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Adaptive Structured-Light 3D Surface Imaging with
Cross-Domain Learning

Xinsheng Li, Shijie Feng,* Wenwu Chen, Ziheng Jin, Qian Chen,* and Chao Zuo*

The rapid development of artificial intelligence (AI) technology is leading a
paradigm shift in optical metrology, from physics- and knowledge-based
modeling to data-driven learning. In particular, the integration of
structured-light techniques with deep learning has garnered widespread
attention and achieved significant success due to its capability to enable
single-frame, high-speed, and high-accuracy 3D surface imaging. However,
most algorithms based on deep neural networks (DNNs) face a critical
challenge: they assume the training and test data are independent and
identically distributed, leading to performance degradation when applied
across different image domains, especially when test images are acquired from
unseen systems and environments. A cross-domain learning framework for
adaptive structured-light 3D imaging is proposed to address this challenge.
This framework’s adaptability is enhanced by a novel mixture-of-experts
(MoE) architecture, capable of dynamically synthesizing a network by
integrating contributions from multiple expert DNNs. Experimental results
demonstrate the method exhibits superior generalization performance across
diverse systems and environments over both “specialist” DNNs developed for
fixed domains and “generalist” DNNs trained by brute-force approaches. This
work offers fresh insights into substantially enhancing the generalization of
deep-learning-based structured-light 3D imaging and advances the
development of versatile, robust AI-driven optical metrology techniques.

1. Introduction

“If you can’t measure it, you can’t make it” expresses the great
significance of metrology in our world.[1] As a representative op-
tical metrology technique, structured-light 3D surface imaging
is a powerful and versatile tool for acquiring 3D shapes, distin-
guished by its non-contact interaction with measured objects,
as well as its high-speed and high-resolution data acquisition
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capabilities.[2–7] In structured-light 3D
imaging, sinusoidal patterns are typically
used to encode illumination for high-
precision 3D measurements.[8–14] By de-
modulating the phase information from
the captured images and relating it to 3D
coordinates, high-accuracy surface infor-
mation is extracted.
In the past few years, deep learn-

ing technology has brought groundbreak-
ing progress in many fields,[15–19] such
as natural language processing, com-
puter vision, and biomedical research.
In structured-light 3D surface imaging,
we have observed many successful appli-
cations leveraging artificial intelligence
(AI).[20] For fringe analysis, deep neu-
ral networks (DNNs) have been trained
to demodulate high-precision phase in-
formation from a single fringe image[21]

and also been applied to extracting
phase from non-sinusoidal fringes.[22]

For fringe denoising, researchers trained
DNNs to remove speckle noise and im-
proved the signal-to-noise ratio (SNR)
of captured fringe.[23] For phase un-
wrapping, deep learning techniques have
been proposed to improve the reliability

of phase unwrapping, enabling novel strategies for both spatial
and temporal phase unwrapping.[24,25] For high-speed 3D recon-
struction, DNNs have been carefully designed to demodulate 3D
shapes from a single fringe image generated by techniques such
as spatial frequency multi-plexing[26], epipolar geometry,[27] and
color channel multiplexing.[28]

Although deep learning methods have shown great potential
for the above applications, they are not trouble-free. As opposed
to traditional algorithms based on mathematical and physical
models, deep learning techniques are essentially driven by data
and therefore their performance largely relies on the quality of
captured data. So, the generalization capability of DNN, that is
whether DNN models trained on a certain amount of data still
perform well on other unseen data, has always been a crucial
issue. To enhance DNN’s generalization capability, researchers
usually collect as many types of samples as possible during the
training process for reducing the possibility of DNN facing out-
of-distribution (OOD) test data. To enhance the generalization
capability of DNN in fringe analysis, ensemble deep learning
has been introduced, where DNNs of different architectures are
used to capture different features of the same test object and the
phase is predicted by combining the contributions of all these
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Figure 1. Structured-light 3D imaging using cross-domain learning with enhanced generalization. a) Schematic of structured-light 3D imaging using
fringe projection. b) Our method expands the adaption range of illumination, imaging, and environmental attributes, thereby improving the general-
ization capability of deep learning model for unseen systems and environments. c) Expert DNN learns to extract features of fringe images through
self-supervised learning by using a denoising autoencoder framework.

DNNs.[29] To collect a large amount of data, a digital twin of a
real-world structured-light system can be built by 3D computer
graphics software (e.g., Blender[30]), which can generate various
realistic simulation data efficiently and improves the DNN’s abil-
ity to handle different types of objects.[31,32] In addition, in lens-
less imaging[33] and computational ghost imaging,[34] techniques
such as data augmentation and numerical simulations have also
been proposed to increase the diversity of data. Furthermore,
Bayesian neural networks (BNNs) are employed to quantify pre-
diction uncertainty, enabling the deep learning model to identify
OOD data and provide reliable predictions.[35,36]

Although these methods improve the generalization of DNN
to some extent, they have not yet solved the generalizability prob-
lem fundamentally. All of these methods rely on a fundamen-
tal assumption that the training data and the testing data are
independent and identically distributed (i.i.d), which indicates
the test data and training data are supposed to be collected un-
der the same system and the environment. When the system
and the environment is different, the distribution of collected
data can change significantly even if measured objects remain
unchanged. Therefore, most DNNs compromise when they are
cross-utilized between different systems and imaging environ-
ments. Moreover, due to the constraints imposed by this assump-
tion it’s often required to collect a large amount of new data and
retrain DNNs from scratch every time the system or the environ-
ment changes, resulting in a huge cost of time and labor. There-
fore, how to enable DNNs to be cross-utilized in different domains
remains a big challenge.
Inspired by recent successful applications of dynamic neural

networks,[37] for the first time, we propose an adaptive cross-
domain learning (CDL) framework for generalized structured-
light 3D surface imaging. The adaptability is achieved by a new
mixture-of-experts (MoE) architecture that consists of a set of ex-
pert DNNs that performs feature extraction for fringe images

from different domains and a gating neural network that controls
synthesis of these expert DNNs dynamically. Our approach can
adaptively and dynamically fuse different experts DNNs, estab-
lishing a customized way for analyzing various structured-light
fringe images. Experimental results show that our method ex-
hibits excellent generalization for both in-distribution (ID) and
OOD scenarios. For ID scenes where the system and the imag-
ing conditions are unchanged, the 3D measurement accuracy of
unseen objects exceeds traditional DNNs thanks to more infor-
mation acquired by the collaborations of multiple experts DNNs.
For OOD scenarios, where structured-light systems and envi-
ronments are changed, such as the spatial frequency of pro-
jected fringes, the system’s working distance, the ambient light
and so on, robust and high-accuracy 3D measurements can be
achieved with our CDL framework. The presented approach pro-
vides a novel and flexible solution for adaptive structured-light
3D imaging.

2. Theory

2.1. Principles of Structured-Light 3D Imaging

A typical structured-light 3D imaging system using fringe projec-
tion is shown in Figure 1a, where a projector projects a sinusoidal
structured-light image onto the measured object and a camera
captures the pattern from a different angle. Due to the modula-
tion by the object’s shape, a deformed fringe pattern can be cap-
tured. The projected sinusoidal fringe pattern can be written as

Ip(x, y) = Ap(x, y) + Bp(x, y) cos(2𝜋fx) (1)

where Ap represents the background intensity, Bp the amplitude,
and f the spatial frequency of the sinusoidal pattern. As shown
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in Figure 1a, we assume that the baseline connecting the optical
center of the camera and that of the projector is parallel to the
reference plane. On the reference plane, we set up a world coor-
dinate system whose origin is the intersection of the optical axis
of the camera and that of the projector. The measured point is
P(x, y, z) and its captured intensity can be expressed as [38]:

Ic = r

{
Ap + Bp cos

[
2𝜋 cos 𝜃0

dp

(
x −

2x2 sin 𝜃0
Lp

)

−
2𝜋z sin 𝜃0

dp

(
1 −

2x sin 𝜃0
Lp

)]
+ 𝛽1

}
+ 𝛽2

(2)

For brevity, we omit the pixel coordinate (x, y). In Equation (2),
𝜃0 is the angle between the optical axis of the camera and that
of the projector, Lp the distance between the projector center and
the origin O, r the reflectivity of the object, dp the fringe pitch,
𝛽1 the ambient light reflected by the object, and 𝛽2 the ambient
light directly entering the camera. Details of derivation of Equa-
tion (2) can be found in the Section S2 (Supporting Information).
Equation (2) can be simplified as

Ic = A′ + B′ cos [2𝜋v(x)(x − z tan 𝜃0)] = A′ + B′ cos𝜙 (3)

where A′ = rAp + r𝛽1 + 𝛽2 represents the background intensity
of the captured pattern, B′ = rBp the fringe amplitude, and 𝜈(x)
the local frequency of the fringe pattern at the measured surface.
𝜙 is the phase to be measured and it can be calculated as

𝜙 = arctan
𝛼B′ sin𝜙
𝛼B′ cos𝜙

= arctan M
D

(4)

where 𝛼 is a constant dependent on the phase demodulation al-
gorithm (e.g., 𝛼 = 0.5 in FTP and 𝛼 = N∕2 in N-step PS algo-
rithms). Using deep learning techniques, a DNN can be trained
to predict M and D, which are then fed into an arctangent
function to calculate the phase.[21] By converting the phase into
height,[39] we can reconstruct the 3D surface of the measured ob-
ject.

2.2. Structured-Light 3D Imaging with Various Systems and
Environments

According to Equation (3), we can see that the phase 𝜙 depends
not only on the height z but also on the local frequency 𝜈(x) and
the angle 𝜃0. Therefore, the phase will change for different sys-
tems with varying 𝜈(x) and 𝜃0 even if the object is unchanged.
Next, we further analyze the local frequency 𝜈(x). Based on Equa-
tions (2) and (3), and dp = mp

/
f (where mp is the magnification

factor of the projection system), 𝜈(x) can be represented as

v(x) = f
cos 𝜃0
mp

(
1 − 2x

Lp
sin 𝜃0

)
= f

cos 𝜃0
mp

(
1 −

x sin 2𝜃0
Lk

)
(5)

According to Equation (5), we find that: (1) there is a linear rela-
tionship between the frequency f of the projected pattern and the
local frequency 𝜈(x); (2) the local frequency 𝜈(x) exhibits a non-
linear relationship with the angle 𝜃0; (3) assume that the relative

position between the camera and the projector remains constant,
the variation of Lk can cause varying 𝜃0 and mp. As a result, the
local frequency 𝜈(x) will be changed. Thus, we can see that for
different measurement systems, changes in frequency f , angle
𝜃0, and working distance Lk can cause variations in the grating’s
local frequency 𝜈(x).
In addition to the measurement system, the phase calculation

is often influenced by various environments. The effects of the
environment on 3D imaging mainly stem from vibrations and
ambient light. Assuming that the phase is calculated with a sin-
gle fringe pattern, we ignore the effect of vibrations in the envi-
ronment. So, we focus on the effect of ambient light on phase
measurement. According to Equation (3), the ambient light can
cause variations in the intensity of the captured grating. To an-
alyze its effect, we define the contrast of the captured grating as

c′ = B′

A′ =
rBp

rAp + r𝛽1 + 𝛽2
(6)

where c′ characterize the SNR of the captured grating. For differ-
ent measurement environments, the ambient light are usually
different. According to Equation (6), when the ambient light (𝛽1
and 𝛽2) changes, the contrast c

′ of the captured fringe will change
accordingly, resulting in changes of SNR of the captured grating.
Assume the contrast of the projected grating is c = Bp∕Ap and
substitute it into Equation (6), we have

c′ = rAp

rAp + r𝛽1 + 𝛽2
c (7)

According to Equation (7), we find that c′ can also be modulated
by the contrast c of the projected grating.
Based on the above analysis, the frequency of the projected

pattern, the angle between the optical axes of the camera and
projector, the working distance, and the ambient light condi-
tions all vary across different measurement systems and envi-
ronments. These variations result in diverse local frequency and
intensity distributions in the captured images, which can affect
phase computation and 3D reconstruction. Consequently, when
a DNN is trained only on images from a specific system and en-
vironment, it struggles to accurately compute phase and 3D co-
ordinates for images obtained from other unseen systems and
environments.

2.3. Development of the Cross-Domain Learning Framework

To adapt a deep learning model to different systems and envi-
ronments, we develop an adaptive CDL 3D imaging framework.
As shown in Figure 1b, our framework can expand the adaption
range of illumination, imaging, and environmental attributes,
thus improving the generalization capability for unseen systems
and environments. For cross-domain learning, a deep learning
model should be exposed to diverse systems and environments
during training. Instead of varying parameters such as f , 𝜃0, and
Lk for each system, which can be time- and labor-intensive, we
propose an efficient training data acquisition strategy that en-
ables us to quickly obtain corresponding fringe images across
different systems and environments. Specifically, we observe that
changes in the projected pattern’s frequency f in a fixed system
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Figure 2. Schematic of our adaptive cross-domain learning framework. It is a hierarchical deep learning framework that generates adaptive behavior by
combiningmultiple DNNs together to produce versatile predictions. The gating neural network (GNN) generates variable weights to fuse the parameters
of all expert DNNs such that newly captured fringe patterns are analyzed by dynamically synthesized DNN. The input is an unseen fringe image and the
output areM andD that can be fed into the arctangent function to calculate the phase of input pattern. The framework can adapt to unseen illumination,
imaging, and ambient light conditions owing to the advantage of blending useful learned features collectively from the consortium of experts.

can effectively approximate the effects of modifying 𝜃0 and Lk, as
described by Equation (5). This allows for the simulation of sys-
tem variations by adjusting f . Regarding the measurement envi-
ronment, the impact of varying ambient light is captured by ad-
justing the contrast c of the projected pattern, according to Equa-
tion (7), providing a more efficient alternative to directly altering
the ambient lighting conditions. Our framework consists of mul-
tiple expert DNNs, which can be used to dynamically synthesize
a new DNN through a gating neural network (GNN) to perform
the fringe analysis task.
As shown in Figure 1c, the expert DNN is designed carefully

to handle grating images with frequency f and fringe contrast
c. Assuming the frequency candidates of projected fringes are
f = {f1, f2,… , fn} and the contrast candidates of projected fringes
are c = {c1, c2,… , cn}, we have expert DNN En to learn to process
fringe patterns I

(
fn, c

)
with a specific frequency fn and a sets

of contrast c, where n = 1, 2, 3,…. By modifying the structure
of Res-UNet,[40] we develop the architecture of expert DNN. It
consists of a fully convolutional neural network with an encoder-
decoder structure, where each encoder and decoder is composed
of four convolutional blocks. To avoid challenges of acquiring a
large training dataset and the significant human labor and time
costs associated with labeling, inspired by the idea of denois-
ing autoencoders as in ref. [41], we propose a self-supervised
pre-training method for expert DNN based on denoising autoen-
coders. As shown in Figure 1c, the input of the expert DNN is
fringe images with additional noise added, and its output is the
original fringe image without any noise. By training the network
to remove the noise from input fringe images, the network can
learn how to extract features of the fringe patterns. The training
process does not require any training labels, thereby avoiding la-
bor and time costs. More details on the structure of the expert
DNN and its training strategy are provided in Section S3 (Sup-
porting Information).

The schematic of our adaptive CDL framework is shown in
Figure 2. This framework employs a hierarchical deep learning
approach that combines multiple DNNs to generate adaptive be-
haviors and produce versatile predictions. A GNN dynamically
assigns variable weights to integrate the parameters of all expert
DNNs, enabling the analysis of newly captured fringe patterns by
a synthesized DNN. The model takes an unseen fringe image as
input, with the outputs beingM andD, which are fed into the arc-
tangent function to calculate the phase of the input pattern (Equa-
tion 4). The framework is capable of adapting to varying illumina-
tion, imaging, and ambient light conditions by effectively merg-
ing the useful learned features from the consortium of expert net-
works. The GNN is developed by modifying the architecture of
VGG.[42] It comprises convolutional layers and pooling layers or-
ganized into a total of five convolution blocks. The feature maps
from the final convolution block are flattened and passed through
fully connected layers to generate weights for allocating to the ex-
pert DNNs. More details on the structure of GNN are provided in
Section S4 (Supporting Information). The GNN analyzes and ex-
tracts features from the input fringe pattern to compute weights
for each expert DNN. By adjusting the weights, GNN controls the
collaboration among the expert DNNs. The fusion process of the
parameters of expert DNNs can be expressed as

PCDL =
n∑
i=1

wiPi (8)

where Pi represents the parameters of expert DNN Ei and PCDL
the parameters of the dynamically synthesized network. The sum
of all weights is 1, i.e.,

∑n
i=1 wi = 1. It is noteworthy that since the

task of the expert DNN during pre-training is the self-supervised
denoising, we retain the encoder parameters of each expert DNN
and discard their decoder parameters during the training process
of the whole CDL framework.

Laser Photonics Rev. 2025, 2401609 © 2025 Wiley-VCH GmbH2401609 (4 of 14)
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To further enhance the generalization capability, we incorpo-
rate the process of Fourier transform into the loss function and
propose a loss function that takes advantage of consistencies in
both spatial domain and frequency domain. So, the loss function
of this work is expressed as

Lloss = 𝜆1LSpat + 𝜆2LFreq (9)

where 𝜆1 and 𝜆2 are the weights of LSpat and LFreq respectively. LSpat
is the loss function that imposes consistency in spatial domain,
which ensures thatM andD predicted by our model remain con-
sistent with the label in terms of spatial intensity distribution.
The calculation of LSpat is given by

LSpat =
∑k

i=1 (ypred − ytrue)
2

k
(10)

where ypred represents a pair of M and D predicted by the CDL
framework, while ytrue denotes their ground truth and k is the total
number of pixels in the image. Then, LFreq is the Fourier-domain
loss (FL) function, which constrains the predicted results to be
consistent with the label in the frequency domain. The expres-
sion of LFreq is

LFreq =
∑k

i=1 | (ypred) −  (ytrue)|
k

(11)

where  represents the discrete Fourier transform. An ablation
study of LFreq is presented in Supporting Information, demon-
strating the contribution of FL. This hybrid loss function of
this work leverages the generalization capability of the phys-
ical model, thereby further enhancing the adaptability of our
CDL framework for fringe images collected fromunseen systems
and environments.

3. Experiments

To validate the effectiveness of our method, we constructed a
fringe projection system. To collect the training data, fringe im-
ages of various objects with different system parameters and en-
vironment were captured. The captured fringe patterns are 8-
bit gray-scale images. In the data preprocessing stage, the input
fringe pattern was divided by 255 for normalization before being
fed into the DNNs. All models were implemented by the Ten-
sorflow and computed on a graphic card (GTX 4090, NVIDIA).
Section S1 (Supporting Information) provides further details on
our system.

3.1. Training of the Proposed CDL Framework

In our experiments, a CDL framework with three expert DNNs
was developed for the validation of our method. To train the ex-
pert DNNs, candidate frequencies are f = {24, 64, 128} and can-
didate contrast c = {0.5, 1}. For the purpose of controlling vari-
ables, we altered the contrast c by changing the amplitude Bp

of the projection grating, while keeping the background inten-
sity Ap constant. Expert DNN E1 was trained to handle fringe

images of f1 = 24 with c1 = 0.5 and c2 = 1, i.e., fringe images
with the same frequency but two types of contrast. Similarly,
experts DNNs E2 and E3 were trained to handle fringe images
of frequencies of f2 = 64 and f3 = 128 with these contrast, re-
spectively. These fringe images were captured when the angle
between the axes of the camera and the projector is 𝜃0 = 15◦,
the system working distance Lk = 1m, and no ambient light
presents.
First, we pre-trained the three expert DNNs. For each expert,

the training dataset contained 450 actual fringe images (involv-
ing 450 different scenes), and the test dataset contained 150
fringe images (involving 150 different scenes). Subsequently, we
employed the self-supervised learning method described in Sec-
tion 2 to pre-train each expert DNN. After pre-training, we estab-
lished the CDL framework. Since the expert DNNs had acquired
certain prior knowledge after pre-training while the GNN hasn’t
been trained, we carried out a warm-up training process for GNN
to prevent overfitting. In the first 50 epochs, we only updated
the weights of the GNN and frozen those of expert DNNs. After
50 epochs, parameters of both GNN and expert DNNs were up-
dated simultaneously. The warm-up training process allows for
a deep integration between GNN and expert DNNs to achieve
better collaborative performance. The weights 𝜆1 and 𝜆2 in the
loss function Lloss were set to 1 and 0.1, respectively, during the
training process. We trained the CDL framework with the learn-
ing rate at 1e-4 by 150 epochs. In addition, when we trained the
CDL framework, we utilized data augmentation to expand the
training dataset to three times its original size. Details about data
augmentation and its ablation study are provided in Section S5
(Supporting Information).
For comparison, we also developed a baseline DNN and a

generalist DNN. The baseline DNN had the same structure as
the expert DNN. During training, the baseline DNN only saw
fringe images collected from a specific system or environment.
As for the generalist DNN, it also shared the same structure
as the expert DNN. However, during training it was exposed
to all of the fringe images captured by various systems and
environments.

3.2. 3D Imaging with Seen Systems and Environments

First, we tested ourmethod by using three seen domains, namely
Ic(f1 = 24, c1 = 0.5), Ic(f2 = 64, c2 = 1) and Ic(f3 = 128, c2 = 1). We
used the 12-step phase-shifting method to calculate the ground-
truth (GT) phase, and assessed the results by computing the av-
erage phase error. For the baseline DNN, the fringe images used
for training and testing were from the same domain, i.e., with
the same system and environmental parameters. For the gener-
alist DNN, it was exposed to images from these three domains
simultaneously during both training and testing processes. The
experimental results are presented in Figure 3. According to the
mean absolute error (MAE) of the retrieved phase as shown in
Figure 3a, it can be observed that our framework, the general-
ist DNN, and the baseline DNN all achieved high accuracy in
phase measurement for these fringe images with different fre-
quencies and contrast. By comparison, our CDL framework ex-
hibited higher precision in phase measurement for reconstruct-
ing objects’ edges and fine details. Figure 3b illustrates the 3D

Laser Photonics Rev. 2025, 2401609 © 2025 Wiley-VCH GmbH2401609 (5 of 14)
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Figure 3. Experimental results on 3D imaging with fringe images obtained from seen systems and environments. Panel (a) displays the distribution of
phase errors, where the first row to the third row correspond to the cases of Ic (f1 = 24, c1 = 0.5), Ic (f2 = 64, c2 = 1) and Ic (f3 = 128, c2 = 1). It is noted
that these objects are not seen during training. Panel (b) illustrates the 3D reconstructions obtained by the 12-step phase-shifting method (ground
truth), our CDL framework, the baseline DNN, and the generalist DNN for the fringe image Ic (f3 = 128, c2 = 1). Panel (c) presents the comparison of
3D reconstructions of two ROIs. Panel (d) compares the cross-sectional 3D profile calculated by these methods for the two ROIs.
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Table 1. Phase MAE for the CDL framework, the baseline model, and the
generalist model for several seen systems and environments.

Domains f1 = 24 f2 = 64 f3 = 128

c1 = 0.5 c2 = 1 c1 = 0.5 c2 = 1 c1 = 0.5 c2 = 1

Baseline model 0.086 0.048 0.067 0.044 0.069 0.047

Generalist 0.075 0.040 0.059 0.035 0.068 0.041

Our CDL 0.065 0.037 0.054 0.034 0.060 0.040

reconstructions of the object in the third row of Figure 3a. For
comparison, we selected two regions of interest (ROIs) with rich
details, and their 3D reconstruction results and cross-sectional
views are shown in Figures 3c,d, respectively. We can see that for
smooth areas these three 3D reconstructions are very close to the
GT 3D model. However, for areas with depth changes, the pro-
posed framework demonstrates higher accuracy compared to the
baseline DNN and the generalist DNN.
Next, we expanded the testing scenario to include 150 dif-

ferent scenes and enlarged the range of seen domains to six
kinds of fringe patterns. The results are shown in Table 1. For
the baseline DNN, it performed well with these different types
of fringe images as the system and environment remained un-
changed. For the generalist DNN, we observed that its perfor-
mance was superior to the baseline DNN, indicating that the gen-
eralist DNN has learned features of fringe images in different do-
mains. Compared to the baseline DNN and the generalist DNN,
our CDL framework demonstrated smaller phase measurement
errors for all these fringe images with different frequencies and
contrast. This suggests that our framework can dynamically gen-
erate DNNs that are more suitable for handling different fringes
through combining contributions from different expert DNNs,
leading to further reducedmeasurement errors. This experiment
demonstrates that our framework can not only enhance phase ac-
curacy for seen systems and environments but also this strategy
is superior to the brute-force method of feeding all data to the
neural network all at once.

3.3. 3D Imaging with Unseen Systems and Environments

In this experiment, we tested the proposed method by using dif-
ferent systems and environments. Specifically, we changed the
spatial frequency, the fringe contrast, the angle between the pro-
jector axis and camera axis, the working distance, and ambient
light intensity. For each case, 150 scenes were tested and theMAE
was calculated over all these scenes.
Firstly, we tested our method using fringe patterns with un-

seen frequencies f = {30, 48, 72, 96, 120}. The results are shown
in Figure 4a. The baseline DNN, trained with f = 72, had the low-
est error at this frequency (0.066 rad) but showed increased er-
rors as the frequency deviated from 72. In contrast, the generalist
DNN performed better across unseen frequencies, with reduced
errors compared to the baseline DNN. Notably, the CDL frame-
work achieved the minimum error at f = 72 (0.052 rad) and out-
performed other methods at low frequencies (e.g., f = 30 with
error 0.064 rad), as shown in Figure 4a. Moreover, we further
tested fringe frequencies outside the range seen by expert DNNs.
Figure 4b,c shows the performance of our framework for f < 24
and f > 128, respectively. The baseline DNN exhibited large er-
rors and thus is not shown. We can see that the performance
trends of the CDL framework and the generalist DNN were sim-
ilar, with both showing increased errors as the frequencies devi-
ated from the seen range. Specifically, errors increased sharply
for frequencies below 12 and above 170, as shown in Figure 4b,c.
However, the CDL framework consistently maintained lower er-
rors than the generalist DNN, demonstrating better generaliza-
tion for different fringe patterns of unseen frequencies.
For different systems, the fringe contrast, the angle between

the camera optical axis and the projector optical axis, and the
working distance are usually not the same. Therefore, we also
tested the proposed framework under these varying conditions.
In the first case, for different fringe contrasts, the trained
contrasts were c1 = 0.5 and c2 = 1, while the test contrasts
were c = {0.6, 0.7, 0.75, 0.8, 0.9}. The baseline DNN was trained
with c = 0.75. In the second case, for different angles between
the optical axis, the training angle was 𝜃0 = 15◦ for the CDL

Figure 4. The phase error distribution of the CDL framework for unseen systems and environments. a) Unseen spatial frequency (interpolation). b)
Unseen lower frequency (extrapolation). c) Unseen higher frequency (extrapolation). d) Unseen fringe contrast. e) Unseen angles between the optical
axes of the projector and the camera. f) Unseen working distances. g) Unseen ambient light intensity.

Laser Photonics Rev. 2025, 2401609 © 2025 Wiley-VCH GmbH2401609 (7 of 14)
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framework and the generalist DNN, and 𝜃0 = 20◦ for the base-
line DNN. Testing angles were 𝜃0 = {5◦, 10◦, 20◦, 25◦, 30◦}. In
the third case, for varying working distances, training distances
were Lk = 1m for the CDL framework and the generalist DNN,
and Lk = 0.8m for the baseline DNN. Testing distances were
Lk = {0.2, 0.5, 0.8, 1.2, 1.5}. The results for these three cases are
shown in Figure 4d–f. The baseline DNN performs well within
the trained conditions, such as at the contrast of c = 0.75, the
angle of 𝜃0 = 15◦ and the working distance of 0.8 m, but exhibits
a rapid increase in errors as the conditions diverge from the
training set (Figure 4d–f). The generalist DNN shows better
generalization than the baseline DNN, but still struggles as the
contrast, the angle, and the distance deviate from those seen
during training. In contrast, the CDL framework consistently
outperforms both the baseline DNN and the generalist DNN,
with smaller errors under these conditions.
Finally, we tested performance of our method under varying

ambient light (AL) conditions. We placed an adjustable light
source next to the measurement system to control ambient light-
ing (JINBEI EFl-200). Training data were collected without ambi-
ent light for the CDL framework and the generalist DNN, and at
AL = 4% for the baseline DNN. Figure 4g shows that the base-
line DNN had the smallest error at AL = 4%, but errors increased
rapidly with higher AL. The generalist DNN performed similarly
to the baseline DNN at AL = 12% and slightly better otherwise.
The CDL framework demonstrates the smallest errors, with a
maximum of 0.077 rad at AL = 20%.
For amore intuitive comparison, we compared the phase error

maps and 3D reconstructions in Figure 5. In Figure 5a, the first
to the fourth rows show the fringe images captured with unseen
frequency f , contrast c, angle 𝜃0, and ambient light, respectively.
For the unseen frequency f = 96, the baselineDNN shows a large
phase error of 0.27 rad. Although the generalist DNN partially
suppressed the error, it is still relatively large (0.11 rad). In com-
parison, our CDL framework achieved the smallest error which is
only 0.061 rad. Regarding the unseen contrast c = 0.8, the base-
line DNN demonstrates some degree of generalization but still
has an phase error of 0.11 rad. In contrast, our CDL framework
achieved the smallest error of 0.08 rad. Next, for the unseen angle
𝜃0 = 5◦, the baseline DNN shows a large phase error of 0.1 rad.
The generalist DNN reduced the error to 0.094 rad. In contrast,
the CDL framework demonstrates the smallest error of 0.079
rad. For the unseen ambient light AL = 8%, all these networks
show adaptability to the captured fringe image, where the CDL
framework demonstrates the best generalization capability and
the smallest measurement error of 0.068 rad.
We then converted the phase of the first scene shown in

Figure 5a into 3D reconstructions and the results are shown in
Figure 5b.We find that the baseline DNN and the generalist DNN
show significant ripple errors in the facial and neck regions of the
reconstructed statue. For our method, however, these areas have
been recovered smoothly, indicating that our framework is not
sensitive to fringe patterns of unseen frequency. To further ana-
lyze the 3D reconstructions, we selected two ROIs, and the 3D re-
constructions and cross-sectional views are shown in Figure 5c,d
respectively. We can observe severe reconstruction errors in the
eyes and the neck from the 3D results of the baseline DNN and
the generalist DNN. In contrast, our CDL framework overcame
the errors caused by unseen frequencies and accurately recon-

structed the 3D shape of the statue’s face. The 3D reconstruc-
tion of our CDL framework is comparable to the ground-truth
3D model that was measured by 12-step PS algorithm.
Moreover, to further investigate the performance of our net-

work in complex imaging environments, we introduced two light
sources to illuminate a measured industrial workpiece from
both sides. As shown in Figure 6d, both light sources alter-
nated flashing synchronously with a 200 ms interval, and the
camera captured the workpiece at different moments. Therefore,
in this case, the camera captured the measurement object un-
der three different ambient lighting conditions: left-side ambi-
ent light, right-side ambient light, and ambient light from both
sides simultaneously. The fringe frequency used for testing was
f = 128, and the ambient light intensity was set to AL = 8%.
Figure 6a–c display the fringe images, phase errors, and 3D re-
construction results under these scenarios. It can be seen that
our CDL framework maintains stable phase measurement ac-
curacy and 3D measurement results in these complex imaging
environments. Figure 6e presents cross-sectional curves of ROIs
of reconstructed 3D models. The generalist DNN shows signif-
icant error fluctuations when facing complex ambient lighting
conditions, while the CDL framework’s results are consistently
close to the ground truth. These results highlight the adaptability
and stability of our CDL framework in handling complex imaging
environments.

3.4. Dynamic 3D Reconstructions Using CDL Framework

3.4.1. Rotating Fan Blades

We further tested the performance of the proposed method for
dynamic 3Dmeasurements. The test object is a fan and its speed
is adjustable. The frequencies used for training our CDL frame-
work were still f = {24, 64, 128}, while the baseline DNN was
trained on fringe patterns with a frequency of f = 128. Dur-
ing the testing process, three unseen frequencies of projected
patterns are f = {110, 115, 120}, which correspond to different
speeds V = {425, 400, 375} rotations per minute (RPM) of the
fan. Figure 7a shows the fringe images of the fan of different
frequencies collected at T = {10, 20, 30} ms. Figure 7b demon-
strates the 3D shape obtained by our method and the baseline
DNN for these moments, where the left column shows the re-
sults of the baseline DNN (in the red background) and the right
column those of our framework (in the blue background). Visu-
alization 1 demonstrates the overall 3D reconstruction of the ro-
tating fan. It can be observed that the 3D reconstruction error of
the baseline DNN becomes more obvious as the frequency de-
creases. Figure 7c illustrates the cross-sectional profiles of the
blades of the rotating fan shown in Figure 7b, where the first and
the second row shows the results of the baseline DNN and our
CDL framework, respectively. From the 3D reconstructions of the
baseline DNN, it is evident that when the grating frequency de-
creases to 110, the ripple errors are found on the reconstruction
blade surface. In contrast, our CDL framework shows more reli-
able performance in handling these dynamic fringes. Despite it
did not see these dynamic fringe images of different frequencies
before, it was still capable of accurately reconstructing the profile
of the rotating blades.

Laser Photonics Rev. 2025, 2401609 © 2025 Wiley-VCH GmbH2401609 (8 of 14)
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Figure 5. Experimental results on phase measurements and 3D imaging with fringe images obtained from unseen systems and environments. a)
Fringe images obtained by unseen systems and environments, and the phase error of our method, the generalist DNN and the baseline model. b) 3D
reconstructions obtained by the 12-step phase-shifting method (ground truth), our CDL framework, the generalist DNN, and the baseline DNN for the
unseen fringe image of f = 96 as shown in (a). c) Comparison of 3D reconstructions for two ROIs. d) Comparison of cross-sectional 3D profile calculated
by these methods for the two ROIs.

Laser Photonics Rev. 2025, 2401609 © 2025 Wiley-VCH GmbH2401609 (9 of 14)
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Figure 6. 3D reconstruction under complex lighting conditions. a) Input fringe images captured under left-side ambient light, b) right-side ambient
light, and c) bilateral ambient light, along with phase errors and 3D results obtained using our CDL framework. d) Triggers of two ambient light sources
and the camera. e) The cross-sections of ROIs in 3D reconstructions, where (e1–3) correspond to left-side ambient light, right-side ambient light, and
bilateral ambient light, respectively.

Furthermore, we randomly selected three points on the blades
(points A, B, and C in Figure 7d) to demonstrate the cyclic dis-
placements of the blades. Displacement in the z (out-of-plane)
direction at the chosen point locations are plotted as a function
of time, as shown in Figure 7d. Regarding the fringe of an unseen
frequency of 110, the plot shows that the fan has a rotation period
of approximately 140 ms, corresponding to a rotation speed of
425 RPM. For the fringe image with frequencies of 115 and 120,
the plots show that the fan has a rotation period of approximately
150 and 160 ms, corresponding to the rotation speed of 400 RPM
and 375 RPM, respectively. These plots also indicate a good re-
peatability of the proposed approach. Furthermore, we tested the
performance of our method for dynamic 3D measurements in
different unseen ambient light. The experimental results show
that the well-trained CDL framework can adapt to fringe images
captured under different ambient lighting conditions and accu-
rately retrieve the 3D shape of dynamic objects. More details on
this experiment are provided in the Section S6 (Supporting Infor-
mation).

3.4.2. Dynamic Quantitative Evaluation

We conducted quantitative evaluations of our framework in
dynamic scenarios by measuring standard ceramic spheres
(Figure 8a). Consistent with the dynamic measurement experi-
ment of the rotating fan in Section 3.4.1, the fringe frequency
used in our system was f = 120, while the baseline network was
trained with a fringe frequency of f = 128. Figure 8b displays the

captured input fringe image at T = 0 ms. The ceramic spheres
moved along the Y-axis, and Figure 8c,d illustrate the 3D recon-
struction results at different time points and the corresponding
errormaps produced by our framework. At T = 1000ms, the root
mean square errors (RMSE) for the two spheres were 67.50 μm
and 89.35 μm, respectively, with an RMSE of 56.50 μm for the
center-to-center distance. And at T = 6000 ms, the RMSE for the
two spheres were 50.50 μm and 65.80 μm, respectively, while the
RMSE for the center-to-center distance was 62.98 μm.
For detailed analysis, Figure 8e,f shows the error variation over

time for arbitrary points on spheres A and B during motion
(points C and D in Figure 8c,d), measured using our CDL frame-
work, the baseline network, and the generalist network. Overall,
the baseline network exhibits the highest error compared to the
other methods, with significant fluctuations, reflecting its lim-
ited generalization ability in the face of unknown conditions. The
generalist network shows lower error but still has a relatively high
level of error. In contrast, the CDL framework demonstrates the
smallest error for the select points during the whole moving pro-
cess. Figure 8g–i provides a detailed visualization of the 3D recon-
struction results and error distributions for the three methods at
T = 3000ms. As can be seen, due to the discrepancy between the
training fringe frequency and the test fringe frequency, the base-
line network’s prediction results exhibited significant ripple-like
errors, causing the measured RMSE to exceed 500 μm. The gen-
eralist network demonstrated slightly better generalization and
accuracy, but still had an RMSE greater than 200 μm. In con-
trast, our CDL framework, with its improved generalization and
robustness, achieved the best performance, with the RMSE for

Laser Photonics Rev. 2025, 2401609 © 2025 Wiley-VCH GmbH2401609 (10 of 14)
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Figure 7. Dynamic 3D reconstructions of a rotating fan using our CDL framework. a) Fringe images of unseen frequencies captured at differentmoments.
b) 3D reconstructions obtained by the baseline DNN (left column) and our CDL framework (right column). c) Cross-sectional profiles of the rotating
blades reconstructed by the baseline DNN (the first row) and our method (the second row). d) Three points (A, B, and C) were selected and the height
variations at these points were calculated, from which we computed the rotating period and speed of the fan.
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Figure 8. 3D reconstruction accuracy analysis of dynamic standard ceramic spheres. a) The standard ceramic spheres under test, each with a radius of
25 mm and a center-to-center distance of 100 mm. b) Input fringe pattern captured by the camera at T = 0 ms. c,d) 3D reconstruction results and error
distributions obtained using our CDL framework at T = 1000 ms and T = 6000 ms, respectively. e,f) 3D measurement errors over time for two arbitrary
points (points C and D) on spheres A and B, as measured by the baseline network, the generalist network, and our CDL framework. g–i) Comparison of
the baseline network, the generalist network, and our CDL framework in terms of 3D reconstruction results and error distributions at T = 3000 ms.

the radius measurements of the two spheres remaining below
100 μm. Visualization 3 demonstrates the overall 3D reconstruc-
tion of the moving standard spheres.

3.5. Computational Complexity Analysis

In Table 2, we analyzed the baseline DNN, the generalist DNN,
and our CDL framework according to the total number of pa-
rameters, the training time, and the accuracy in terms of average
RMSE of the radii measurements of the two test spheres at differ-
ent time points. We can see that the total number of parameters
of the baseline DNN and the generalist DNN are the same which
is 3.46 million. The reason is that they had the same structure in
our experiments. The training time of them are 2 h and 10 h re-
spectively. As the amount of data used to train the generalist DNN
increased, the training time correspondingly became longer. The
RMSE of the baseline DNN and the generalist DNN are 780.35
and 212.43 μm. By comparison, the total number of parameters
and the training time of our CDL framework are 12.33 million

Table 2. Comparison of the computational resource for the baseline net-
work, the generalist network, and the CDL framework. Metrics include the
total number of parameters (in millions), training time, and dynamic mea-
surement errors for standard ceramic spheres.

Methods Parameters [M] Training time [h] RMSE [μm]

Baseline model 3.46 2 780.35

Generalist 3.46 10 212.43

Our CDL 12.33 14 73.88

and 14 h, which indicates thatmore computational resources and
time costs have to be taken for training our CDL framework, as
several expert DNNs are involved. Nevertheless, our framework
demonstrates the RMSE of 73.88 μm, which is the smallest error
among these DNNs.
To further optimize theCDL framework, several strategiesmay

be adopted to reduce computational resources and time costs
without significantly sacrificing its accuracy. These strategies in-
clude the pruning technique (which eliminates less essential
model parameters), the knowledge distillation technique (which
transfers knowledge from a largermodel to amore compact one),
and so on ref. [43, 44]. By implementing these approaches, the
computational burden of the CDL framework could be alleviated,
while still maintaining its accuracy.

3.6. Experimental Analysis of GNN

Our CDL framework optimally fuses expert DNNs by leverag-
ing a GNN that adaptively calculates the appropriate weights for
each expert. Here, we analyzed the performance of the GNN to
gain deeper insights into the behavior of our CDL framework.
Specifically, we tested the CDL framework on 15 sets of fringe
images with different spatial frequency and contrast. There are
150 test fringe images of unseen scenarios in each set. To obtain
the distribution of GNN’s weights, we used the UMAP technique
that is able to demonstrate the distribution by reducing the di-
mensionality of the predicted weights.[45] As shown in Figure 9a,
each point represents a prediction of GNN. Different colors were
used to label different sets of test fringe images. We can see that
points of the same color tend to cluster together, indicating that

Laser Photonics Rev. 2025, 2401609 © 2025 Wiley-VCH GmbH2401609 (12 of 14)
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Figure 9. Visualization and analysis of the prediction of GNN for a variety of systems and environments. a) Visualization of the weights predicted by
GNN using UMAP. b–e) The numerical distribution of GNN’s weights respectively for these cases when the spatial frequency, the contrast, the working
distance and the ambient light are changed.

for fringe images collected under the same system and environ-
ment, the GNN provides similar fusion strategies. Additionally,
we observe that points of different colors are more widely sepa-
rated, suggesting that when the system or environment changes,
the GNN generates distinct fusion strategies.
Furthermore, we studied themean and variance of the weights

of the gating network. Figure 9b–e respectively show the weights
predicted by GNN when dealing with fringe images captured
with unseen frequencies, contrast, working distances, and am-
bient light. It can be observed that the variance of prediction
is small when GNN handles fringe images obtained under the
same condition. This indicates that GNN can output consis-
tent results when facing scenes captured using the same sys-
tem and environment. Based on the average weights presented in
Figure 9b–e, it is evident that the GNN assigns a higher weight to
the second expert DNN, while the first and the third expert DNNs
receive lower weights. This indicates that the second expert DNN
has a predominant influence in the fringe demodulation process.
Figure 9b shows the weights’ distribution of GNN when it

handled fringe images with unseen frequencies. It can be seen
that as the spatial frequency increases, the weight of expert E1
continues to rise while the weights of expert E2 and expert E3
decrease, indicating an increasing importance of expert E1. As
shown in Figure 9c, increasing the contrast of the fringes re-
sults in a decrease in the weight assigned to expert E2, while
the weights for experts E1 and E3 increase. This suggests that
experts E1 and E3 become more influential in processing high-
contrast fringe images. Figure 9d demonstrates that as the work-
ing distance increases, the weight for expert E1 rises whereas
the weights of experts E2 and E3 decrease, indicates a growing
significance of expert E1 with greater working distance. Finally,
Figure 9e shows that changes in ambient light have minimal im-
pact on the weight distribution from GNN, with expert E2 main-
taining the primary role, followed by expert E1, and expert E3
contributing the least. In short, the experimental results indicate
that for fringe images captured in different systems and envi-

ronments, our GNN can assign varying weights to different ex-
perts, suggesting that the GNN has recognized the differences
among these fringe images. Conversely, for fringe images cap-
tured in the same system and environment, the weights output
by our GNN are more consistent, indicating that it has detected
the similarities in these fringes and established a stable expert fu-
sion strategy. Moreover, we observe that fringe patterns possess
intrinsic features that reveal underlying frequency and contrast
information. Our CDL framework can extract these features to
adaptively predict the weights for orchestrating the collaboration
among these expert DNNs.

4. Conclusion

In this work, we have proposed an adaptive cross-domain learn-
ing framework designed for generalized structured-light 3D
imaging across various systems and environments. Our frame-
work dynamically synthesizes DNNs by integrating a MoE ar-
chitecture with a GNN. The MoE architecture efficiently ex-
tracts features from fringe images across different domains,
while the GNN adaptively orchestrates the synthesis of these
expert DNNs. Our experimental results demonstrate superior
generalization performance across diverse systems and environ-
ments. It’s worth noting that our method’s reliance on multi-
ple experts demands more computational resources compared
to approaches using a single DNN. Therefore, for resource-
constrained scenarios, such asmobile applications, itmay be nec-
essary to streamline the proposed framework. Additionally, the
effectiveness of cross-domain learning requires a richly diverse
dataset for training. In future, we will explore the use of digital
twin technology to rapidly generate diverse and realistic training
data virtually. Our approach not only enhances the generalization
capabilities of deep-learning-based structured-light 3D imaging
but also lays the foundation for the development of robust and
versatile AI-driven optical metrology techniques. Furthermore,
our framework can be extended to other applications, such as
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digital holography, interferometry, and fluorescence microscopy.
We believe that our cross-domain learning framework represents
a significant advancement in the development of generic and
highly adaptive AI-based optical metrology techniques.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
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