

prouting. A larger receptive field will facilitate the reception of fea-

ure information. However, if the convolution kernel is too large, the

mount of calculation will increase sharply, which is not conducive to

he boost of model depth. Therefore, we can decompose the large-scale

onvolution into several small-scale convolutions so as to reduce the

mount of calculation. Although multi-scale convolutional blocks can

xtract adequate features, it is also crucial to selectively focus on the

ssential elements and ignore the less important ones. This means that

ot all features are beneficial for reconstruction. Intermediate features

ontain valuable information, such as primary structure and details, or

ven irrelevant information, such as noise. Therefore, We adopt a mul-

iscale layer with different kernel sizes, such as 3 × 3 and 5 × 5, to ac-
uire low-frequency and high-frequency features with various receptive

elds. By doing so, comprehensive image information at different scales

s fetched and reused with each other. The feature fusion convolution

ayer virtually reduces the computational complexity and improves the

onvergence speed of the network. Consequently, introducing a multi-

cale extraction module is profitable to obtain higher-level robust se-

antic features, retain more underlying details, and enrich the image

eature information. 
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Fig. 3. Schematic diagram of the critical network modules. (a) Multi-scale feature extraction structure. (b) Residual channel attention blocks. (c) Dual-regression 

mapping structure. 

4.2. Super-resolution (decoding) module 
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The SR network adopts an encoder-decoder architecture. In the de-

oding layer, the pixel-shuffle method is operated to enlarge the feature

ap size corresponding to the convolution layer in the coding layer, and

he different dimensional information is transmitted by skip connection.

kip connection can not only transfer image feature information but also

lleviate the problem of gradient disappearance. We introduce the resid-

al channel attention module to adjust the channel feature information,

hich is conducive to reconstructing HR images. The global average

ooling layer encodes all spatial features into a whole feature on one

hannel. After receiving the global features, the nonlinear relationship

etween each channel is learned through the full connection layer. The

hole operation can be regarded as learning the weight coefficients of

ach channel to make the model more discriminative about the features

f each channel. 

Currently, the mainstream network architecture model is moving in

 deeper direction. A deeper network model means that it has better

onlinear expression ability. Thereby, it can learn more complex trans-

ormations and fit more complex feature inputs. However, a common

ccompaniment problem is that the information extracted by the middle

ayers is not employed thoughtfully. Therefore, the skip connection in

he residual structure is worthwhile to enhance the gradient propagation

nd alleviate the problem of gradient disappearance caused by network

eepening. In addition, the existing methods only focus on the mapping

rom the LR image to the HR image. However, the under-determined

ossible mapping space is volatile and challenging during the training

rocess. In order to ameliorate this problem, we propose a dual regres-

ion project in the SR structure, as shown in Fig. 3 (c). Through the re-

triction of double constraints, the robustness of the network model and

ts applicability to natural scenes can be promoted. 

. Experiment and results 

.1. Network and dataset settings 

In the network, the batch size is 4, and the epoch is set to 200. Em-

irically, we use Adam optimizer to optimize the network structure, and

he initial learning rate is set to 10 −4 . The network is conducted on hard-
are platform with an Intel Core TM i7-9700K CPU @ 3.60GHz ×8, and
TX2080Ti. The software platform is running under Ubuntu 16.04 op-

rating system. The total training time of our network is 11.20 hours,

nd the average test time for each image is 1.31 seconds. 

The long-wave infrared (self-developed, 800 ×600, 25 μm) and
isible images are collected by the cross-modal image acquisition
356
nd sent to the network for training. The infrared dataset contains

300 images, of which 800 images are employed as the training

et, and 200 images are utilized as the validation sets. The fusion

ataset includes the lake, jungle, and urban imaging environments

 https://figshare.com/s/0d35b35c18c70cd3bba1 ). 

It is worth noting that the HR infrared images are acquired at long

ocal lengths, and conversely, the LR infrared images are obtained at

hort focal lengths (large field-of-view imaging). The pixel mapping of

he HR image is yielded by partially recording the central region of the

R image, as shown in Fig. 1 . Instead of creating the training dataset

hrough simulations (bicubic down-sampling or an approximate model

f the point spread function), in the presented technique, the desired

arget 3 × super-resolved images are accordingly obtained by tripling

he focal length (25mm-75mm). 

We utilized the visual saliency map (VSM) and weighted least square

WLS) to realize heterogeneous image fusion. The original image can be

ecomposed into the bottom and several detail layers by multi-scale de-

omposition (MSD). The bottom layer mainly contains low-frequency

nformation, which determines the overall appearance and the fused

mage contrast. In this paper, VSM is used to merge the bottom layer

o effectively extract the salient structure so as to avoid the blurring of

ow-frequency information. Detail layers are merged according to the

raditional ”maximization ” rule. The absolute value of the detail layer

oefficient is considerable, which corresponds to more significant fea-

ures. 

The monochrome display has constantly perplexed low-light-level

ight vision and infrared imaging systems. Therefore, it is also an essen-

ial task to employ the visible color component information to achieve

seudo-color of fused images. We map the RGB color components to the

SV color space in the color migration task. The grayscale fused image

s created as the V component of the predicted image, and the chro-

aticity H and saturation S are kept constant to achieve the final color

mage output. 

.2. Experimental results analysis 

A majority of visible texture information plays a significant role in

estoring and reconstructing HR color fusion images. However, in the

ight vision imaging environment, the visible detector can not provide

nough detailed information, so improving the SR reconstruction abil-

ty of the infrared image is also an essential research direction. In or-

er to verify this concept, we partially modify the network structure

nd remove the visible image from the input structure. Fig. 4 depicts

https://figshare.com/s/0d35b35c18c70cd3bba1
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Fig. 4. The comparison of super-resolution imaging results with different scenes (Scale = 3). 

the comparison of SR reconstruction results in three different scenes. 

It can be seen that our method has been sufficiently enhanced in the 
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econstructed image, whether in edge details or the recovery of spatial

requency components. Compared with bicubic interpolation, auxiliary

eural network (AUX) [43] , infrared image super-resolution imaging

lgorithm based on the auxiliary convolutional neural network (AUX-

NN) [44] , cascade super-resolution(CAS) [45] , and skip connected

uper-resolution (U-net) approach [40] , our method improves the peak

ignal-to-noise ratio by 4.08dB, 2.36dB, 2.79dB, 2.03dB and 1.71dB,

espectively. In addition, from the visual imaging performance, our re-

ults are consistent with the HR truth image and avoid the artifact phe-

omenon in the SR reconstruction result. Therefore, from a comprehen-

ive point of view, the SR image obtained by the proposed method is

ore prominent. At the same time, it also verifies the feasibility of ap-

lying a dual-regression network to improve the SR reconstruction per-

ormance. 

After verifying the feasibility of the network, we employed the

etwork for heterogenous image fusion processing and made compar-

sons with the anisotropic diffusion and Karhunen Loeve transform
6 

357
MSVD) [49] and two scale image fusion using saliency detection (TIF)

50] methods, respectively, and the corresponding reconstruction re-

ults are shown in Fig. 5 . Although it is difficult to accurately evaluate

he visual quality of these methods, we can perceive apparent differ-

nces between them. As shown in Fig. 5 , all the fusion methods have

ccomplished the task of merging the information of infrared and visi-

le images to some extent. Overall, our method embraces more textual

etails while highlighting the important targets. 

The reconstruction results are suitable for human eye perception due

o the advantages of the high signal-to-noise ratio of the output im-

ge and complementary fusion information. From the objective data in

ig. 6 , the evaluation indexes of the fused image in spatial frequency,

dge intensity, and average gradient were improved over the existing

maging algorithm by 3.35, 8.97, and 0.94, respectively. The compar-

tive data in Table 2 also verify the feasibility of introducing super-

esolution networks to improve the reconstruction performance. The im-

ge fusion task is reformulated as a problem of maintaining the structure
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Fig. 5. The comparison of imaging fusion results with different scenes. 

Fig. 6. Index evaluation curve under continuous frames of the same scene. 
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Table 2 

The comparison of imaging fusion evaluation index with different scenes. The bold text indicates the best 

result. 

Number Methods AG Edge intensity Entropy Mutinf Qcv Rmse SF 

Image 1 ADF 6.2074 59.8872 6.8278 1.8177 0.1008e + 03 0.0625 15.6246 

Image 1 FPDE 5.7650 55.6909 6.7977 1.8299 0.1142e + 03 0.0622 14.0359 

Image 1 MGFF 6.9055 68.4516 7.0109 1.6050 0.2067e + 03 0.0644 17.3653 

Image 1 MSVD 5.3488 50.8112 6.7623 1.8511 0.1082e + 03 0.0622 14.5423 

Image 1 TIF 6.0770 60.4062 6.9641 1.6900 0.0927e + 03 0.0634 15.6507 

Image 1 Ours 7.3762 71.4749 6.6295 1.3591 0.6739e + 03 0.0698 18.3819 

Image 2 ADF 4.4591 45.9656 6.8876 2.1563 0.4278e + 03 0.0705 12.7356 

Image 2 FPDE 4.4130 45.5108 6.8797 2.1499 0.4231e + 03 0.0704 12.1605 

Image 2 MGFF 5.3440 60.8598 7.2126 1.9414 0.4549e + 03 0.0725 17.3130 

Image 2 MSVD 4.5975 46.9185 6.8986 2.1679 0.4229e + 03 0.0705 13.9639 

Image 2 TIF 5.2618 55.5220 7.1010 2.0178 0.2774e + 03 0.0717 14.5801 

Image 2 Ours 5.9050 66.7448 7.0556 2.2175 0.9902e + 03 0.1070 18.6244 

Image 3 ADF 4.0698 44.4168 6.2849 0.9410 1.1340e + 03 0.0650 9.8957 

Image 3 FPDE 3.8069 41.4784 6.2352 0.9521 1.1079e + 03 0.0647 9.0497 

Image 3 MGFF 5.6396 60.8485 6.6629 0.9208 1.0847e + 03 0.0661 14.7737 

Image 3 MSVD 4.1813 44.2260 6.2795 0.9723 1.1131e + 03 0.0648 13.9639 

Image 3 TIF 5.4249 58.7020 6.6533 0.8981 1.0184e + 03 0.0665 14.1778 

Image 3 Ours 7.4351 78.8509 7.0185 1.2953 2.3615e + 03 0.1062 22.4927 

Fig. 7. The imaging results of the proposed algorithm in severe weather (foggy days). (a1, b1) Visible image. (a2, b2) Infrared image. (a3, b3) Fusion image. 

and intensity ratio of the infrared-visible image, solving the problem of 

poor quality fusion performance and thermal information blurring due 
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poses strict requirements on the training set, which should contain 

as much color information as possible for various scenes. Fig. 8 por- 
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8 
o the low resolution of the infrared image in conventional fusion imag-

ng. 

For the fusion imaging problem under severe weather (foggy days),

e have also explored it accordingly. As shown in Fig. 7 , under a foggy

ky, the scene captured by the visible detector is muddy and contains

n amount of interference information. On the contrary, long-wave in-

rared detectors capture unique signals by virtue of the characteristics

f penetrating smoke imaging and thermal radiation sensing. The multi-

cale feature extraction network effectively realizes the high-frequency

nformation fusion of different detectors in the proposed method. An

xcellent color fusion image can be achieved with the help of color

nformation from the visible detector, as depicted in Fig. 7 (a3, b3).

owever, the infrared image also has the imaging problem of poor

ontrast due to less thermal radiation information on foggy days. By

egressing the output of the super-resolution network, the correspond-

ng high-frequency detail information is basically restored, as shown in

ig. 7 (a2, b2). 

In addition, the recovery of image color information is also an un-

ertainty problem. Deep learning-based color image reconstruction is

ainly established on specific scenes and cannot recover color infor-

ation that does not appear in the training set. Therefore, this im-
359
rays the multi-modal imaging results of heterologous images based

n the regression network. Various modes of reconstruction such as

seudo-color, SR reconstruction, and edge extraction are realized. See

upplementary visualization materials 1, 2, and 3 for specific imaging

ideos. The experimental results indicate that the network is able to

erform fused images containing thermal information of infrared im-

ges and high-frequency information of visible images, which compre-

ensively enhances the resolution of detailed textures of infrared im-

ges. At the same time, the obtained colored image is consistent with

he visual perception effect of the human eyes. With the guidance of

hermal radiation signals, the contour markings of moving objects can

e unambiguous marked to further facilitate the information percep-

ion ability. For instance, the image resolution and thermal informa-

ion of toy guns held by pedestrians are significantly improved in in-

rared images. From the reconstruction results in Fig. 8 (c), we can

learly observe that the fused target images are effectively highlighted

n the low light environment, which will be conducive to the subse-

uent target recognition and tracking. In general, our method can of-

er robust adaptability in different imaging environments, and it will

lso provide a promising way to improve the quality of infrared-visible

usion. 
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Fig. 8. Cross modal reconstruction results in different scenes. 
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6. Conclusion 
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[9] Xiang T, Yan L, Gao R. A fusion algorithm for infrared and visible images based 
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10 
To address the bottleneck of low-quality fusion imaging caused by

ifferent imaging mechanisms and mismatched spatial resolution of het-

rogeneous detectors, an infrared-visible cross-modal color fusion net-

ork based on DL is proposed. Affording the conception of semantic

egmentation and style transfer, the encoding-decoding fusion network

s adopted for end-to-end learning to improve the feature expression

bility and suppress the interference of useless information. The corre-

ponding dual-loss function is designed to expand the weight difference

etween thermal target and background. Experimental results prove the

uperiority in terms of visual quality and quantitative criteria compared

o five representative methods. The evaluation indexes of spatial fre-

uency, edge intensity, and average gradient were improved by 3.35,

.97, and 0.94, respectively, which significantly improved the imaging

uality of the fused images and verified the application potential of the

etwork. On this basis, the imaging output of HR infrared reconstruc-

ion, heterologous image pseudo color fusion, edge feature extraction

nd other modes are realized, which opens new avenues for subsequent

R reconnaissance and identification tasks. 
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In 2016, the Google-owned artificial intelligence (AI) company DeepMind shocked 
the world by defeating Lee Se-dol four matches to one with its AlphaGo AI system, 
alerting the world to deep learning, a new breed of machine learning that promised 
to be smarter and more creative than before 1. Since then, we have witnessed its rapid 
progress and extensive applications in solving many tasks in computer vision, 
computational imaging, and computer-aided diagnosis with unprecedented 
performance. Meanwhile, tech giants Google, Facebook, Microsoft, Apple, and 
Amazon have ignited the “art” of data manipulation and developed easy-to-use, 
open-source deep learning frameworks. These deep learning frameworks allow us to 
build complex and large-scale deep learning models using a collection of pre-built 
and optimized components in a more clear, concise, and user-friendly way, without 
getting into too many details of underlying algorithms. Deep learning has left the 
halls of academia very quickly and is ready to reshape an array of companies across 
multiple industries. 
 
On the other hand, optical metrology is the science and technology of making 
measurements with use of light as standards or information carriers. Although 
optical metrology is a rapidly growing area, it is not a new discipline. The 
development of physical sciences has been driven from the very beginning by optical 
metrology techniques. In return, optical metrology has been revolutionized by the 
invention of laser, charged coupled device (CCD), and computer, developing into a 
broad and interdisciplinary field relating to diverse disciplines such as 
photomechanics, optical engineering, computer vision, and computational imaging. 
In light of the great success of deep learning in these related fields, researchers in 
optical metrology were unable to hold back their curiosities with regards to adopting 
this technology to further push the limits of optical metrology and provide new 
solutions in order to meet the upcoming challenges in the perpetual pursuit of higher 
accuracy, sensitivity, repeatability, efficiency, speed, and robustness. In this context, 
we incidentally become the “first to eat crab” research group (SCILab: www.scilabora 
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tory.com) of introducing deep learning to optical metrology. 
 

Fig. 1 | The rise of deep learning. In 2016, the AlphaGo defeated Lee Se-dol four matches to 

one, alerting the world to deep learning. Meanwhile, tech giants ignited the “art” of data 

manipulation and developed easy-to-use, open-source deep learning frameworks. 

 

“The first to eat crab” 

For many phase measuring optical metrology techniques, including optical 
interferometry, digital holography, electronic speckle pattern interferometry, Moiré 
profilometry, and fringe projection profilometry, the physical quantities to be 
measured (such as the surface shape, displacement, strain, roughness, defects, etc.) 
are directly or indirectly encoded in the phase information of the fringes formed by 
means of interference or projection. Consequently, phase demodulation, which 
analyzes the quasi-periodic fringe pattern for the wrapped phase extraction, is the 
most critical step because the measurement accuracy of these optical metrology 
techniques depends directly on the phase demodulation accuracy of recorded fringe 
patterns. How to extract the phase information with the highest accuracy, fastest 
speed, and full automation remains a research hotspot in the field of optical 
metrology. 
 
Traditional fringe pattern analysis, or phase demodulation techniques can be broadly 
classified into two categories: spatial and temporal techniques. Temporal phase 
demodulation techniques (representatively, the phase-shifting technique 2) detect 
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high-resolution pixel-wise phase distribution from the temporal variation of fringe 
signals at the cost of time-sequential data acquisitions. Spatial phase demodulation 
methods, such as Fourier transform (FT) 3 and windowed Fourier transform (WFT) 4, 
are capable of estimating the phase distribution from a single fringe pattern, but 
fringe discontinuities and rich details of testing surfaces prevent them from high-
accuracy phase measurement of complex surfaces. In this context, the goal of our 
first attempt is to develop a deep-learning-based fringe pattern analysis technique 
that is capable of combining the single-frame strength of spatial phase 
demodulation techniques with the high measurement accuracy of temporal phase 
demodulation techniques. 
 
Initially, we tried to accomplish this goal by designing a deep convolutional neural 
network (CNN) with an end-to-end architecture, which directly links the input fringe 
image to the output phase map. However, it has been found that such an end-to-end 
learning scheme had difficulties in reproducing abrupt 2π phase jumps in the 
wrapped phase map, making the training process fails to converge. After many twists 
and turns, we have finally devised a pragmatic and practical solution. Inspired by the 
physical model of conventional fringe analysis techniques, where the wrapped phase 
is calculated from the arctangent function, we attempted to predict 
the sine and cosine components of the fringe pattern from one input fringe image 
[Fig. 2a]. Encouragingly, such a strategy worked extremely well after appropriate 
network training, and can provide high-accuracy phase predictions close to those of 
the 12-step phase-shifting approach [Fig. 2b]. We further applied this learning-
based fringe analysis technique to a high-speed fringe projection profilometry 
system, achieving an unprecedented 3D imaging frame rate up to 20,000 Hz [Fig. 2c]. 
This work was published in Advanced Photonics as a cover paper in 2019 5, which now 
has become the most cited paper of Advanced Photonics since its inception. 
 

“A logical hierarchy” 

At the beginning of 2020, the sudden COVID-19 raged and spread around the world. 
The New Year, an originally lively traditional Chinese festival, became unusually 
silent. During the long hours of leisure, I have noticed that researchers in optical 
metrology started actively participating in the explosively growing field of deep 
learning, as evidenced by the ever-increasing number of publications and 
exponentially growing citations to our earlier research. Within a few short years, 
deep-learning-based techniques have been gaining increasing attention and 
demonstrating promising performance in various optical metrology tasks, such as 
phase demodulation, phase unwrapping, system calibration, and error 
compensation. However, those research works are scattered rather than 
systematic. “Whether machine learning will be the driving force in optical metrology 
not only provides superior solutions to the growing new challenges but also tolerates 
imperfect measurement conditions with least efforts?” The answer to this key 
question deserves deeper thought and exploration. “Under these circumstances, a 
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comprehensive review that covers principles, implementations, advantages, 
applications, and challenges in utilizing deep learning for optical metrology tasks 
will be extremely useful.” The idea for a review article entitled “Deep learning in 
optical metrology: a review” was therefore born. 

Fig. 2 | Flowchart of fringe analysis using deep learning and the 3D reconstruction results of 

different approaches. a Flowchart of fringe analysis using deep learning 5. b Comparison of the 

3D reconstructions of different fringe analysis approaches (FT 3, WFT 4, our deep learning-based 

method, and 12-step phase-shifting profilometry). c Measurement results of a desk fan rotating 

at different speeds using our method 6. 

On Mar 22, 2020, I said to my Ph.D. student Jiaming Qian, the primary co-author of 
this review article: “Let us together take an extensive and thorough examination of 
previously published relevant literature and create a compelling synthesis of 
gathered references.” Hundreds of deep learning papers on classical interferometry, 
digital holography, fringe projection profilometry, etc., were then surveyed and 
categorized [Fig. 3]. In May, under the shadow of the epidemic, some senior Ph.D. 
students were allowed to return to the university on the premise of ensuring safety, 
including Jiaming. I enjoy using figures and tables to summarize research progress 
and suggest future research trajectories. So I drew a very sketchy optical metrology 
vein diagram for Jiaming: “Optical metrology covers a wide range of methods and 
applications today. It would be impractical for this review to discuss all the relevant 
technologies and trends.” My advice to Jiaming is to accept the fact that a review is 
different from a textbook: it should be more focused, and it’s OK to skip some topics 
so that it does not distract the readers.  
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Fig. 3 | In the early hours of March 24, 2020, unorganized literatures on optical metrology using deep 

learning littered jiaming’s computer screen. (zetero) 

 

With this sketch in hand, Jiaming began to meticulously “carve” and “polish” it 
[Fig. 4]. Little did anyone predict that 19 months later a sketch would expand into a 
54-page paper with double-column layout. Indeed, when it comes to optical 
metrology, ones subconsciously associate them with ‘fringe’ (phase measuring 
metrology) and ‘speckle’ (speckle metrology). We therefore restrict our focus to 
phase/correlation measurement techniques, such as interferometry, holography, 
fringe projection, and digital image correlation (DIC). Image processing plays an 
essential role in optical metrology, which is very similar to those of computer vision 
and computational imaging for the purpose of converting the observed 
measurements (intensity image in most cases) into the object quantities taking into 
account the physical model describing the image formation process. In most cases, 
image processing in optical metrology is not a one-step procedure, but a logical 
hierarchy consisting of three main steps, pre-processing, analysis and post-
processing. Such a logical hierarchy provides a systematic framework throughout 
this review to classify and summarize the various optical metrology techniques and 
tasks that are otherwise fragmented. It also helps to decide what should and should 
not be included in the review. 
 

“A panoramic comparative picture” 

After this, we proceed with the writing. We need to fill each layer of the hierarchical 
steps, which is essentially writing a mini-review of various types of algorithms 
distributed in different layers. I remind my students to imagine themselves as ‘artists 
of science’ and encourage them to develop how they write and present information. 
“Adding more words isn’t always the best way, we have to get something concisely 
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from a broad reading.” 
 

 

Fig. 4 | A summary of conventional optical metrology derived from a vein sketch. 

 
Because of the significant changes that deep learning brings to the concept of optical 
metrology technology, almost all elementary tasks of digital image processing in 
optical metrology have been reformed by deep learning. This encouraged us to 
further summarize these existing researches leveraging deep learning in optical 
metrology according to a similar logical architecture [Fig. 5]. We went through 
multiple iterations to make sure that we had scanned the literature sufficiently and 
provided a clear, concise, appropriate, and informative review of conventional and 
new “learning-based” optical metrology techniques. Gradually, a clear and beautiful 
view unfolded before our eyes: the new deep learning-enabled optical metrology 
algorithms [Fig. 5] and their traditional counterparts [Fig. 4] echo each other, 
providing us with a panoramic comparative picture. 
 
As a smooth transition between the old and the new, we gave a brief introduction to 
deep learning and summarized its threefold advantages from extensive literature: 
from “physics-model-driven” to “data-driven”, from “divide-and-conquer” to 
“end-to-end learning”, and from “solving ill-posed inverse problems” to “learning 
pseudo-inverse mapping”. In general, deep learning is particularly advantageous for 
many problems in optical metrology whose physical models are complicated and 
acquired information is limited. Strong empirical and experimental evidence 
suggests that using problem-specific deep learning models outperforms 
conventional knowledge or physical model-based approaches. 
 
It is not enough for a review to be a summary of historical growth in the literature; it 
is also expected to provide a discussion about controversial issues in this field. In 
spite of the promising — in some cases impressive — results that have been 
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documented in the literature, on the other side of the coin, significant challenges do 
remain in this area. In collaboration with my colleagues, Assoc. Prof. Shijie Feng and 
Jing Han from Nanjing University of Science and Technology, and exchange student 
Pengfei Fan from Queen Mary University of London, the critical challenging issues of 
applying deep learning to optical metrology were gathered and discussed: 
 

 

Fig. 5 | Repeatedly modified overview graphs of deep learning in optical metrology. 
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“The other side of the coin” 

• For model training, we need to acquire large amounts of experimental data 
with labels, which, even if available, is laborious and requires professional 
experts [Fig. 6]. 

Fig. 6 | The challenge of deep learning in optical metrology—the high cost of obtaining and 

labeling training data. Taking fringe projection profilometry as an example, to collect high-

quality training data, the traditional multi-frequency temporal method is used, which causes a 

large number of images to be projected for each set of training data. However, hardware errors, 

ambient light interference, calibration errors, etc. in actual operation make it difficult to obtain 

ideal ground truth through traditional algorithms 

 

• So far, there has been no theoretical groundwork that could clearly explain 
the mechanisms to optimize network structure for a specific task or 
profoundly comprehend why a particular network structure is effective in a 
given task or not [Fig. 7].  

• Generally, deep learning architectures used in optical metrology are highly 
specialized to a specific domain, and they should be implemented with 
extreme care and caution when solving issues that do not pertain to the same 
domain. 

• Deep learning approaches have often been regarded as ‘black boxes’, and in 
optical metrology, accountability is essential and can cause severe 
consequences. 

• Since the information cannot be “born out of nothing”, deep learning cannot 
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always produce a provably correct solution. The success of deep learning 
depends on the “common” features learned and extracted from the training 
samples, which may lead to unsatisfactory results when facing “rare 
samples”. 

 

Fig. 7 | The challenge of deep learning in optical metrology—empiricism in model design 

and algorithms selection. Taking the phase extraction in fringe projection profilometry as an 

example, the same task can be implemented by different neural network models with different 

strategies: the fringe image can be mapped directly to the corresponding phase map by DNN1; 

we can also output the numerator and denominator of the arctangent function used to calculate 

the phase information from a fringe image and a uniform by DNN2; with more powerful DNN, 

we can predict from a fringe image the numerator and denominator 

 
Listed above are among the most critical issues for optical metrology applications 
where the accuracy, reliability, repeatability, and traceability of measurement results 
are primary considerations. After identifying the research gaps, we hope the review 
paper should leave the reader with explicit opinions on its future trajectory. After 
another round of brainstorming, we made the following suggestions for potential 
new research areas to explore in the future. 
 

• Leveraging more emerging technologies of deep learning methods to optical 
metrology could promote and accelerate the recognition and acceptance of 
deep learning in more application areas. 

• Combining Bayesian statistics with deep neuron networks to obtain 
quantitative uncertainty estimates allows us to assess when the network 
yields unreliable predictions (see our recent Optica paper on this point) 7. 

• A synergy of the physics-based models that describe the a priori knowledge 
of the image formation and data-driven models that learn a regularization 
from the experimental data can bring our domain expertise into deep 
learning to provide more physically plausible solutions to specific optical 
metrology problems.  
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We believe the above-mentioned aspects can provide inspiration for future scopes 
and continue to attract the interest of deep learning research in the optical 
metrology community in the years to come. Finally, we would also like to remind 
readers that the selection between deep learning and traditional algorithms should 
be considered rationally, given the “no free lunch theorem”. For several problems 
where traditional methods based on physics models, if implemented properly, can 
deliver straightforward and more than satisfying solutions, there is no need to use 
deep learning. 

“Revise, revise, revise” 

In Jan 2021, we finished the first draft and decided to submit it to Light: Science & 
Applications, which publishes original articles and reviews of high quality, high 
interest, and far-reaching impact. My Ph.D. student, Yixuan Li, double-checked the 
typesetting, grammar, and references according to the journal’s stylistic and 
formatting guidelines. After that, I consulted Prof. Kemao Qian at Nanyang 
Technological University (NTU), Singapore, an expert with more than 20 years of 
experience in optical metrology, to review our draft. Prof. Qian was my (unofficial) 
Ph.D. advisor when I was a visiting student at NTU from Sep 2012 and Feb 2014. My 
intuition told me that getting his perspective would be very helpful in enhancing the 
quality of this review. 

After assessing the first draft, Prof. Qian offered three constructive criticisms. (1) The 
section “brief introduction to deep learning” only introduced the history of deep 
learning and artificial neural network, and had little relevance to optical metrology. 
Instead, readers should be interested in learning more about how deep learning can 
be used in optical metrology from this section. (2) The transition between sections of 
traditional optical metrology algorithms and their deep learning-enabled 
counterparts was sudden and there was insufficient evidence as to why deep learning 
should be used in optical metrology. (3) As a review, its main purpose is to help other 
researchers enter this field more easily by collecting and summarizing, synthesizing, 
and analyzing existing research. “Will deep learning be the future of optical 
metrology?” It is very difficult to draw a conclusion at the current stage, as the place 
of deep learning in optical metrology is not yet clear. So instead of giving a clear 
answer to this question, we try out best to paint a full and informative picture for our 
readers. 
“When you draft, you write for yourself. When you revise, you clarify for your 
readers.” Prof. Qian’s advice epitomized this motto. With these criticisms in hand, the 
only thing we could do was revise, revise, revise! “We must strive for excellence.” I 
encouraged Jiaming. It had now become apparent that spending nearly half a year 
revising is a wise choice, because this made this review not only more in-depth in 
content but also more logically developed, from beginning to end. 
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• For the first comment, we added more introduction to the fundamentals of 
deep learning, including the basic principles of neural networks, network 
structures, and training algorithms. We focused on the dominant network 
architecture for image- and vision-related tasks—convolutional neural 
networks (CNNs), and then discussed in detail the variants of classical CNN 
architecture—DNNs with a fully convolutional architecture, that shares 
characteristics with image processing algorithms in optical metrology 
(transforming the content of arbitrary-sized inputs into pixel-level outputs). 
By applying different types of training datasets, they can be trained for 
accomplishing different types of image processing tasks that we encountered 
in optical metrology. This provides an alternative approach to process images 
such that the produced results resemble or even outperform conventional 
image processing operators or their combinations. There are also many other 
potential desirable factors for such a substitution, e.g., accuracy, speed, 
generality, and simplicity. All these factors were crucial to enable the fast rise 
of deep learning in the field of optical metrology. 

 

 

Fig. 8 | Inverse problems in computer vision. In computer vision, such as image deblurring, the 

resulting inverse problem is ill-posed since the forward measurement operator mapping from 

the parameter space to the image space is usually poorly conditioned. The classical approach is 

to impose certain prior assumptions (smoothing) about the solution that helps in regularizing its 

retrieval 

 

• For the second comment, we tried to explain the reason for the transition 
from the perspective of solving inverse problems. In optical metrology, we 
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have to conclude in general from the effect (i.e., the intensity at the pixel) to 
its cause (i.e., shape, displacement, deformation, or stress of the surface). 
Such information recovery process is similar to those of computer vision and 
computational imaging, presenting as an inverse problem that is often ill-
posed. Tremendous progress has been achieved in terms of accurate 
mathematical modeling, regularization techniques, numerical methods, and 
their efficient implementations [Fig. 8]. For optical metrology, the situation 
becomes quite different due to the fact that the optical measurements are 
frequently carried out in a highly controlled environment. Instead of 
explicitly interpreting optical metrology tasks from the perspective of solving 
inverse problems, we prefer to reformulate the original ill-posed problem 
into a well-posed and adequately stable one by actively controlling the image 
acquisition process [Fig.  9]. However, for many challenging applications, 
harsh operating conditions may make such active strategies a luxurious or 
even unreasonable request. Under such conditions, deep learning is 
particularly advantageous for solving those optical metrology problems 
because the active strategies are shifted from the actual measurement stage 
to the preparation (network training) stage, and the “reconstruction 
algorithm” can be directly learned from the experimental data [Fig.  10]. If 
the training data is collected under the environment that reproduces the real 
experimental conditions, and the amount of data is sufficient, the trained 
model should reflect the reality more precisely and comprehensively, and is 
expected to produce better reconstruction results than conventional 
physics-model-based approaches. 

Fig. 9 | Inverse problems in optical metrology. Optical metrology uses an “active” approach to 

transform the ill-posed inverse problem into a well-posed estimation or regression problem: by 
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acquiring additional phase-shifted patterns of different frequencies, absolute phase can be easily 

determined by multi-frequency phase-shifting and temporal phase unwrapping methods 

 

Fig. 10 | Deep learning-based optical metrology as a constraint optimization problem. a In 

deep learning-based optical metrology, a set of true object parameters and the corresponding 

raw measured data are created at the training stage, and their mapping relation (learn a 

reconstruction algorithm) is established by training a deep neural network with all network 

parameters  (neural network weights) learned from the dataset. b The principle of obtaining the 

dataset by real experiments or simulations with the knowledge of the forward model (left) and 

the obtained dataset (right) 
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Many great writers have commented on the importance of revision. William Zinsser 
said, “Revision is the essence of good writing: it’s where the game is won or lost.” Stephen 
King said, “You need to revise for length. The formula. Second draft = first draft - 10%.” I 
would have thought revision does not necessarily mean rewriting the whole paper, 
and a 10% revision was a lot. But after going through countless iterations, more than 
1/3 content of the draft had been refreshed. This considerable improvement was 
mainly attributed to the careful and insightful guidance of Prof. Qian, who was far 
away in Singapore, devoting significant efforts to revise the manuscript with us 
round by round, through countless hours of the video conference [Fig. 11]. 
 

Fig. 11 | Professor Qian was revising the manuscript with Professor Zuo through the video 

conference. 

 

“Be the ‘go to’-reference” 

 

In July 2021, we finalized the manuscript, which was carefully read, checked and 
approved by all co-authors. We submitted it to Light: Science & Applications as 
planned, along with a cover letter to the editor. The peer-review report came back 
after two months, and, encouragingly, all three reviewers gave very positive 
comments on our manuscript. The overall assessments of the three reviewers are 
provided as follows: 
 

• Reviewer 1: “This is a pretty comprehensive review paper for deep learning in 
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optical metrology. They start from introducing conventional methods in optical 
metrology and measurement processing, and then go into tutorial of deep 
learning and how deep learning is applied. I find that this paper is timely and can 
be considered for publication pending that the following comments are 
addressed……” 

• Reviewer 2: “The review article on Deep Learning in Optical Metrology is an 
excellent manuscript which is well written……The authors have given a very good 
introduction to various optical metrological methods such as interferometry, 
holography, fringe projection, and DIC. The development of these methods 
through the past, their basics have been well explained. The figures presented 
have been well organized giving the reader a good comparative picture. ……The 
manuscript gives a comprehensive review of optical metrology techniques and 
how deep learning can be tailored. The presentation details are well handled. The 
manuscript deserves publication as such. ” 

• Reviewer 3: “The authors present us with a review paper in the field of deep 
learning applied to optical metrology. It is a very long manuscript with more than 
40 pages of text. However, it is well written and a pleasure to read. As someone 
who is working in optical metrology for more than 20 years, it was a very good 
introduction into the basic concepts of deep learning in this field, and I learned a 
lot……” 
 

The main constructive revision comments came from Reviewer 3, who suggested to 
give a simple but very detailed example on how to apply deep learning to optical 
metrology: 
 
Reviewer 3: “The manuscript is clearly a beautiful review paper. BUT, with some small 
changes it can even become so much more. I would really encourage the authors to give a 
simple but very detailed example on how to apply deep learning to optical metrology 
(including the math, the algorithmic implementation, etc.). This could be for example 
denoising or signal-reconstruction from corrupted data. This could evolve the paper into 
one of the fundamental “go to”-references if it comes to optical metrology and deep 
learning, because it is not only a good overview but also a basic tutorial. You could do this 
at the expense of shortening the first part (see above), because nobody really wants to 
read 5 to 10 pages of textbook knowledge about phase shifting, phase unwrapping, etc., 
but everybody wants to LEARN how to apply these new data-driven approaches.” 
Finally, the reviewer concluded: 
 
“I believe that this manuscript has big potential to become one of the “go to”-
references in deep learning for optical metrology. It is well written, comes at the right 
time and includes numerous examples. However, I would strongly encourage the 
authors to consider the above comments and I would like to re-review it.” 
 
I deeply appreciated that the reviewers were here to help our paper succeed and by 
following their advice, finally we would emerge with a stronger version that will 
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hopefully end up becoming the definitive “go-to” guide on this topic. We were 
inspired to further include a tutorial of applying deep learning to optical metrology in 
the Supplementary Information, taking phase demodulation from a single fringe 
pattern as an example. In addition, we published the source codes and the 
corresponding datasets for this example. We demonstrate that a well-trained deep 
neural network can accomplish the phase demodulation task in an accurate and 
efficient manner, using only a single fringe pattern. Thus, it is capable of combining 
the single-frame strength of the spatial phase demodulation methods with the high 
measurement accuracy of the temporal phase demodulation methods. This turned 
out to be a considerable addition because it made the review more comprehensive 
and instructive, potentially increasing its readership. It should be noted that it took 
approximately four months to complete the processes of peer review, revision, and 
publication. During this period, many new papers and even competing reviews were 
published. To provide the most up-to-date review, we had to stay abreast of the 
literature by using Google Scholar, which alerted me daily updates of relevant 
literature based on keywords. 
 

“Predict Engage the future” 

 

Finally, let us return to the third point raised by Prof. Qian “Is predicting the future 
futile or necessary?”   Undoubtedly, deep learning is currently prompting increasing 
interests and leading to a paradigm shift from physics- and knowledge-based 
modeling to data-driven learning in optical metrology. Strong empirical and 
experimental evidence suggests that using problem-specific deep learning models 
outperforms conventional knowledge or physical model-based approaches, 
especially for many optical metrology tasks whose physical models are complicated 
and acquired information is limited. 
 
It has to be admitted that deep learning is still at the early stage of development for 
its applications in optical metrology. Many researchers are still skeptical and 
maintain a wait-and-see attitude towards its applications involving industrial 
inspection and medical care, etc. Shall we accept deep learning as the key problem-
solving tool? Or should we reject such a black-box solution? These are controversial 
issues in the optical metrology community today. Looking on the bright side, it has 
promoted an exciting trend and fostered expectations of the transformative 
potential it may bring to the optical metrology society. However, we should not 
overestimate the power of deep learning by considering it as a silver bullet for every 
challenge encountered in the future development of optical metrology. In practice, 
we should assess whether the large amount of data and computational resources 
required to use deep learning for a particular task is worthwhile, especially when 
other conventional algorithms may yield comparable performance with lower 
complexity and higher interpretability. “Will deep learning replace the role of 
traditional technologies within the field of optical metrology for the years to come? 
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“It is clear no one can predict the future, but we can engage it. If you are still an 
‘outsider’ or new to this field. I encourage you to try it out! It is easy, and often works! 

 

For more information, please refer to this recent publication: Zuo, C., Qian, J., Feng, 
S. et al. Deep learning in optical metrology: a review. Light Sci Appl 11, 39 (2022). 
 
DOI: https://doi.org/10.1038/s41377-022-00714-x 
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Optical metrology embraces deep learning:
keeping an open mind
Bing Pan1✉

Abstract
Optical metrology practitioners ought to embrace deep learning with an open mind, while devote continuing efforts
to look for its theoretical groundwork and maintain an awareness of its limits.

Optical metrology is the science and technology con-
cerning measurements using light. The development of
physical sciences has been driven from the very beginning
by optical metrology techniques. In return, optical
metrology has been revolutionized by several major
inventions of physical sciences, such as the laser, charged
coupled device (CCD), and computer technology.
Although optical metrology technologies have developed
into problem-solving backbones in many science and
engineering applications, they have already implemented
the transition to their digital avatars for nearly half a
century, entering an era of diminishing returns. After the
three previous revolutions brought about by the laser,
imaging sensor, and digital computing, which technology
will reinvigorate optical metrology?
Deep learning is a type of machine learning that uses

artificial neural networks to learn a mapping between
input and output data1. Once trained, these models can
predict outputs from supplied input data. In 2016,
AlphaGo beating Lee Sedol, the best human player at Go,
four matches to one was a truly seminal event in the
history of machine learning and deep learning. Since then,
we have witnessed its explosive growing and extensive
applications in solving many tasks in computer vision,
computational imaging, and computer-aided diagnosis2.
In light of the tremendous success of deep learning in
these related fields, researchers in optical metrology were
unable to hold back their curiosities with regards to

adopting this technology to further push the limits of
optical metrology and provide new solutions in order to
meet the upcoming challenges in the perpetual pursuit of
higher accuracy, sensitivity, repeatability, efficiency, speed,
and robustness.
The research group led by Prof. C. Zuo at Nanjing

University of Science and Technology is a pioneer in
introducing deep learning to optical metrology with a
particular focus on fringe pattern analysis and fringe
projection profilometry. In 2019, they developed a deep-
learning-based fringe pattern analysis technique capable of
combining the single-frame strength of spatial phase
demodulation techniques with the high measurement
accuracy of multi-frame phase-shifting techniques3. The
network is trained on single fringe pattern matched with
the label phase (ground-truth) reconstructed by the stan-
dard 12-step phase-shifting algorithm of the same sample.
After training based on extensive dataset, the neural net-
work can transform a single fringe pattern into an accurate
phase map from that almost reproduces the result of the
12-step phase-shifting method, which is an astonishing
feat for the field. Subsequentially, researchers in optical
metrology started actively tilling this fertile field, as evi-
denced by the ever-increasing number of publications.
Within a few short years, deep learning has been applied to
various tasks of optical metrology, such as fringe denois-
ing4, phase unwrapping5,6, and single-shot profilometry7,8.
In a recent issue of Light: Science & Applications, Zuo

et al.9 presented a comprehensive review in the field of
deep learning applied to optical metrology. They start
from conventional methods and typical signal processing
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tasks in optical metrology, and then introduce the idea of
data-driven evaluation with deep learning. As a smooth
transition between the old and the new, they provided a
brief introduction to deep learning and summarized the
threefold advantages of its application to optical metrol-
ogy: from “physics-model-driven” to “data-driven”, from
“divide-and-conquer” to “end-to-end learning”, and from
“solving ill-posed inverse problems” to “learning pseudo-
inverse mapping”. Then a comprehensive overview where
deep learning has already infiltrated almost every aspect of
image processing tasks is presented, suggesting a para-
digm shift from physics-based modeling to data-driven
learning in optical metrology. The panoramic compara-
tive picture reveals that using problem-specific deep
learning models outperforms conventional knowledge or
physical model-based approaches in most cases, especially
for many optical metrology tasks whose physical models
are complicated and acquired information is limited.
While promising, in many cases pretty impressive,

results have been documented in the literature, Zuo et al.
admitted that these works still represent early days in the
application of deep learning to optical metrology. It is
sensible to maintain a clear head and recognize that deep
learning is not magic: it is essentially the process of using
computers to help us find patterns within data. Since the
information cannot “born out of nothing”, deep neural
networks are usually pretty brittle, i.e., if we do not feed in
the RIGHT kind of data in the RIGHT kind of format
using the RIGHT kind of network model and training
algorithm, we will get poor results.
In many applications of computer vision, people are

always happy when the result looks good and realistic, no
matter whether it is interpretable and quantifiable or not.
However, adhering to the famous creed by Galileo:

“Measure what is measurable, and make measurable when
it is so”, practitioners in optical metrology is both open-
minded and rigorous. In optical metrology, it is not only
necessary to get a good-looking result, but also need to
make sure that the result is accurate, reliable, repeatable,
and traceable. Though we hope that such deep learning
approaches always have a provably correct solution, no
one can guarantee, at least not yet. Another well-known
disadvantage of deep neural networks is their “black box”
nature. Simply put, we do not know how or why the
network came up with a certain output (Fig. 1). However,
the interpretability is critical to optical metrology, as it
allows us trust the methodology and understand the
causes of mistakes. Shall we accept deep learning as the
key problem-solving tool? Or should we reject such a
black-box solution? These are controversial issues in the
optical metrology community nowadays.
Conjuring more from less must pay a price. There are

still significant challenges in deep learning-based optical
metrology: First, for model training, we need to acquire
large amounts of experimental data with labels, which,
even if available, is laborious and requires professional
experts. Second, we need to look for the theoretical
groundwork that would clearly explain the ways to define
the optimal network structure and comprehend the rea-
sons for its success or failure. Third, we should recognize
that the power of deep learning approaches often comes
at the expense of generalization (the ability to deal with
never-before-experienced situations), i.e., their perfor-
mance can be system, environment, and even sample
dependent. Nevertheless, the progress of science comes
from the continuous exploration to solve the unknown.
So, I encourage optical metrology practitioners to
embrace deep learning with an open mind while maintain
an awareness of its limits.
All in all, nothing in deep learning-based optical

metrology is to be feared. It is only to be understood and
quantified. Recent research into Bayesian deep learning
promises to assess the reliability of the network by
explicitly quantifying uncertainty, which provides us an
additional choice between “trusting the network without
doubts” and “denying it completely”, namely “trusting it
conditionally”10. As the emerging field slowly matures,
deep learning is expected to graduate from black-box
empirical representations to full-blown theoretical foun-
dations, with a more profound impact not only on optical
metrology, but also on optics and photonics as a whole.
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Exploiting optical degrees of freedom for
information multiplexing in diffractive neural
networks
Chao Zuo 1,2,3✉ and Qian Chen3

Abstract
Exploiting internal degrees of freedom of light, such as polarization, provides efficient ways to scale the capacity of
optical diffractive computing, which may ultimately lead to high-throughput, multifunctional all-optical diffractive
processors that can execute a diverse range of tasks in parallel.

In the last decades, artificial intelligence (AI) tech-
nologies, especially artificial neural networks (ANNs),
have led to a revolution in a range of applications,
including autonomous driving, remote sensing, medical
diagnosis, natural language processing, and the Internet
of Things. However, the rapid progress of AI and the
increasing scale of ANNs are actually accompanied with
a tremendous amount of computational resources and
energy costs1. The main reason behind this is that the
dominant computational algorithm for ANNs consists
of a large number of matrix-vector multiplications,
which are typically the most computationally-intensive
operations with the computing cost scales as the square
of the input dimension2. Optical neural networks
(ONNs) built using optical matrix-vector multipliers
are promising candidates for next-generation neuro-
morphic computation, because they offer a potential
solution to the energy consumption problem faced by
their electrical counterparts3. In addition, the con-
stituent scalar multiplication operations can be per-
formed in parallel completely in the optical domain, at

the speed of light, and with zero energy consumption in
principle4.
Optical computing, or more specifically ONNs, where

people seek to perform neuromorphic computation with
optics, is, in fact, not a new idea. In 1987, Mostafa and
Psaltis5, for the first time, focused on the need and
practical implementation of optical neural computers.
Taking inspiration from the distributed topology of the
brain, they created a physical implementation of neural
networks by arranging optical components in the way
neurons are arranged in the human brain. Since then,
research in optical neuromorphic computing has flour-
ished, spanning decades of development efforts on various
novel optical implementations of neural networks6. But
until recently experimental implementations of large-
scale, highly parallel, high-speed, and trainable ONNs
have been made with the breakthroughs in deep learning,
optoelectronics, and photonic material engineering,
leading to a resurgence of interest in this area.
ONNs are usually built based on an optical architecture

that is mathematically described as an input-output
function, i.e., a scattering matrix relating the input to
the output electric field. And this naturally implements a
matrix-vector multiplication, which can be realized by a
diverse set of optical architectures, including integrated
silicon photonic neuromorphic circuits7, fiber-optic sen-
sor arrays8, and convolutional networks through dif-
fractive optics9–11. Introduced by Ozcan Research Group
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at the University of California, Los Angeles (UCLA),
ONNs formed through the integration of successive spa-
tially engineered transmissive diffractive layers, i.e., dif-
fractive neural networks, have been demonstrated to
enable both statistical inference and optical information
processing, such as image classification9, single-pixel
image reconstruction12, quantitative phase imaging13,
and imaging through random diffusers14.
The diffractive neural network has its roots in Fourier

optics, wherein a simple positive lens applies a physical
two-dimensional Fourier transform to the wave field, and
the prevalent wave propagation is described by Kirchhoff’s
diffraction integral that amounts to a convolution of the
field with the impulse response of free space. These
operations provide basic building blocks of convolutional
neural networks (CNNs), making diffractive neural net-
works well-suited for most vision computing applications.
By leveraging the light-matter interaction as an imple-
mentation of element-wise multiplication, the “pixels” on
the diffractive surfaces embody the “neurons” on the
network layers, which are interconnected by the physics of
optical diffraction. As an analogy to standard neural
networks, the complex-valued transmission coefficient
(including amplitude and phase) of each pixel is a learn-
able network parameter, which is iteratively optimized
based on error back-propagation algorithms, using stan-
dard deep learning tools implemented in a computer.
After this training stage, the resulting transmissive layers
are fabricated with 3D printing or lithography to

construct a task-specific physical network that computes
based on the diffraction of the light passing through these
trained diffractive layers.
Though most of the current diffractive neural networks

are constructed based on linear optical materials, “deep”
diffractive neural networks show evident “depth” abvantages:
an increase in the number of diffractive layers and neurons
improves its statistical inference accuracy and information
processing capability9,15. More specifically, adding more
trainable diffractive layers into a given network increases the
dimensionality of the solution space that can be all-optically
processed by the network. It has been recently demonstrated
that a diffractive neural network can be trained to perform
an arbitrary complex-valued linear transformation between
its input and output fields with negligible error, provided
that the total number of engineered pixels in the network is
sufficient16. In a more general sense, a diffractive neural
network can be regarded as a special, task-specific optical
system, which performs specific computational tasks with
the use of light information carriers. The object field can be
viewed as a source of information flow characterized by
various fundamental properties, which can all be ingeniously
manipulated to extend the information processing capacity
of diffractive networks.
In a recent issue of Light: Science & Applications, the

UCLA group introduced polarization division multi-
plexing (PDM), a long-established technique of enhancing
the transmission capacity in telecommunications, to all-
optically perform multiple, arbitrarily-selected linear

a b

Wavelength

Phase

Amplitude

Angular momentum

Polarization

Frequency

Fig. 1 Information multiplexing in diffractive neural networks. (a) Polarization-multiplexed diffractive neural networks utilizing a series of
structured diffractive surfaces and a simple polarizer array. By enabling the trainable diffractive layers to communicate with the polarization elements
embedded in the diffractive volume, a single network can create multiple computing channels that can be accessed using specific combinations of
input and output polarization states. (b) Exploiting the internal degrees of freedom of light provide new possibilities for information multiplexing to
enhance the performance and capacity of optical diffractive networks
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transformations through a single diffractive network17

(Fig. 1a). Instead of using birefringent, anisotropic, or
polarization-sensitive materials for trainable diffractive
layers, their polarization-multiplexed diffractive networks
are still built based on standard (isotropic) diffractive
surfaces where the trainable coefficients are independent
of the polarization state of the input light. To gain addi-
tional sensitity to different polarization states and polar-
ization mode diversity, a non-trainable, pre-selected linear
polarizer array (at 0°, 45°, 90°, and 135°) is inserted within
the trainable diffractive surfaces, and different target lin-
ear transformations are uniquely assigned to different
combinations of input and output polarization states.
They demonstrated that a single well-trained polariza-
tion-multiplexed diffractive network could successfully
perform multiple (2 or 4) arbitrarily-selected linear
transformations, which had not yet been implemented by
using metasurfaces or metamaterials-based designs11,17.
Such a polarization-multiplexed diffractive computing
framework is poised to be used to build all-optical, passive
processors that can execute multiple inference and optical
information processing tasks in parallel.
Harnessing the intrinsic high-dimensionality of light

brings new insights into the diffractive neural network
design by providing additional degrees of freedom to both
optical signals and systems. The concept of degrees of
freedom was first introduced in optics by Laue18 in 1914 as
the decisive property in determining the information
capacity of optical signals and systems, even before Shan-
non’s information theory for communication systems was
established19. According to Laue18, and later Gabor20,
Francia21, and Lukosz22,23, the number of degrees of free-
dom in optics is most often understood to be the number
of independent parameters needed to represent an optical
signal or system, which is closely related to the number of
independent communication channels available for the
information transfer in the field of electrical communica-
tion. However, unlike communication systems, an optical
system transmits many kinds of information, which can be
divided into two groups: (1) “dimensional” information
which is related to spatial intervals by coordinates x, y, and
z, as well as to temporal intervals t; (2) “internal” infor-
mation which is related to physical properties of light,
including amplitude, phase, wavelength, polarization,
coherence, and angular momentum. The total number of
degrees of freedom can be expressed through the product
of freedom degree numbers related to all these different
kinds of information. Though optical systems are often
expected to transmit as much information as possible, the
number of degrees of freedom is a fundamental invariant of
an optical system, as noted by Gabor20 and Lukosz22.
Within this limit, it is possible to increase the degrees of
freedom for one kind of information at the expense of that
of another kind22,23.

The concept of degrees of freedom can be straightfor-
wardly extended to the diffractive neural network, as a
special kind of optical signal processing system. For
example, the information content of the input or output
signal, which is often an image formed through a pupil of
finite size, can be quantified by the definite number of
resolvable regions in which the signals can be indepen-
dent (defined as Ni and Nj for the input or output signal
in ref. 15), taking both the diffraction limit and sampling
theorem into account21,22. Diffractive neural networks
manipulate light by reshaping the spatial profile of an
input beam into a desired output beam. If the diffractive
neural network is designed to perform arbitrary linear
transformations from the input beam to the output beam,
as demonstrated in refs. 15,16, the entire optical system
can be described by a single Ni×Nj matrix, mapping Ni

input degrees of freedom to Nj output degrees of free-
dom. In optical communications, the concept of “modes”
or “eigenfunctions”, is commonly used to provide an
“economical” description of degrees of freedom of the
optical signal, reducing complicated wave functions to a
small number of mode amplitudes, as in propagating
fiber modes and ideal laser beams24. In such a sense, the
linear transformation function realized by the diffraction
neural network is similar to that of an optical mode
converter25. In contrast, diffractive neural networks can
be built in a “deep” manner, consisting of several dif-
fractive surfaces containing a large number of trainable
neurons. Such a multi-layer design presents additional
spatial optical degrees of freedom, significantly enhancing
the information capacities and processing capability of
the network compared with a single diffractive layer, as
demonstrated by the UCLA group15–17. In particular, any
linear transformation matrix from Ni to spatial degrees of
freedom has Ni × Nj free parameters. When the degrees
of freedom of the diffractive neural network, i.e., the
number of controllable parameters, is no less than Ni×Nj,
the network has in theory the capability to perform
arbitrary linear transformations between the input and
output signals perfectly. In their recent work17, two
additional degrees of freedom of polarization are intro-
duced to the input signal for simultaneously carrying the
different information through the network. The two
orthogonal polarization states carried by the beam pre-
sent an attractive avenue to enhance the maximum
information capacity of the diffractive neural network by
a factor of Np (from Ni × Nj to Np × Ni × Nj), where Np is
the number of unique linear transformations assigned to
different input/output states of polarization combina-
tions. It should be mentioned that the use of polarization
freedom as high-dimensional information carriers has
been reported by Lohmann et al.26 for optical super-
resolution imaging and Chen et al.27 in optical data
communications.
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The study of the UCLA group published in Light Science
& Application is part of a larger movement to scale the
capacity of optical diffractive computing by exploiting the
internal degrees of freedom of light, such as polarization,
spectrum, coherence, and orbital angular momentum, in
addition to the spatial degrees of freedom (Fig. 1b). With
such a multidimensional multi-link upgrade, diffractive
neural networks can transmit optical signals over more
independent channels, which could lead to all-optical
multiplexed diffractive processors that can execute mul-
tiple tasks in parallel. Another benefit of polarization
multiplexing is that the effective bandwidth can be
reduced to the half of that of single-polarization trans-
mission. That makes a high-dimensional diffractive neural
network possible by using lower numerical-aperture
optics, which has been proved to be extremely impor-
tant for reducing the physical size of diffractive neural
networks and relaxing the stringent requirements on the
interlayer distances15,16. Finally, in most current dif-
fractive network designs, the input field is assumed to be
monochromatic, spatially coherent, and forward-
propagating. A variety of computational imaging techni-
ques that exploit partial coherence and evanescent waves
for improving imaging performance (especially spatial
resolution) prompted us to consider the possibility of
their adaptation to diffraction neural networks. We
believe that significant progress in developing high-
performance optical diffractive computing schemes
could be made if it became common practice to consider
explicitly the internal degrees of freedom of light as the
physical source of information gain.
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