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a b s t r a c t

Fourier ptychographic microscopy (FPM) is a recently developed wide-field and high-resolution (HR) imaging
technique, reconstructing HR spectrum from a series of low-resolution (LR) images at different illumination
angles. Although many significant progresses have been made in FPM in the past few years, imaging noise is
still an inevitable problem, which could seriously distort the results recovered using the conventional Fourier
ptychography approach without image preprocessing. Generally, before FPM reconstruction, a thresholding
denoising method is usually employed to eliminate the noise. However, conventional thresholding denoising
algorithms cannot differentiate useful signals from imaging noise effectively, thus these algorithms usually
eliminate signals and noise simultaneously. Here we propose an adaptive denoising method for FPM, which
takes advantage of the information redundancy in FPM to separate signal from noise during the recovery process
without any pre-knowledge about the noise statistics. Simulation and experimental results are presented to
evaluate the performance of the proposed method. It is demonstrated that this method can both improve the
accuracy and robustness of FPM and relax the imaging performance requirement for implementing high-quality
FPM reconstruction.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Fourier ptychographic microscopy (FPM) is a recently developed
wide-field and high-resolution (HR) imaging technique [1], which
utilizes angularly varying illumination and a phase retrieval algorithm
to surpass the diffraction limit of the objective lens [2–8]. Similar to the
conventional ptychography approaches [9,10], FPM shares its roots with
phase retrieval algorithm [2–8] and synthetic aperture imaging [11–16].
In a typical FPM imaging system, a fixed-position LED matrix is used for
angle-varied illuminations. At each illumination angle, a low-resolution
(LR) intensity image of the specimen, with the resolution determined
by the numerical aperture (NA) of the objective lens, is recorded. The
recorded LR images from different illumination angles can be iteratively
stitched in the Fourier domain to recover a HR complex image of the
specimen. The final reconstruction resolution is determined by the sum
of the NA of the objective lens and the largest incident angle of the LED
matrix.

In order to improve the imaging performance of FPM, a series of im-
proved algorithms have been proposed lately. Some of them improve the
reconstruction accuracy and the recovery resolution of FPM [17–24],
and others reduce measuring time of FPM imaging process and improve
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data acquisition efficiency [21,25–29]. However, imaging noise is still
an inevitable problem, which distorts high-frequency details and stains
the background of the recovered image [30]. Although several of the
methods described above, such as the Wirtinger flow optimization
and the adaptive step-size [20,29], suppress the image noise from the
final reconstruction results, they are achieved by means of improving
the FPM convergence properties and not really eliminate noise in
captured images. Take the example of the Wirtinger flow optimiza-
tion algorithm, this method generally reside on expensive processing
requirements, making it less appealing from a computational point of
view.

Generally, better quality images not only improve the accuracy of
FPM, but also improve its convergence speed. So, before FPM recon-
struction, a thresholding denoising method is usually used to eliminate
the noise in the initial data [21]. In the conventional thresholding
denoising method, a fixed threshold for denoising is generally obtained
by calculating the average intensity of the background of the dark-field
image. However, the main drawback of this method is that it cannot
differentiate useful signals and imaging noise effectively, thus these
algorithms usually dislodge signal and noise simultaneously. Thus, there
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is a trade-off between the resolution of the HR image and the denoising
effect in FPM.

As reported in [28], a key aspect of a successful FPM reconstruction
is the data redundancy requirement of the recovery process. Precisely,
such a data redundancy requirement is very important for recovering
the lost phase information of the specimen. At least 35% aperture
overlapping percentage in the Fourier domain is required for an ac-
curate reconstruction of both intensity and phase information in FPM.
Moreover, the FPM reconstruction result will not change significantly
when the percentage of empty pixels in the image is less than aperture
overlapping percentage in the Fourier domain. Based on the above
considerations, we propose an adaptive denoising method for FPM,
which takes advantage of the data redundancy in FPM. Different from
the conventional thresholding denoising method, the adaptive denoising
method introduces a difference matrix to separate signal from noise
during the recovery process without any pre-knowledge about the
noise statistics. In addition, we investigate the characteristic of the
difference matrix to implement the adaptive updating of the denoising
method. Simulation and experimental results are presented to evaluate
the performance of the proposed adaptive denoising method and it
is demonstrated that this method can both improve the accuracy and
robustness of FPM and relax the imaging performance requirement for
implementing high-quality FPM reconstruction.

2. Principle of FPM and adaptive denoising method

2.1. Principle of FPM

Before introducing the principle of the adaptive denoising method,
it is worthwhile to review the basic concepts of FPM. As detailed in [1],
a typical FPM platform consists of a LED matrix and a conventional
microscopy with a low NA objective lens. We sequentially turn on single
LED element in the matrix to illuminate the 2-D thin specimen from
different angles and capture the corresponding LR intensity image. Since
the 2-D thin specimen is illuminated by plane waves with different
angles, the spectrum of the specimen on the back focal plane of the
objective lens is shifted to the corresponding different positions. Thus,
some of the frequency components that are beyond the NA of the
objective lens are shifted into that is within the objective lens NA, so
that they can be transferred to the sensor plane for recording. Then,
these captured LR images are sequentially iterated in the Fourier domain
to update the spectral information in the corresponding sub-region. The
adjacent sub-regions overlap with each other, which extends the space-
bandwidth product (SBP) and restores high-frequency information that
exceeds the spatial resolution of the objective lens. Eventually, the HR
intensity and phase image of the specimen are reconstructed simultane-
ously.

There are five steps in the reconstruction process of traditional FPM
technology. First, initialize the HR complex amplitude distribution 𝑈0
with amplitude of the LR image corresponding to the vertically incident
plane wave. This HR complex amplitude distribution is used to gener-
ate multiple LR target images corresponding to different illumination
angles. Second, the spectral information in a certain sub-aperture of
the initial HR spectrum 𝑈0 is intercepted to produce a LR complex
amplitude distribution, which is called the target complex amplitude
distribution

√

𝐼𝑚𝑡𝑒𝑖𝜑𝑚𝑡 (𝑚 represents the serial number of the captured
images). Third, maintain the phase of the target complex amplitude
image unchanged and update the amplitude portion
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dated complex amplitude distribution
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𝐼𝑚𝑐𝑒𝑖𝜑𝑚𝑡 . Fourth, the spectrum
𝑢𝑚(𝑘𝑚𝑥, 𝑘𝑚𝑦) of the updated target complex amplitude image
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is obtained by using the Fourier transform, which is used for updating
the spectral components within the corresponding sub-aperture of the
HR spectrum. Fifth, this replace-and-update sequence is repeated for
all incident angles, and the fifth step is iterated several times until the
solution converges.

In traditional FPM iteration process, the captured LR images are di-
rectly denoised using a fixed threshold. This fixed threshold is generally
obtained by calculating the average intensity of the background in the
dark-field image. However, an unavoidable problem in this denoising
method is that it cannot distinguish noise from useful signals. This
problem is very noticeable in the denoising of the dark-field image,
because a large number of useful signals are usually weaker than the
noise in dark-field image, and this means that these useful signals
will be eliminated easily by using a fixed threshold denoising method.
Fig. 1 shows the denoising results for a dark-field image with different
denoising methods. As shown in Fig. 1(c), after using the conventional
fixed threshold denoising for the dark-field image, the noise of the dark-
field image is eliminated, but a large number of effective signals are also
eliminated. Eventually, such a loss of information will result in the lack
of details of the FPM reconstructed HR image.

2.2. Adaptive denoising method

In order to effectively eliminate the noise in captured images, a
noise discrimination factor is introduced to the third step of the above
process to differentiate useful signals and noise approximately, which is
expressed as 𝐶𝑚 =

√

𝐼𝑚𝑐 −
√

𝐼𝑚𝑡. It can be seen that the updated image
distribution
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𝐼𝑚𝑐𝑒𝑖𝜑𝑚𝑡 can also be expressed as (𝐶𝑚 +
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𝐼𝑚𝑡)𝑒𝑖𝜑𝑚𝑡 . It is
not difficult to find that 𝐶𝑚 is a matrix which has the same size as the
captured image, and its values represent the difference between actual
amplitude
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𝐼𝑚𝑐 and the amplitude portion
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𝐼𝑚𝑡 of the target complex
amplitude image
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𝐼𝑚𝑐𝑒𝑖𝜑𝑚𝑡 at the identical illumination angle. In the
ideal noiseless case, the values of the 𝐶𝑚 matrix mainly concentrate
within a small vicinity around 0. Conversely, with the noise increasing
in captured images, the values of the 𝐶𝑚 matrix depart from 0 gradually.
Based on these premises, the matrix 𝐶𝑚 can be used to differentiate
useful signals from noise pixel by pixel approximately. Specifically, if
the value of a pixel in matrix 𝐶𝑚 is almost close to 0, it indicates that
the pixel tend to be noise. On the other hand, if the value of a pixel of
matrix 𝐶𝑚 is far away from 0, it means that the pixel is more likely to
be noise.

Based on the above knowledge, the adaptive denoising process of
images can be seen as making the value of the 𝐶𝑚 matrix as close as
possible to the ideal noise-free situation. The process of FPM recon-
struction using the adaptive method is shown in Fig. 2. First, similar to
the traditional FPM refactoring, it starts with a HR complex amplitude
distribution of the specimen profile: 𝑈0. Second, produce target complex
amplitude distribution

√

𝐼𝑚𝑡𝑒𝑖𝜑𝑚𝑡 . Third, solve the difference matrix
𝐶𝑚 =

√

𝐼𝑚𝑐 −
√

𝐼𝑚𝑡 to differentiate noise from useful image signals, and
update the values of the matrix by setting the value of the 𝐶𝑚 matrix
which is far away from 0 to 0. The updated matrix 𝐶𝑚𝑢𝑝𝑑𝑎𝑡𝑒

is obtained
as a denoising factor. Fourth, the denoising matrix 𝐶𝑚𝑢𝑝𝑑𝑎𝑡𝑒

is used to
update the intensity components of the target images, while the phase
components remain unchanged, the resulting complex amplitude distri-
bution is (𝐶𝑚𝑢𝑝𝑑𝑎𝑡𝑒

+
√

𝐼𝑚𝑡)𝑒𝑖𝜑𝑚𝑡 . Fifth, the updated complex amplitude
distribution is used to modify the corresponding spectral regions of the
HR complex amplitude distribution 𝑈0. Lastly, this replace-and-update
sequence is repeated several times until the solution converges. Fig. 1(d)
shows the dark-field image using the adaptive denoising method. The
image not only eliminates the noise, but also preserves more useful
signals of the image compared with Fig. 1(c).

In the iterative process including adaptive denoising method, there
is a step that needs to be discussed, that is, the initialization of the
FPM iterative process. For FPM technology, it is common to use a
LR bright-field image to initialize the HR spectrum, but as a phase
retrieval algorithm, using a constant to initialize can also get the correct
convergence results. In the adaptive denoising method, the selection of
the initialization step can be discussed in different cases. In the first case,
all LR images are captured for adaptive denoising. In this case, a LR
bright-field image must be used to initialize, since this ensures that the
obtained 𝐶𝑚 matrix can distinguish between noise and useful signals. In
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Fig. 1. Denoising results with different denoising methods.

Fig. 2. FPM reconstruction process including adaptive denoising method.

Fig. 3. 𝐶𝑚 distribution curve of the image with different noise levels.

the second case, the adaptive denoising process is performed only on LR
dark-field images. In this case, the same HR results can be obtained by
initializing the HR spectrum using LR bright-field image and a constant.
All of the simulations and experiments in this paper are performed in
the second case.

In the adaptive denoising method, determining the update range of
the matrix 𝐶𝑚 is a critical step. In the 𝐶𝑚 matrix, if the value of the
pixel is far away from 0, it will be identified to be noise, so the value

of these pixels should not be iterated in the reconstruction process.
Specifically, there are two so called denoising thresholds that need to
be determined to eliminate the value of pixels that is far away from
0, and we propose a method to determine these two thresholds. In
order to obtain the initial denoising thresholds, we investigate the 𝐶𝑚
distribution curves of all images with different noise levels at the first
iteration and display them with different colors in Fig. 3. It can be found
that the values of 𝐶𝑚 are concentrated near 0 when there is no noise,
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Fig. 4. RMSE curves for multiple empty pixel percentages under different spectrum
overlapping percentage.

Fig. 5. 𝐶𝑚 distribution curve under different iterations.

and there is only one maximum value of 𝐶𝑚 curve in the vicinity of 0.
Compared with the noise-free situation, the number of values near 0 in
the 𝐶𝑚 decline significantly and the number of values far from 0 increase

significantly with the addition of noise. In addition, with the levels of
noise increasing, the values distribution of 𝐶𝑚 matrix are more and more
dispersed, and the 𝐶𝑚 curve has two maximum values around 0.

According to the requirements of FPM data redundancy, at least
35% of the spectrum overlapping percentage is needed in FPM iter-
ations [28]. On this basis, we further study the relationship between
spectrum overlapping percentage and empty pixel percentage. Fig. 4
shows the Root-mean-square error (𝑅𝑀𝑆𝐸) curves of FPM recon-
structed results for multiple empty pixel percentages under different
spectrum overlapping percentage. It can be found that with the spectrum
overlapping percentage increasing, the curves gradually converge to
a stable small value, and the convergence critical point has a linear
relationship with the empty pixel percentage. In other words, the
reconstructed result of FPM is not significantly affected when the empty
pixel percentage is smaller than the spectrum overlapping percentage.

Based on the considerations above, we introduce a percentage 𝑃𝑏 to
achieve the adaptive update of the denoising threshold. The spectrum
overlapping percentage 𝑃𝑎 is calculated according to the system param-
eters, as

𝑃𝑎 =

⎧
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In these equations, 𝐷𝐿𝐸𝐷 denotes the distance between adjacent LED
elements and ℎ is the distance (at the 𝑧 direction) between the LED
matrix and specimen. Given percentage 𝑃𝑏 greater than (1−𝑃𝑎), and the
threshold of the update difference matrix in the interval [−𝑇 , 𝑇 ] to guar-
antee the percentage of the number of values in this interval to the total
number of values in the 𝐶𝑚 matrix is around 𝑃𝑏. Table 1 provides the
corresponding value of 𝑃𝑎 and 𝑃𝑏. So we can determine the appropriate
𝑃𝑏 value based on this table in the simulation and experiment.

In order to explore whether the adaptive threshold updating method
applies to different iterations of FPM reconstruction, we investigate

Fig. 6. Input intensity and phase image for FPM reconstruction. (a) Intensity; (b) Phase; (c) Fourier spectrum; the red and yellow circles indicate the captured sub-spectrums under
orthogonal and oblique illuminations; (d)–(i) low-resolution raw images with different levels of Gaussian noise. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 7. FPM reconstruction results with different denoising methods for Gaussian noise.

the distribution curves of 𝐶𝑚 matrix at different iterations shown in
Fig. 5. With the number of iterations increasing, it can be seen that the
curves converge gradually and the values of the 𝐶𝑚 matrix approach 0.
Therefore, when there is noise, the interval of [−𝑇 , 𝑇 ] determined by
the percentage 𝑃𝑏 is as far as possible to eliminate the values far from 0
while keeping the values in the 𝐶𝑚 matrix near 0.

3. Simulation

To verify the effectiveness of the adaptive denoising method, the
same image is processed under the same parameters using the adaptive
denoising method and the conventional thresholding denoising method.
The parameters in the simulations are chosen to realistically model a
light microscopy, with an incident wavelength of 526 nm, an imaging
pixel size of 2.62 μm, a small segment of 64 × 64 pixels and an objective
NA of 0.1 (4x). In simulation, a 11 × 11 LED matrix is used to illuminate
the specimen with different incident angles. The LED matrix is placed
75 mm below the specimen, and the distance between adjacent LED

Table 1
The corresponding value of 𝑃𝑎 and 𝑃𝑏.

𝑃𝑎 40%–50% 50%–60% 60%–70% 70%–80%
𝑃𝑏 >50% >40% >30% >20%

elements is 4 mm. A set of 121 LR intensity images are simulated. In
these parameters setting, the spectrum overlapping percentage 𝑃𝑎 of the
FPM iteration is 66.5%, so we set the value of 𝑃𝑏 in the simulation to
60% based on the proposed strategy. In order to exclude the effects of
iterative steps, we maintain the value of the iterative step-size to 0.5.
All simulations have been run for 10 iterations.

3.1. Simulation of Gaussian noise

The HR input intensity and phase profiles are shown in Fig. 6(a)
and (b), which serve as the ground truth for the simulated complex
object. Besides the idealized situation, each LR image is corrupted with
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Fig. 8. FPM reconstruction results with different denoising methods for Poisson noise.

Gaussian noise in different variances. Since the signal power of dark-
field images from large-angle illuminations is much weaker than that
of the bright-field images, they suffer more from the noise, which is in
accord with the actual experimental conditions. To illustrate the level
of noise more intuitively, six typical noisy dark-field intensity images
are given in Fig. 6(d)–(i). The noise level is quantified by the average
mean absolute error (𝐴𝑀𝐴𝐸) [29], defined as 𝐴𝑀𝐴𝐸 = ⟨|𝐼𝑛 − 𝐼|⟩ ∕ ⟨𝐼⟩,
where ⟨𝐼⟩ is the mean value of noise-free dark-field intensity images and
⟨|𝐼𝑛 − 𝐼|⟩ is the mean absolute error of the corresponding noisy images.

The conventional thresholding denoising method and adaptive de-
noising method are simulated with images containing six different
levels of noise. In conventional thresholding denoising method, the
threshold is usually set to the average background intensity of the dark-
field image with the largest illumination angle. Fig. 7(a), (c) and (e)
show the reconstructed results of intensity and phase using the con-
ventional thresholding denoising method. With the noise increasing,
the reconstructed intensity images become worse and phase images
are gradually blurred. As a comparison, reconstruction results using

adaptive denoised images are shown in Fig. 7(b), (d) and (f). We can
see that the quality of reconstructed results using adaptive denoising
methods is always better than that using conventional thresholding
denoising method. We also quantify reconstruction accuracy of adaptive
denoising method using the 𝑅𝑀𝑆𝐸 metric in Fig. 7(g). It is shown that,
FPM algorithm with adaptive denoising method is able to recover a high-
quality HR result.

3.2. Simulation of Poisson noise

Similar to the simulation of Gaussian noise, we corrupt LR images
with different levels of Poisson noise. The reconstructed results for dif-
ferent levels of Poisson’s noise are shown in Fig. 8. As can be seen, with
the level of Poisson noise increasing, the denoising effect of conventional
thresholding denoising method is deteriorated. As a comparison, the
reconstructed results of the adaptive denoising method are shown in
Fig. 8(b), (d) and (f). We also quantify the FPM reconstruction qualities
using the 𝑅𝑀𝑆𝐸 metric in Fig. 8(g). As is shown in Fig. 8, we can easily
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Fig. 9. Experimental results of a USAF target. (a) The low-resolution full-field image. (b–c) The corresponding region of interest. (d–i) The comparison of reconstructed intensity of
image data under three ways.

find that adaptive denoising method can effectively eliminate noise and
therefore improve the quality of FPM reconstructed result.

4. Experiments

In order to evaluate the effectiveness of the adaptive denoising
method experimentally, we compare the recovered intensity distribu-
tions of one segment in a USAF target using conventional thresholding
denoising method and the adaptive denoising method respectively.

We first utilize a light microscopy (OLYMPUS CX22, magnification
4x, NA = 0.1) as the imaging system and an LED matrix (21 × 21,
incident wavelength À = 632 nm) as the light source for providing
angle-varied illuminations. The distance between adjacent LED elements
is 2.5 mm, and the LED matrix is placed at 87.5 mm below the objective
table. A scientific CMOS camera (PCO.edge) with the pixel size of 6.5 μm
is used for recording images under different incident angles. Under these
experimental parameters, the spectrum overlapping percentage is 82%,
so we set the value of 𝑃𝑏 to 60%. A set of 441 LR intensity images are
captured using this setup.

One of the captured LR full-field images is shown in Fig. 9(a).
In this experiment, a sub-region of size of 128 × 128 is extracted to
recover the HR image using the conventional thresholding denoising
method and the adaptive denoising method respectively, and the sub-
region is shown in Fig. 9(b). Fig. 9(d)–(f) show the results of FPM
reconstruction in the case of no denoising, conventional thresholding
denoising and adaptive denoising. The HR result from the images
without denoising is shown in Fig. 9(d). We can see that strong artifacts
are superimposed on the final reconstruction result, which not only
smear the background but also distort several small-scale features. In the
conventional thresholding denoising method, we capture the dark-field

image of the largest illumination angle without placing any specimens,
and the average intensity of this dark-field image is used as a threshold
to eliminate noise. Fig. 9(e) and (h) show HR results, which background
becomes cleaner, but image become seriously blurred due to the massive
loss of image details. This result indicate an improper choice of threshold
can lead to blurring in high-frequency details if the threshold is too large
or sub-optimal removal of noise artifacts if the threshold chosen is too
small. The reconstructed results of the adaptive denoising method are
shown in Fig. 9(f) and (i). It can be seen that the noise is eliminated while
preserving the useful signals to the greatest extent possible, resulting in
a better reconstructed image with a uniform background and all groups
of features clearly resolved.

In addition, the proposed adaptive denoising method is tested on
human blood smear. The experimental parameters are chosen to realisti-
cally model an FPM platform, with an incident illumination wavelength
of 632 nm, 530 nm and 450 nm, an image sensor with pixel size
of 3.75 μm (The imaging source), and an 4X objective with NA of
0.16 (OLYMPUS UPlanSApo). We experiment the use of the central
9 × 9 LEDs in the matrix placed 75 mm below the specimen, and the
distance between adjacent LEDs is 4 mm. In this experimental system,
the spectrum overlapping percentage is 80%, so we set the value of
𝑃𝑏 in the experiment to 60%. Fig. 10(a) presents the full-filed of the
specimen and Fig. 10(b) and (c) show the corresponding magnified area
of interest. Fig. 10(d) and (e) show the reconstructed results of the image
processed using the conventional thresholding denoising method. As can
be seen in Fig. 10(e), the background of the reconstructed HR result is
contaminated and the quality of image is bad. And the HR images shown
in Fig. 10(f) and (g) suggest that adaptive denoising method brings clear
detail of the cell and clean background. It is illustrated that the adaptive
denoising method can eliminate the noise more effectively and improve
the quality of the FPM reconstructed HR image significantly.
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Fig. 10. Experimental results of Human blood smear. (a) The full-field image. (b) Region of interest for reconstruction. (c–e) The comparison of reconstructed intensity of image data
under three ways.

5. Conclusion

In order to solve the problem of noise, this paper explores the char-
acteristics of image signals and noise in FPM algorithm and introduces
a difference matrix as noise discrimination factor for separating noise
and signals. Briefly speaking, in the ideal noiseless case, the values of
the difference matrix mainly concentrate within a small vicinity around
0. Conversely, with the noise increasing, the value of the difference
matrix depart from 0 gradually. According this difference matrix, we
differentiate the noise from useful signals pixel by pixel to provide a
strong basis for the subsequent denoising process. In the process of
eliminating noise, taking advantage of the data redundancy in FPM, we
investigate the quality of HR results of different empty pixel percentage
under different spectrum overlapping percentage and propose a method
to adaptively determine the denoising threshold. It is demonstrated that
the proposed adaptive denoising method can more effectively eliminate
noise and preserve more effective signals compared to the conventional
thresholding denoising method of selecting a fixed threshold for all
captured images to denoise. The reported adaptive denoising method
not only improve the accuracy and robustness of FPM , but also relax the
imaging performance requirement for implementing high-quality FPM
reconstruction.

The adaptive denoising method improves the reconstruction quality
of FPM from the aspect of image denoising. However, there are several
methods which can suppress the noise and improve the reconstruction
quality from other aspects such as iterative optimization frame-work and
adaptive step-size [20,29]. In essence, the adaptive denoising method
does not conflict with these methods, it can be safely predicted that
the combination of our adaptive denoising method and those developed
FPM methods could further improve the reconstruction quality of FPM.
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