

计算光学成像与 光信息处理技术前沿

(第10.1讲)

南京理工大学电光学院光电技术系

Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense (SIIS) Nanjing University of Science and Technology,

Nanjing, Jiangsu Province 210094, China

□ 痛点: 成像分辨率与视场的制约

现状:现有技术分析

□现有傅里叶叠层成像技术

可实现大视野高分辨成像,但系统复杂,误差影响大,成像效率低

Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature photonics, 2013, 7(9): 739-745.

现状:现有技术分析

□ 现有无透成像技术 可实现大视野成像,系统简单,成本低,但成像分辨率较低

Ozcan A, McLeod E. Lensless imaging and sensing[J]. Annual review of biomedical engineering, 2016, 18: 77-102.

现状:现有技术分析

□无透镜成像系统

南京理工大学 基于多波长LED的数字全息无透镜

□核心优势

□核心优势

□软件功能

■基于投影式成像 ■基于深度学习成像 ■基于同轴数字全息成像

无透镜成像方式

□投影式成像

无透镜成像方式中最简单是投影式成像,其基本实验光路结构如下图 所示,类似于传统显微成像"所见即所得"的方式,即整个过程无需 图像重构算法。

投影式结构和仿真

□深度学习成像

输入:原始全息图;输出:恢复相位图像 近些年发展出的基于深度学习成像方式,在一些成像结果方面获得了获 得了巨大成功,但是由于获取训练集的困难、匹配点依赖手工选取以及 物理机制的不明确,在测量方面仍然受了一些质疑。

成像方式	简单成像		基于相位恢复		
条目	投影式成像	荧光成像	基于数字全 息重构	三维层析成像	基于深度 学习
系统搭建难度 (无透镜系统 之间的对比)	一般	难	容易	较难	容易
分辨率提高能 力	一般	弱	强	一般	强
物理模型	几何光学	物理光学	物理光学	几何/物理光学	"黑箱"
成像时长(超 分辨)	一般	一般	一般	慢	训练耗时长
是否需要染色	否	是	否	否	否
相位成像是否 定量	否	-	是	是	是
关键难点	去除表面玻 璃	去除表面玻 璃、完全滤 除激发光	重构算法	重构算法	训练集的获 取

□基于同轴全息的无透镜成像: 算法原理

□基于同轴全息的无透镜成像:实验结果

□基于同轴全息的无透镜成像:实验结果

Our method

Traditional method

Zhang J, Chen Q, Li J, et al. Lensfree dynamic super-resolved phase imaging based on active micro-scanning[J]. Optics letters, 2018, 43(15): 3714-3717.

□基于主动微扫描的动态超分辨率成像算法:实验结果

Zhang J, Chen Q, Li J, et al. Lensfree dynamic super-resolved phase imaging based on active micro-scanning[J]. Optics letters, 2018, 43(15): 3714-3717.

Zhang J, Chen Q, Li J, et al. Lensfree dynamic super-resolved phase imaging based on active micro-scanning[J]. Optics letters, 2018, 43(15): 3714-3717.

□多波长扫描像素超分辨成像技术

Wu X, Sun J, Zhang J, et al. Wavelength-scanning lensfree on-chip microscopy for wide-field pixel-super-resolved quantitative phase imaging[J]. Optics Letters, 2021, 46(9): 2023-2026.

Wu X, Sun J, Zhang J, et al. Wavelength-scanning lensfree on-chip microscopy for wide-field pixel-super-resolved quantitative phase imaging[J]. Optics Letters, 2021, 46(9): 2023-2026.

□多波长扫描像素超分辨成像技术:实验结果

Wu X, Sun J, Zhang J, et al. Wavelength-scanning lensfree on-chip microscopy for wide-field pixel-super-resolved quantitative phase imaging[J]. Optics Letters, 2021, 46(9): 2023-2026.

□多波长扫描像素超分辨成像技术:实验结果

□基于多角度多波长的无透镜衍射层析算法

Zuo C, Sun J, Zhang J, et al. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix[J]. Optics express, 2015, 23(11): 14314-14328.

□基于多角度多波长的无透镜衍射层析算法:算法原理

Zuo C, Sun J, Zhang J, et al. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix[J]. Optics express, 2015, 23(11): 14314-14328.

□基于多角度多波长的无透镜衍射层析算法:实验结果

Zuo C, Sun J, Zhang J, et al. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix[J]. Optics express, 2015, 23(11): 14314-14328.

Thank you