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Abstract: The transport of intensity equation (TIE) has long been recognized 
as a quantitative method for phase retrieval and phase contrast imaging. 
However, it is shown that the most widely accepted fast Fourier transform 
(FFT) based solutions do not provide an exact solution to the TIE in general. 
The root of the problem lies in the so-called “Teague’s assumption” that the 
transverse flux is considered to be a conservative field, which cannot be 
satisfied for a general object. In this work, we present the theoretical analysis 
of the phase discrepancy owing to the Teague’s assumption, and derive the 
necessary and sufficient conditions for the FFT-based solution to coincide 
with the exact phase. An iterative algorithm is then proposed aiming to 
compensate such phase discrepancy in a simple yet effective manner. 
©2014 Optical Society of America 
OCIS codes: (100.5070) Phase retrieval; (100.3010) Image reconstruction techniques; (120.5050) 
Phase measurement. 
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1. Introduction 

Transport of intensity equation (TIE) is a powerful tool for phase retrieval due to its non-
interferometric, deterministic nature [1]. This method has recently received revived interest, 
owing to its potential to provide wavefront metrology with simple and inexpensive setups, 
without requiring external interferometric reference beam. By solving the TIE, the quantitative 
phase can be directly recovered with only a minimum of two intensity measurements at distinct 
planes orthogonal to the optical axis. The TIE relaxes the stringent beam-coherence 
requirements for interferometry, making it possible to realize quantitative phase imaging over 
a wide range of light- and electron-beams [2, 3]. In the past few decades, the TIE has found a 
variety of applications in adaptive optics [4], X-ray diffraction [5], electron microscopy [6], 
optical quantitative phase imaging [7] and computational light field imaging [8, 9]. Several 
optical configurations for realizing dynamic TIE phase imaging have also been developed with 
use of the chromatic aberrations [10], tunable lens [11], and spatial light modulator [12]. 

Despite these great improvements and extensive applications, the literature survey 
conducted by the authors reveals that one important issue regarding the solution of the TIE has 
not yet been well addressed in the practice of the TIE-based methods. The well-posedness and 
the uniqueness of the TIE solution are well studied in the literature - with proper boundary 
conditions, one may find a unique (apart from an arbitrary additive constant) solution to the 
TIE if the intensity distribution is strictly positive [13]. Nevertheless, the standard procedure 
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for solving the TIE includes the introduction of the Teague’s auxiliary function [1] that 
transforms the TIE into a classical two-dimensional (2D) Poisson equation [14, 15]. This 
treatment makes the TIE conveniently solvable by Fourier transform-based methods for 
periodic or some simplified homogeneous boundary conditions [2, 16], or the discrete cosine 
transform based method for inhomogeneous Neumann boundary conditions [15]. However, it 
is important to remark that the Teague’s auxiliary function does not always exist in practical 
situations since the transverse energy flux may not be conservative, and consequently it would 
produce results that would not adequately match the exact solution [17, 18]. This discrepancy 
has not yet been recognized as a significant problem since previously the TIE was mainly 
applied for weak absorbing specimens, like optical components and biological samples. 
Although in such cases the methods using Teague’s auxiliary function are not exactly accurate, 
they provide a very good approximation for the exact solution to the TIE because the transverse 
energy flux is nearly irrotational. However, as will be shown in this paper, the phase error is 
often nonnegligible and may even be relatively large when the measured sample exhibits a 
strong absorption. This obviously poses a significant problem in the practice of the TIE phase 
retrieval, which has been generally acknowledged to be quantitative. To this end, this work 
aims to present the theoretical analysis of the phase discrepancy owing to the Teague’s auxiliary 
function as well as a simple iterative algorithm to compensate such phase errors. It addresses a 
long-lasting issue regarding the foundations of the widely applied TIE-based phase retrieval 
methods and extends the scope of their applicability. 

2. Transport of intensity equation, partial coherence, and geometrical vector flux 

The TIE was originally derived by Teague [1] from the stationary paraxial wave equation with 
the assumption of a purely coherent field. Its validity for partially coherent fields was then 
explored and confirmed by properly extending the physical meaning of phase, connecting it to 
the current density or the energy flow (Poynting vector) [2, 9]. Without loss of generality, we 
consider a quasi-monochromatic, stationary and ergodic scalar field ( )U x , where x  is the 2D 
spatial vector. To characterize such statistical field, we introduce the Wigner distribution 
function (WDF) in 4D phase space ( ),x u  [19], defined as 

 ( ) ( ), , exp 2 ,
2 2

W i dπ′ ′  ′ ′= Γ + − − 
 

x x
x u x x ux x  (1) 

where u  is the spatial frequency vector corresponding to x . ( ) ( ) ( )1 2 1 2, U U ∗Γ =x x x x  is 
the mutual intensity function of the statistical field. With use of the WDF, we can construct the 
3D vector field [ ], T

zj= xj j , which is also known as the geometrical vector flux [20, 21] 

 ( ) ( ), ,W dλ= x x u x u uj  (2) 

 ( ) ( )22 21 4 , ,zj k W d
k

π= −x u x u u  (3) 

where 2k π λ=  represents the wave number and λ  is the wavelength. In quantum mechanics, 
j  is the probability current, which is the expectation value of the local momentum operator. 

For an optical field well approximated by a scalar wave, which will be the case of interest in 
this work, j  is the energy flux directed along the Poynting vector. The energy conservation in 
free space implies the geometrical vector flux has zero divergence, resulting to the following 
continuity equation 

 ( ) ( ) ,zj

z

∂
= −∇⋅

∂ x

x
xj  (4) 
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with ∇  only operating over the transverse plane. Under the paraxial approximation, 
22 24k π− u can be replaced by k , then the longitudinal energy flux reduces to the intensity, 

given by the space marginal of the WDF 

 ( ) ( ) ( ), .zj W d I≈ =x x u u x  (5) 

Substituting it into Eq. (1), we get the TIE for partially coherent fields 

 ( ) ( ).
I

z

∂
= −∇⋅

∂ x

x
xj  (6) 

Equation (6) is a generalized version of Teague’s TIE since it explicitly considers the partial 
coherence and reduces to the conventional TIE in the case of perfect coherence: 

 ( ) ( ) ( )1 ,
I

I
z k

φ
∂

= − ∇⋅ ∇  ∂
x

x x  (7) 

where ( )φ x  is the phase of the completely coherent deterministic complex field, represented 
as ( ) [ ]( ) exp ( )U I iφ=x x x . Note here we employed the following relation between the first 
conditional frequency moment of the WDF (instantaneous frequency) and the transverse 
gradient of the phase of the complex field [22]: 

 
( )

( )
( ) ( )1

, 1, .
2,

W d
I W d

W d
φ

π
−= = ∇ 

u x u u
u x u u x

x u u
 (8) 

The TIE [Eq. (7) is a second order elliptic partial differential equation and the uniqueness of 
the solution seems well-acknowledged in the literature - with proper boundary conditions, one 
may find a unique (or unique up to an arbitrary additive constant) solution to TIE if the intensity 
distribution is strictly positive [13, 15]. Note Eq. (8) also provided a generalized definition of 
phase, which is very useful in optical phase retrieval when the object is illuminated by a 
partially coherent beam. 

Though Eqs. (6) and (7) suggest that the transverse flux for a fully coherent field takes the 
form 

 ( ) ( ) ( )1 ,k I φ−= − ∇x x x xj  (9) 

one should always treat it with care because the ( )φ∇ x  remains undefined where the amplitude 
goes to zero. Since the zeros of intensity are usually associated with the presence of phase 
vortices, there is no way to define a ( )φ x  so that it will be differentiable everywhere, which in 
turn leads to the fact that ( )φ∇ x  in Eq. (9) cannot be considered to be simply the gradient of 
some scalar potential. According to the Helmholtz decomposition theorem for vector fields [23], 
it is therefore more properly to modify the ( )φ∇ x  in Eq. (9) as the sum of the gradient of a 
scalar potential function ( )sφ x  and the curl of a vector potential function ( )vφ x  

 ( ) ( ) ( ) ( )1 .s vk I φ φ−= − ∇ + ∇ ×  x x x x xj  (10) 

This decomposition is unique (or unique up to a vectorial constant that may float between the 
two components) on bounded domains coupled with appropriate (Dirichlet, Neumann, or 
periodic) boundary conditions. Equation (10) implies that the scalar phase is a drive for the 
lateral translation of the intensity, while the vector phase twists the intensity as the wave moves 
along z. Therefore, as the wave propagates, both of the two kinds of phase will manifest 
themselves, contributing to the longitudinal intensity variations. However, the vortex cores are 
associated with intensity zeros that break the uniqueness theorems of the TIE [13], making 
conventional TIE solvers fail in such scenario [2]. Although some recent work extends the 
applicability of the TIE to arbitrary phase functions by explicitly taking into account the effect 
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of the vorticity [24, 25], using intensity zeros to identify singularities tends to be difficult since 
very-near zero and at zero may seem almost the same but can be entirely different vis-a-vis the 
presence of a phase singularity point. In the remainder of this paper, we exclude the 
consideration of the vector phase ( ( ) ( )sφ φ=x x ) by assuming a priori that the phase is single-
valued and continuous. This assumption is generally reasonable since the TIE phase 
measurements are habitually performed directly in (or very close to) the object plane (or its 
conjugated plane), where the phase function is single-valued and well-defined by the projected 
optical path length and the refractive index of the sample. 

3. Theoretical analysis of the phase discrepancy 

Putting the phase vorticity aside, we now turn to the problem of phase discrepancy in well-
acknowledged TIE solvers. In the literature, the TIE is usually solved under the so-called 
“Teague’s assumption” that the transverse flux is conservative so that an a scalar potential 
(auxiliary function) ψ  exists that satisfying 

 ( ) ( ) ( ) ( )1 1 ,k I kφ ψ− −= − ∇ = − ∇x x x x xj  (11) 

In this way, the TIE can be reduced to two following standard Poisson equations 

 ( ) ( )21 ,
I

z k
ψ

∂
= − ∇

∂
x

x  (12) 

and 

 ( ) ( ) ( )1 2 ,I ψ φ− ∇⋅ ∇ = ∇ x x x  (13) 

which can be solved by means of the Green’s function for the Laplacian operator. One typical 
method we mentioned here is derived by Paganin and Nugent [2], with the final solution of the 
phase taking the following form 

 ( ) ( )
( )2 21 ,

I
k

I z
φ − − ∂

= − ∇ ∇ ∇∇ ∂ 

x
x

x
 (14) 

where 2−∇  is the inverse Laplacian operator, which is used as a simplified representation of the 
solution of the corresponding Poisson equation. Under simplified boundary conditions, for 
example, the periodic and the homogeneous Dirichlet/Neumann boundary conditions, the 
inverse Laplacian operator can be effectively implemented with use of fast Fourier transform 
(FFT) techniques [14]. Due to its simplicity and efficiency, this method has been recognized as 
a standard solution for the TIE and applied to a variety of matter- and radiation-wave fields in 
several other publications [6, 7, 10–12, 14]. Note for more general inhomogeneous Neumann 
boundary conditions, the Fourier transform should be replaced by the discrete cosine transform, 
and one additional hard-edged aperture is necessary to generate the required boundary signals 
[15]. In the following, we will assume simplified boundary conditions and limit our discussion 
to only the Paganin and Nugent’s method, but please keep in mind the result of this work also 
applies to arbitrary boundary conditions. 

Despite its widespread use, the “solution” given by Paganin and Nugent’s method [Eq. (14)] 
is only an approximation to the exact solution, and there has been some research regarding its 
validity and accuracy [17, 18]. In this work, we refer this error as the phase discrepancy and 
take it to be equal to the difference between the true phase φ  and the reconstructed phase 0φ  
by Eq. (14) [corresponding to Eq. (13) of [17]]. It should be plain to see that the phase 
discrepancy originates from the Teague’s assumption, since as we know from the Helmholtz 
decomposition theorem that the transverse flux should be decomposed in terms of the gradient 
of a scalar potential ψ  and the curl of a vector potential η  

#211877 - $15.00 USD Received 12 May 2014; revised 23 Jun 2014; accepted 23 Jun 2014; published 7 Jul 2014
(C) 2014 OSA 14 July 2014 | Vol. 22,  No. 14 | DOI:10.1364/OE.22.017172 | OPTICS EXPRESS  17176



 ( ) ( ) ( ) ( ) ( )1 1 ,k I kφ ψ η− −= − ∇ = − ∇ + ∇ ×  x x x x x xj  (15) 

Compared with Eq. (11), we see that the term ( )η∇ × x  is ignored in Teague’s assumption, 
making a silent hypothesis that the transverse flux is irrotational. One may argue that the 
vorticity of the transverse flux has been ruled out since we have already excluded consideration 
of the vector phase in Eq. (10). However, it must be noticed that in Eq. (15) the Helmholtz 
decomposition is performed directly based on xj , instead of the φ∇  as in Eq. (10). In general, 
the two decompositions will not be the same except for the trivial case that the intensity ( )I x  
is a constant (there would be neither phase vortices nor flux vorticity in this case). In another 
word, the rotational term η∇ ×  is generally nonzero even when the phase is single-valued and 
continuous. Both the scalar and vector potentials can be respectively found by solutions of the 
following two Poisson equations, derived by taking the divergence/curl on both sides of Eq. 
(15) [17] 

 ( ) ( ) ( )2 ,Iψ φ∇ = ∇⋅ ∇  x x x  (16) 

and 

 ( ) ( ) ( )2 ,Iη φ∇ = ∇ ×∇x x x  (17) 

where we used the identity ( )I Iφ φ∇ × ∇ = ∇ ×∇ . 
Next we examine how this missing rotational term will affect the phase reconstruction. 

When inserting the correct decomposition Eq. (15) into the TIE [Eq. (6)] we obtain the exact 
same equation as Eq. (12) because the rotational term ( )η∇ × x  is divergence free. 
Consequently, the curl-free component of the transverse flux ( )x xj  can be reconstructed by 
solving this Poisson equation. The second Poisson equation, however, is different from Eq. (13), 
obtained by moving the ( )I x  to the RHS of Eq. (15) and then taking the divergence on both 
sides 

 ( ) ( ) ( ) ( ) ( )1 12 .I Iφ ψ η− − ∇ = ∇⋅ ∇ + ∇ ×∇ x x x x x  (18) 

Here we used the identity ( )1 1I Iη η− −∇ ⋅ ∇ × = ∇ ×∇ . Note that with certain (Dirichlet, 
Neumann, or periodic) boundary conditions, the uniqueness (or up to an arbitrary additive 
constant) of the solution for each Poisson equations in this work can be guaranteed. 
Consequently, it means the solutions to Eq. (13) and Eq. (18) are identical if and only if their 
source terms on the RHS are the same. Hence, we get the necessary and sufficient conditions 
for the Paganin and Nugent’s solution [Eq. (14)] being an exact solution for the TIE: 

 ( ) ( )1 0.I η−∇ ×∇ =x x  (19) 

The function ( )η x  depends on both ( )I x  and ( )φ x  as we shown in Eq. (17) and thus can be 
represented by ( ) ( ) ( )2 .Iη φ−= ∇ ∇ ×∇  x x x  Taking it into Eq. (19), we can further rewrite 
the necessary and sufficient conditions as 

 ( ) ( ) ( ){ }1 2 0.I I φ− −∇ ×∇ ∇⋅ ∇ ×∇ =  x x x  (20) 

There are a few special cases with clear physical meanings when the above conditions are 
established. The first two trivial cases are uniform intensity (Teague’s assumption is 
unnecessary) and constant phase (physically trivial). Another interesting special case is that 

( ) ( ) 0I φ∇ ×∇ =x x , which is also the necessary and sufficient conditions for the validity of 
Teague’s assumption [since ( )η x  is defined by Eq. (17)]. This means ( )I∇ x  and ( )φ∇ x  
must be parallel, or equivalently, ( ) ( ) ( )c Iφ∇ = ∇x x x  for some scalar function ( )c x . When 

( )c x  is taken as ( )1Iγ − x  such that ( ) ( )ln Iφ γ∇ = ∇x x , we have ( ) ( )ln Iφ γ=x x . This is an 
equivalent definition of the Lambert–Beer's law of absorption [26] which states there is a 
logarithmic dependence between the transmission of light and the density or path length 
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through the material. Due to the inherent correlation between the intensity and phase, we could 
usually expect ( )I∇ x  and ( )φ∇ x  to be nearly parallel for a typical transmissive object. More 
physical interpretations and examples regarding the validity of Teague’s assumption can be 
found in [17]. However, generally speaking, the condition given by Eq. (20) cannot be satisfied 
for an arbitrary intensity and phase distribution, and therefore the Paganin and Nugent’s method 
would not produce results that adequately match the exact solution of TIE. 

The effects of the phase discrepancy have not yet been recognized as a significant problem 
since previously the TIE was mainly applied for weak absorbing specimens, like optical 
components, biological soft tissues, and cells. For these kind of objects, the phase discrepancy 
is negligible [second term on the RHS of Eq. (18) is close to zero] because the total intensity 
variation is small ( )

( ) 2
0I

I

∇ ≈x

x
, where 

2
⋅ is the normalized L2 norm, defined as 

 ( ) 2

2
.f f d d=  x x x  (21) 

Actually in this case, the TIE can be directly reduced to a classic Poisson equation without the 
need of the Teague’s axillary function 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2

2

1

1

1 .

I
I

z k

I I
k

I
k

φ

φ φ

φ

∂
= − ∇⋅ ∇  ∂

 = − ∇ ⋅∇ + ∇ 

≈ − ∇

x
x x

x x x x

x x

 (22) 

 

Fig. 1. Phase retrieval of a strongly absorbing object (MEMS diaphragm) using the Paganin and 
Nugent’s solution. (a) Phase distribution. (b) Intensity distribution. (c) Phase retrieved by the 
Paganin and Nugent’s solution (d) Phase discrepancy. Scale bar 500 μm 

However, for a strongly absorbing specimen (like a reflective object, whose intensity and 
phase are generally uncorrelated), the effects of the phase discrepancy can be easily observed. 
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Figure 1 shows a realistic example of the error arising from a simulated reflective object (a 
piezo-attenuated circular micro-membrane diaphragm), reconstructed using the Paganin and 
Nugent’s method. The phase and intensity of the object is shown in Figs. 1(a) and 1(b) 
respectively. The minimum value of the intensity is only 0.05 due to the strong absorption of 
the object. The simulation is designed to replicate the real measurement from the data obtained 
by a digital holographic microscope. Figure 1(c) shows the retrieved phase by the Paganin and 
Nugent’s solution. Note the phase recovered by the TIE is continuous without 2π jumps, and 
the phase shown in Fig. 1(c) is digitally rewrapped into the interval [-π, π) for better comparison. 
The phase discrepancy (the difference between the ground truth phase [Fig. 1(a)] with the 
reconstructed phase [Fig. 1(c)] is shown in Fig. 1(d). The relative root-mean-square error 
(RMSE) of the reconstruction is 6.76%. This example obviously indicates that the phase 
discrepancy can be a practical problem when dealing with absorbing objects with use of the 
TIE, which has been generally acknowledged to be quantitative. 

4. Iterative algorithm for phase discrepancy compensation 

We now proceed to develop a simple Picard-type iterative algorithm [27] to compensate the 
phase discrepancy owing to Teague’s assumption. Assuming we have already got an inaccurate 
solution ( )0φ x  by Paganin and Nugent’s method, the Helmholtz decomposition theorem states 
that 

 ( ) ( ) ( ) ( )1
0 0 ,I ψ φ η− ∇ = ∇ + ∇ ×x x x x  (23) 

where 0η  is a vector potential function. Equation (23) suggests that this inaccurate solution 0φ  
is just the scalar potential for the function 1I ψ− ∇ . By properly rearranging Eq. (23), the 
transverse flux associated with this inaccurate phase solution can be written as 

 ( ) ( ) ( ) ( ) ( ) ( )0 1 1
0 0 .k I k Iφ ψ η− −= − ∇ = − ∇ + ∇ ×  x x x x x x xj  (24) 

Compared it with Eq. (15), it is clearly that the second terms on the RHS are different: the term 
( ) ( )0I η∇ ×x x  in Eq. (24) is not divergence free in general. Consequently, it will manifest 

itself by changing the longitudinal intensity during the wave propagation. In simple words, if 
we push this inaccurate solution ( )0φ x  back to the RHS of the TIE, the resultant intensity 
derivative (we call it artificial intensity derivative) will be inconsistent with the real 
measurement. This inconsistency in intensity derivative can be regarded as the error signal 
which must be eliminated in order to obtain an accurate solution to the TIE. As a consequence 
of the linear nature of the TIE, the phase discrepancy can be obtained by solving the TIE once 
again with the error signal as the source term. However, due to the inaccuracy of the TIE 
solution owing to Teague’s assumption, the phase discrepancy usually cannot be eliminated in 
one-step, but can be iteratively removed by repeating this process as a loop: the correction term 

( )0φΔ x  is added back to the previous estimate of the phase for the next round 1 0 0φ φ φ= + Δ . 
The iterative process stops when the RMS of the correction term nφΔ  is below a pre-assigned 
accuracy level ε . The block diagram of the overall algorithm is summarized in Fig. 2. 

To verify the convergence of the proposed method, it is sufficient to prove that the sequence 
of functions nφΔ  converges uniformly to zero. In practice, the rigorous proof of the 
convergence is not possible without some a priori information. Here we will take a conservative 
stance and assume that the Paganin and Nugent’s method is a valid (though not accurate) solver 
for the TIE, which means the phase discrepancy should at least smaller than the exact solution 
in norm: 0 22

,Lφ φ φ− ≤ with constant 1L < . By analogy, we can derive 
1 2 2n nLφ φ φ φ+− ≤ − , which means the phase discrepancy can only decrease at each iteration. 

Besides, since 1 02 2
n

n Lφ φ φ φ+− ≤ − , and 0nL → as n → ∞ , the compensated phase 
function is shown to be a Cauchy sequence and thus it converges to the exact solution. In the 
ideal noise-free condition, the above iterative algorithm usually converges very rapidly and the 
error decreases exponentially with the iterations. Within two to four iterations the phase 
discrepancy can be reduced to a negligible level and the exact solution to the TIE can be thus 
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obtained. However, in a real measurement the correction term can never reach a very low level 
because the noise, finite sampling effect, and the nonlinearity error in the finite difference 
estimation of the axial intensity derivative will introduce additional errors. Thus, in practice, 
the iteration should stop when there is no significant decrease in the RMS of the correction term 

nφΔ  as the iteration number increases. Besides, the maximum iteration number can also be set 
as an additional termination condition to prevent unnecessary ineffective iterations. 

Solve TIE using 
Eq. (14)

0

0n

φ φ=
=

1

1
n n n

n n

φ φ φ+ = + Δ
= +

Solve phase 
discrepancy	࢔ࣘࢤ

using Eq. (14)

( )1 ,n
n

I
I

z k
φ∂  = − ∇ ⋅ ∇ ∂ 

Calculate artificial 
intensity derivative 

Calculate intensity 
derivative discrepancy

,
n n

I I I

z z z

∂ ∂ ∂   Δ = −   ∂ ∂ ∂   

ε>࢔ࣘࢤ

Yes

No

STOP

 

Fig. 2. Block diagram of the iterative compensation method. 

5. Simulation results 

5.1 Smooth wavefront 

Several simulations were performed to test the proposed method. First, we adopted the “counter 
example” suggested in [17] to verify whether the proposed approach can effectively 
compensate the phase discrepancy even with sufficiently large scale. In the simulation, the 
complex field was defined on an 256 × 256 grid with 0.025μm × 0.025μm pixel size. The 
wavelength is 632.8nm (HeNe Laser). The intensity derivative I z∂ ∂  is estimated by central 
finite difference between two defocused images I+  and I−  with the distance of 10zΔ = ± μm 
generated by the angular spectrum numerical propagation. As shown in Fig. 3, the phase and 
intensity functions are defined as 

 ( )2 2
0 0( , ) exp ,I x y a x b y= − −  (25) 

and 

 2 2 8 8
0 0 1 1( , ) ,x y a x b y a x b yφ = − − +  (26) 

where 2 2
0 0 10 μma b − −= =  and 2 8 8

1 2 0.25 10 μma b − − −= = × . The metric RMSE was used to 
quantify phase retrieval accuracy. Since the TIE can only determine the phase uniquely up to 
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an additive constant, the piston term (the mean value) of each result was removed before the 
RMSE evaluation. 

(a) (b)

 

Fig. 3. Simulated intensity and phase distributions. (a) Intensity distribution defined by Eq. (25). 
(b) Phase distribution defined by Eq. (26). 

To illustrated the effects of the Teague’s assumption in the phase reconstruction, the 
Helmholtz decomposition was performed based on the transverse flux field I φ∇  (neglecting 
the constant –k) and the results are shown in Fig. 4. The butterfly-like transverse flux field can 
be decomposed into a gradient field and a rotational field. The Teague’s assumption simply 
neglects the rotational field, which obviously is comparable in norm to the gradient field. As a 
result, a large phase discrepancy (RMSE 9.53%) appeared when the Paganin and Nugent’s 
solution was used [Eq. (14)], as demonstrated in Fig. 5(a). With the proposed compensation 
process after the first iteration, the phase RMSE reduced significantly to around 0.99%, as 
shown in Fig. 5(b). The error was even down to a negligible level - around 0.016% after the 
third iteration, as shown in Figs. 5(c). The evolution of the RMSE values versus the iteration 
times is shown as one-line profile in Fig. 5(d), which clearly illustrates the rapid convergence 
of the proposed approach. 

I φ∇ ψ∇ η∇ ×= +

x

y

Gradient field Rotational fieldTransverse flux field

Teague’s assumption Missing term

 

Fig. 4. Helmholtz decomposition of the transverse flux field. The x and y components of the 
vector fields are shown in the first row and the second row, respectively. 
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Fig. 5. Simulation results of the iterative compensation algorithm for a smooth wavefront. (a) 
Phase error of the Paganin and Nugent’s solution before compensation (RMSE 9.53%). (b) Phase 
error after the first iteration of the compensation (RMSE 0.99%). (c) Phase error after the third 
iteration of the compensation (RMSE 0.016%). (d) One-line profile of the RMSE verse the 
iteration times of the proposed compensation approach. 

In a practical TIE measurement system, noise exists on each captured intensity images. To 
test the performance of the proposed method in the presence of noise, different levels of pseudo-
random Gaussian noise with standard deviations (STD) of 10−5, 10−4, and 10−3 was generated 
and superimposed on each intensity image. In such scenario, the phase error was not only 
resulted from the Teague’s assumption but also from the influence of the noise. For the low-
noise-level case, the underlying saddle-like structure in the phase error of the Paganin and 
Nugent’s solution before compensation can be clearly perceived [Fig. 6(a)]. When our method 
was applied, the majority amount of phase discrepancy could be compensated after three 
iterations, with the residual phase error shown in Fig. 6(b). The iterative process successfully 
removed the large waviness due to the phase discrepancy, leaving only the cloud-like random 
errors [28, 29] from the intensity noise. However, with the increase of the noise level, the noise 
effect became dominant. The initial phase errors were almost submerged by the cloud-like 
artifacts, showing no evident sign of the phase discrepancy (Fig. 7). Their corresponding RMSE 
curves only decreased slightly and could never go down to very small values due to the 
nonnegligible noise. 

To verify whether our method can effectively remove the phase discrepancy in the presence 
of significant noise, we also show the correction term by our method (which is the difference 
between the initial solution and the final refined solution after 4 iterations) in Fig. 7. For the 
medium noise level, the correction term closely resembles the phase discrepancy in the noise-
free case. While for the high noise level, the correction term was distorted and no longer 
matches the noise-free phase discrepancy, which can be expected since the noise has already 
changed the basic structure of intensity distribution fundamentally. These results clearly 
confirm the validity and the effectiveness of the compensation algorithm in the presence of 
noise. 
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(a) (b)

 

Fig. 6. Simulation results of the compensation algorithm with the existence of noise. (a) Phase 
error of the Paganin and Nugent’s solution before compensation (RMSE 10.64%). (b) Phase 
error after three iterations of the compensation (RMSE 1.90%). 
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Fig. 7. RMSE versus iterative number under different levels of noise. The red/green boxes 
outline the raw phase errors, the residual errors after compensation, and the corresponding 
correction terms for the cases of high/medium noise levels, respectively. 

5.2 Complex phase and intensity distribution 

In the previous simulation, the complex field was constructed with very simple and smooth 
mathematical functions. Next, we focus on more complex phase and intensity distributions. We 
consider the complex intensity distribution of letters ‘COLE’ (Fig. 8(a)) and the phase profile 
of letters ‘TIE’ (Fig. 3(b)). The value range of the intensity is [0.05, 1]. For such complex object 
with a lot of high spatial frequency details, the effect of the finite sampling in both spatial (x-y) 
and axial (z) dimensions must be given additional attentions. 
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Fig. 8. Simulation result of complex intensity and phase distribution. (a) Intensity distribution. 
(b) Phase distribution. (c) Phase error of the Paganin and Nugent’s solution before compensation 
(RMSE 15.91%). (d) Phase error after five iterations of the compensation (RMSE 3.66%). 

For the x-y dimension, the Shannon theorem indicates that for the correct acquisition of a 
given 2D signal, the sample frequency must be at least twice as high as the highest signal 
frequency of interest [30]. For the axial direction, the situation is a bit more complicated since 
the axial intensity derivative I z∂ ∂  in TIE is calculated via finite differences from two (or more) 
defocused intensities. When the separation between the two measurement planes was 
sufficiently small ( 10zΔ = ± μm), the effect of the finite sampling was not evident. Figure 8(c) 
shows the phase discrepancy of the Paganin and Nugent’s solution before compensation 
(RMSE 15.91%). After five iterations of compensation, the majority amount of phase 
discrepancy was removed, with the residual phase error shown in Fig. 8(d). However, for 
relatively larger zΔ  (usually required for high signal-to-noise measurements [29, 31, 32]), the 
breakdown of the linear approximation that underlies the finite difference approximation 
induces nonlinear errors, and the estimate I z∂ ∂  does not accurately represent the axial 
intensity derivative. Typically, this results in a loss of resolution of the retrieved phase map. It 
can be clearly seen from Fig. 9 that object edge information (high frequency details) appears in 
the phase error maps when a larger defocus distance is used ( 100zΔ = ±  or 500± μm). When 
our compensation method was applied, phase discrepancies were effectively compensated, 
leaving only the edge error resulting from the nonlinearity errors. In all the three cases, the 
compensation procedure converges after 4 to 5 iterations and does not show significant 
improvement with more subsequent iterations. These results verify the stability of our algorithm 
under large defocus distances and nonlinearity errors. 
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Fig. 9. RMSE versus iterative number with different defocus distance. The red/green boxes 
outlines the raw phase errors, the residual errors after compensation, and the correction terms 
for the cases of medium /large defocus distance, respectively. 

5.3 A realistic example and some practical considerations 

Finally, let us turn to the realistic MEMS sample shown in Fig. 1. The value range of the 
intensity is [0.05, 1] and the RMSE of the Paganin and Nugent’s solution before compensation 
is 6.76%. Once again, our approach converges to the exact solution (blue curve) with very small 
residual error (RMSE 0.119%), and the final compensated phase closely matches the ground-
truth image (Fig. 10). 
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Fig. 10. RMSE versus iterative number for a realistic MEMS example. When the value range of 
the intensity is [0.05, 1], our approach can converge to the exact solution (blue curve). When the 
minimum intensity is close to zero (0.001), the iterative process will diverge (red curve). This 
problem can be addressed by setting an intensity threshold (green curve). 

Before concluding, several important issues in the practice of our approach need to be 
clarified. Although no rigorous proof of convergence of our approach has been devised, the 
process did converge in all above cases. This seems reasonable because the iterative process is 
essentially self-correcting. In the presence of noise and nonlinearity error, our algorithm 
effectively extracts and removes the phase discrepancy without noticeable disturbance by other 
types of errors. However, as we mentioned at the end of Section 4, the stability and convergence 
of our method depend heavily on the accuracy of the Paganin and Nugent’s solution. Since the 
intensity I  appears in the denominator [Eq. (14)], the Paganin and Nugent’s solution becomes 
quite unstable when the minimum intensity is close to zero. Therefore, caution is required when 
very small values appear in the intensity distribution. On the other hand, these small intensity 
values also increase the phase discrepancy accordingly since the total intensity variation ( )

( ) 2

I

I

∇ x

x
 

can become much larger. For example, if we rescale the intensity range of the MEMS sample 

#211877 - $15.00 USD Received 12 May 2014; revised 23 Jun 2014; accepted 23 Jun 2014; published 7 Jul 2014
(C) 2014 OSA 14 July 2014 | Vol. 22,  No. 14 | DOI:10.1364/OE.22.017172 | OPTICS EXPRESS  17185



to [0.001, 1], the iterative process will be out of control after two iterations (red curve). The 
singular point creates significant artifacts that degrade the whole phase reconstruction 
prevailingly. In this limiting case, we should avoid dividing too small values to guarantee the 
stability of solution by setting a certain intensity threshold (e.g. 1% of the maximum value of 
I ) when evaluating the term in the square brackets in Eq. (14). When the intensity threshold 
(0.01) is used, our method becomes convergent again and finally reaches a reasonable accuracy 
(RMSE 2.02%). 

5. Conclusions 

To conclude, this work has presented the theoretical analysis of the phase discrepancy in the 
most widely applied FFT-based solution of the TIE owing to the Teague’s assumption. The 
necessary and sufficient conditions for the solution to coincide with the exact phase have been 
derived. We also have proposed a simple and novel iterative algorithm to compensate the phase 
discrepancy due to the Teague’s assumption when such conditions cannot be satisfied for a 
general object. Several numerical results have been presented showing the effectiveness of the 
proposed algorithm. 

A clear advantage of the proposed method resides in the very rapid convergence of the 
iterative phase corrections. The phase error drops exponentially with iterations and shows no 
sign of stagnation for a wide variety of test cases. Moreover, the convergence is insensitive to 
the intensity noise and the separation between the input image planes. Probably the most 
limiting characteristic of the method is its instability to the intensity singularity, a feature 
inherited from the FFT-based TIE solvers. This problem can be countered by setting a certain 
intensity threshold. Since generally only 2 to 4 iterations are sufficient to compensate most 
phase discrepancy and thanks to the efficient FFT-based operations, the iterative nature of our 
method does not preclude its application to high-speed, real-time phase imaging. It should be 
noted that although the phase discrepancy problem can be avoided by using some other TIE 
solvers that do not involve the use of Teague’s assumption, like the multigrid method [14, 33], 
our approach can be still considered as an attractive solution for its better spatial resolution 
(FFT-based solvers do not use finite difference to approximate the spatial derivatives) [34], 
simplified treatment for boundary conditions [15], and easy implementation. 
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