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a b s t r a c t 

Light field camera with a microlens array can realize spatio-angular joint sampling of light ray field at the cost of 

a trade-off between spatial and angular resolutions. Alternatively, focal stack-based light field reconstruction can 

computationally retrieve full-pixel-resolution light fields in object space by virtue of the transport-of-intensity 

property in an image sequence recorded at different focal depths in image space. However, traditional cam- 

era imaging generally involves a nonlinear mapping between object and image spaces. The inconsistency of 

image-space recording and object-space reconstruction will reduce the accuracy of reconstructed light fields. In 

this work, we focus on analyzing and addressing the problem caused by the object-image space inconsistency 

for high-resolution, high-accuracy focal stack-based light field reconstruction. With a pre-calibrated light field 

camera as a reference, light field reconstructions in object and image spaces are experimentally compared and 

discussed from different aspects, such as digital refocusing, viewpoint switching, angular resolution, and depth 

range and sampling rate. All experimental results demonstrate that the light field reconstruction accuracy can 

be significantly improved when satisfying the object-image space consistency, which can serve as a mechanism 

for the realization and application of high-quality computational light field imaging and measurement in the 

situation of nonlinear recording and reconstruction. 
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ntroduction 

Due to the human retina’s well-known “what you see is what you

et ” property, traditional two-dimensional imaging sensors provide a

ignificant optical difficulty that only records two-dimensional spatial

ntensity information. The emerging of computational photography, typ-

cally light field imaging, breaks through this limitation. Light field is

 representation of full four-dimensional (4D) radiance of all rays with

patial and angular information in free space. Light field camera em-

edded with a microlens array can simultaneously record the 4D spatio-

ngular information of light rays [ 1 , 2 ], enabling many new develop-

ent potentials for computational imaging such as viewpoint switch-

ng, digital refocusing, panoramic focusing, depth-of-field expansion,

nd depth/three-dimensional (3D) sensing [3–5] . 

However, such spatial multiplexing technique using a microlens ar-

ay suffers from a trade-off between spatial and angular resolutions. In

eneral, the spatial resolution is one to two order magnitudes lower than

he used pixel amount of the sensor. Although higher spatial (angular)

esolution can be resolved from light field images because of spatio-

ngular sampling redundancy [ 6 , 7 ], the multiplexed space of the sensor
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till strictly limits the super-resolution capability. Alternatively, scan-

ing light field imaging with high spatial resolution can be achieved

y dithering a microlens array [ 8 , 9 ] or using a galvanometer [10] at

he expense of requiring additional motion devices and making the sys-

em architecture more complicated. Another spatio-angular sampling

odality is to record the spatial information of light fields angle to an-

le through a camera array [ 11 , 12 ] or single-camera motion [13] , but

he angular resolution is limited by the array size or the motion number.

In contrast to direct spatio-angle sampling, one can use other op-

ical components, such as coded aperture [ 14 , 15 ], attenuation mask

 16 , 17 ], diffuser [ 18 , 19 ], and graphene layers [20] , instead of the mi-

rolens array, as modulators to pre-modulate the incident light field for

omputational light field imaging. These techniques can increase the

patio-angular sampling redundancy in the spatial or frequency domain

o demodulate light fields with high spatio-angular resolution. In addi-

ion to physically encoded devices, the incident light field can be dig-

tally modulated in terms of light field propagation, the core of which

s the inverse reconstruction of Fourier slice photography [21] . With a

raditional camera to capture images at different focal depths, the full-

ixel-resolution light field information can be retrieved according to the
 . 
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ransport-of-intensity property in a focal stack (FS). Levin and Durand

22] in 2010 and Alonso et al. [23] in 2016 deconvoluted a dense FS us-

ng different defocused blur kernels. In 2013, Orth and Crozier [24] pro-

osed light field moment imaging to deconvolve the first-order moment

f light fields from a defocused image pair. These methods can demod-

late partial information of the 4D light field from 3D FS, achieving

iewpoint synthesis and rendering. In 2014, Park et al. [25] proposed

omputed tomography-like light field reconstruction (LFR) by back-

rojecting the multifocal intensity images. However, the incomplete re-

onstruction restricted by the depth-of-field of cameras may suffer from

rtifacts. Subsequently, Mousnier et al. [26] and Chen et al. [27] over-

ame the defocus noise problem in LFR by recognizing the focused in-

ormation in FS. Recently, researchers regarded focal stack-based light

eld reconstruction (FS-LFR) as an inverse problem and proposed dif-

erent iterative algorithms to obtain optimized light fields [28–32] . 

Although the works mentioned above can successfully recover the

ight field information from FS, there is still a problem in FS-LFR that

as not been discussed and analyzed yet. In the process of acquiring

Ss in image space and reconstructing light fields in object space, the

nconsistency of image-space recording and object-space reconstruction

ill reduce the LFR accuracy due to the nonlinear mapping between

he image and object spaces of the camera. In this work, for the first

ime, we investigate the object-image space consistency problem for

igh-accuracy FS-LFR. We used a pre-calibrated light field camera to

stablish the precise metric mapping between image and object spaces

37] , based on which light fields in the two spaces were reconstructed

sing the same FS. The reconstructed light fields were compared with

he reference signal provided by the light field camera to discuss and

nalyze the reconstruction performance in digital refocusing, viewpoint

witching, angular resolution, depth range, and sampling rate. Exper-

mental results demonstrate that the object-image space inconsistency

ignificantly reduces the FS-LFR accuracy, while the reconstruction error

s more sensitive to the edges of objects, viewpoint, and depth range. It

erifies the necessity of object-image space consistency for high-quality

S-LFR, which can be used as a mechanism to realize and apply compu-

ational light field imaging when the recording and reconstruction lie in

onlinear mapping spaces. 

rinciple and method 

.1. Light field characterization 

The term "Light Field" was first introduced by Gershun in 1939

38] to describe the radiation propagation of light rays in space. In

991, Adelson and Bergen [39] proposed a seven-dimensional plenop-

ic function to characterize the distribution of light rays in visual space:

 ( 𝑥, 𝑦, 𝑧, 𝜃, 𝜔, 𝜆, 𝑡 ) , which represents that a light ray with a wavelength 𝜆

asses through a position ( 𝑥, 𝑦, 𝑧 ) at angles ( 𝜃, 𝜔 ) at a moment t . In 1996,

evoy and Hanrahan [40] proposed the light field rendering theory in

hich the attenuation of light propagation in free space was neglected

o that the plenoptic function was reduced to 4D. As shown in Fig. 1 (a),

ach light ray in space can be represented by a straight line intersecting

wo parallel planes, i.e., 𝐿 ( 𝑥, 𝑦, 𝑢, 𝑣 ) , where 𝐿 denotes the radiance and

 𝑥, 𝑦 ) , ( 𝑢, 𝑣 ) denote the spatial and angular coordinates, respectively. In
2 
998, Camahort et al. [41] proposed another light field representation,

s shown in Fig. 1 (b), where a light ray in space crosses a plane ( 𝑥, 𝑦 ) at

ngles ( 𝜃, 𝜔 ) , denoted as 𝐿 ( 𝑥, 𝑦, 𝜃, 𝜔 ) . 

.2. Light field reconstruction based on focus stack 

In the process of FS-LFR, the sensor records a series of intensity im-

ges to obtain an FS by changing the relative distance between the cam-

ra and the measured object (e.g., object distance, image distance, and

ocal length), as shown in Fig. 2 (a). The FS recorded using a traditional

amera reflects the transport-of-intensity property in light field propa-

ation, which can be regarded as a digital modulator for incident light

elds. In the spatial domain, the intensity transmission of light fields is

quivalent to light field projection along different directions, as shown

n the right side of Fig. 2 (b). Light field projection carries rich informa-

ion about the light field structure, based on which the light field can

e reconstructed from FS. Levin et al. [42] pointed out that in the spa-

ial frequency domain, the energy of light field intensity transmission is

ainly concentrated in a 3D subset of the 4D light field spectrum, i.e., a

imensionality gap exists. The light field information can be (partially)

ecovered from FS by giving an appropriate light field prior assumption

r establishing an appropriate inverse reconstruction model. The latter

or FS-LFR is discussed in detail below. 

As visualization in the light field coordinate system, light field prop-

gation is equivalent to a shear operation on light fields, namely resam-

ling spatial coordinates using angular coordinates and a shear factor.

n object space, the shear factor is the light field propagation distance

𝑧 . By spatially shearing and angularly integrating the light field, an in-

ensity image on a specific focal plane can be obtained, based on which

 light field forward imaging model can be established as 

 Δ𝑧 ( 𝑥, 𝑦 ) = ∬ 𝐿 obj ( 𝑥 + Δ𝑧𝜃, 𝑦 + Δ𝑧𝜔, 𝜃, 𝑤 ) 𝑑 𝜃𝑑 𝜔 (1) 

here 𝑖 Δ𝑧 represents the integrated image in object space. In fact, images

re acquired in image space using a camera. In this case, the light field

orward imaging mode can be expressed as 

 𝛼𝑚 
( 𝑥, 𝑦 ) = ∬ 𝐿 im 

(
𝑥 + 

(
1 − 

1 
𝛼

)
𝑢, 𝑦 + 

(
1 − 

1 
𝛼

)
𝑣, 𝑢, 𝑣 

)
dudv (2) 

here 𝛼 denotes the shear factor in image space, which is the ratio of

he distance from the sensor plane to the main lens and the focal length.

S can be obtained by equivalently varying the shear factor: { 𝑖 𝛼𝑚 } , 𝑚 =
 , 2 , ⋯ , 𝑀 , where M is the number of images in FS. 

Once FS is obtained, LFR becomes an inverse solution of the forward

maging model. In practice, the propagation distance Δ𝑧 is known, for

xample, using a translation stage, and the object-space light field can

e reconstructed from FS by constructing an inverse problem as follows:

𝑟𝑔 min 
𝐿 obj 

∑
𝑚 

||𝑖 𝛼𝑚 ( 𝑥, 𝑦 ) − 

∑
𝜃

∑
𝜔 

𝐿 obj 

(
𝑥 + Δ𝑧 𝑚 𝜃, 𝑦 + Δ𝑧 𝑚 𝜔, 𝜃, 𝜔 

)||2 (3) 

The left side of Fig. 2 (b) illustrates the sampling result of the recon-

tructed light field computationally optimized from the light field pro-

ection, where a point corresponds to a light ray in Fig. 2 (a). The inverse
Fig. 1. Light field parameterization: (a) two- 

plane model; (b) position-angle model. 
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Fig. 2. Schematic diagram of FS-LFR: (a) light field in image space propagates to different image planes to form an image stack, which is used to reconstruct the 

light field in object space by virtue of the transport-of-intensity property in FS; (b) light field coordinate system associated with (a), the image stack is equivalent 

to the projection of the light field along different directions, and LFR is equivalent to correspondingly recover a point set in the coordinate system, where a point 

corresponds to a light ray in (a); (c) nonlinear metric mapping curve of depths between object and image spaces. 
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Fig. 3. Residual distribution curves of iterative LFR in object and image spaces, 

respectively. 
odel in Eq. (3) involves two light field shear factors, Δ𝑧 and 𝛼, which

orrespond to the depth dimensions of light field propagation in object

nd image spaces, respectively. The relationship of depth mapping is

onlinear [33–37] , as shown by the mapping curve in Fig. 2 (c). Cai et al .

37] established an accurate depth metric mapping of a light field cam-

ra between object and image spaces: 𝑍 𝑓 = ( 𝑚 1 𝛼 + 𝑚 2 )∕( 𝛼 + 𝑚 3 ) , where

 𝑓 is the object-space depth in the light field coordinate system, and

 𝑚 1 , 𝑚 2 , 𝑚 3 } are the mapping coefficients. It can be seen that the same

ropagation distance in object space actually corresponds to different

epth distances in image space. This inconsistency between the image-

pace recording and object-space reconstruction will inevitably intro-

uce LFR error. 

In this paper, we discuss and analyze the object-image space consis-

ency problem in FS-LFR in detail. To this end, based on the previous

ork, we precisely establish the object-image space mapping relation-

hip of a light field camera. Accordingly, the propagation distance Δ𝑧
n object space can be converted to the shear factor 𝛼 in image space so

hat the inverse reconstruction model can be modified as follows: 

rg min 
𝐿 im 

∑
𝑚 

‖‖‖‖‖𝑖 𝛼𝑚 ( 𝑥, 𝑦 ) − 

∑
𝑢 

∑
𝑣 

𝐿 im 

( 

𝑥 + 

( 

1− 

1 
𝛼𝑚 

) 

𝑢, 𝑦 + 

( 

1− 

1 
𝛼𝑚 

) 

𝑣, 𝑢, 𝑣 

) ‖‖‖‖‖
2 

(4) 

In Eq. (4) , both FS and LFR belong to the image space of the camera

nd thus satisfy the consistency condition, which will result in high-

uality FS-LFR theoretically. 

esults and analysis 

In this section, we experimentally validate and analyze the effect of

bject-image space consistency on FS-LFR. A light field camera (Lytro

llum) was used to capture light field images as reference light fields

 ref . The light field camera was pre-calibrated to determine the depth

etric mapping coefficients between object and image spaces. It should
3 
e noted that the implementation of FS-LFR does not depend on whether

he light field camera is calibrated or not. The calibrated depth range

as 200 mm. The simulated FS was the image sequence calculated by

he forward imaging model in Eq. (2) using shear factors correspond-

ng to equal propagation distances in the depth range. Then, light fields

n object and image spaces were reconstructed according to the inverse

odels in Eqs. (3) and (4) , obtaining 𝐿 obj and 𝐿 im , respectively. By quan-

itatively comparing with 𝐿 ref , the object-image space consistency anal-

sis of FS-LFR was performed. 

In the experiment, an FS consisted of 15 refocused images based on

 ref decoded with spatial and angular resolutions of 434 × 625 and 9 × 9

33] . In the process of iterative LFR, the residual distribution curves of

 im and 𝐿 obj are shown in Fig. 3. It can be seen that both reconstructions

an converge after a certain number of iterations, but the overall error
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Fig. 4. Digital refocusing of reconstructed light fields in ob- 

ject and image spaces: (a) refocused images of 𝐿 im ; (b) – (c) 

front views related to the red and orange wireframes marked 

in (a) and their error maps, respectively; (d) refocused images 

of 𝐿 obj ; (e) – (f) front views related to the red and orange wire- 

frames marked in (d) and their error maps, respectively; (g) –

(h) cross-sectional distribution curves of the refocused images 

of 𝐿 im , 𝐿 obj , and 𝐿 ref at the same focal depths, related to the 

white lines marked in (b) and (c), along with the enlarged lo- 

cal views marked by the red and blue wireframes in (g) and 

(h), respectively. 

o  

t  

1  

h  

t  

e  

o  

t

3

 

r  

i  

v  

i  

o  

c  

𝐿  

r  

a  

i  

t  

v  

e  

o  

o

3

 

i  

m  

V  

fi  

c  

o  

p  

t  

C  
f 𝐿 im is always less than that of 𝐿 obj . Specifically, the error of 𝐿 im drops

o 0.0167 after 300 iterations, while the error of 𝐿 obj is still as high as

0.8670 after 1000 iterations. Intuitively, FS-LFR exhibits the overall

igh-quality performance on efficiency and accuracy when satisfying

he object-image space consistency. Comprehensively considering the

fficiency and accuracy of FS-LFR, we chose 𝐿 im and 𝐿 obj , which were

ptimized through 300 iterations and 1000 iterations respectively, for

he following comparison and analysis from different aspects in detail. 

.1. Digital refocusing 

The reconstructed 𝐿 im and 𝐿 obj were first used to perform digital

efocusing, which involved partial 3D structure of light fields, as shown

n Fig. 4 (a) and 4(d), respectively. Fig. 4 (b) and 4(c) show two front

iews of the refocused images marked by the red and orange wireframes

n Fig. 4 (a), along with the corresponding error maps compared with the

riginal FS. Fig. 4 (e) and 4(f) show similar results related to Fig. 4 (d). In

omparison, the refocused error of 𝐿 im is significantly less than that of

 obj , which is consistent with the result shown in Fig. 3 . In particular, the

efocusing error of 𝐿 obj is more sensitive to the edges of objects. Fig. 4 (g)
4 
nd 4(h) show the cross-sectional distribution curves of the refocused

mages of 𝐿 im , 𝐿 obj , and 𝐿 ref at the same focal depths, corresponding

o the white lines marked in Fig. 4 (b) and 4(c), respectively. The local

iews related to the red and blue wireframes in Fig. 4 (g) and 4(h) are

nlarged and shown below. It can be seen that there is a higher degree

f anastomosis between 𝐿 im and 𝐿 ref , while 𝐿 obj has a degree of overall

ffset. 

.2. Viewpoint switching 

In this subsection, multi-view imaging of 𝐿 im and 𝐿 obj was exhib-

ted and compared with that of 𝐿 ref . Fig. 5 (a) and 5(d) show the sketch

aps of viewpoint switching related to 𝐿 im and 𝐿 obj , respectively (see

isualization 1). The central and boundary views of reconstructed light

elds were chosen for comparison. Fig. 5 (b) and 5(c) show the enlarged

entral and boundary sub-aperture images of 𝐿 im related to the red and

range wireframes marked in Fig. 5 (a), along with the error maps com-

ared with that of 𝐿 ref , respectively. Similarly, Fig. 5 (e) and 5(f) show

he results related to the central and boundary views marked in Fig. 5 (d).

ompared with digital refocusing in Fig. 4 , the multi-view error becomes
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Fig. 5. Viewpoint switching of reconstructed light fields in ob- 

ject and image spaces: (a) sketch map of multi-view imaging of 

𝐿 im ; (b) – (c) enlarged central and boundary sub-aperture im- 

ages related to the red and orange wireframes marked in (a), 

along with the corresponding reconstruction error maps, re- 

spectively; (d) sketch map of multi-view imaging of 𝐿 obj ; (e) –

(f) enlarged central and boundary sub-aperture images related 

to the red and orange wireframes marked in (d), along with 

the corresponding reconstruction error maps, respectively; (g) 

– (h) cross-sectional distribution curves of the central and 

boundary sub-aperture images of 𝐿 im , 𝐿 obj , and 𝐿 ref , related 

to the white lines marked in (b) and (c), respectively. 
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ore considerable because the entire 4D structure of light fields is con-

idered in this situation. In addition, it can be seen that the reconstruc-

ion accuracy from the central view is higher than that from the bound-

ry view for both 𝐿 im and 𝐿 obj . This may be related to the lens distortion

ince the aberration at the edge part of the lens is generally larger than

hat at the central part. In practice, taking imaging distortion into ac-

ount in light field metric mapping can improve the precision of light

eld depth/3D measurement [43] . In this work, we do not analyze this

ffect in depth but leave it for future work. 

Comparing respectively Fig. 5 (b) and 5(c) with Fig. 5 (e) and 5(f), it

an be seen that the accuracy of 𝐿 im is higher than that of 𝐿 obj at differ-

nt viewpoints. As with the refocused images in Fig. 4 , the multi-view

mage error of 𝐿 obj is more sensitive to the edges of objects. Fig. 5 (g)

nd 5(h) show the cross-sectional distribution curves for the central and

oundary sub-aperture images of 𝐿 im , 𝐿 obj , and 𝐿 ref , related to the white

ines marked in Fig. 5 (b) and 5(c), respectively. Similarly, the distribu-

ion curves for 𝐿 im and 𝐿 ref largely coincide with each other in both

entral and boundary views. In the central view, the distribution curve

or 𝐿 obj shows a fluctuation effect to some extent, while in the boundary

iew, the fluctuation effect becomes more significant. 
5 
.3. Angular resolution 

The above comparison experiments of FS-LFR were based on a con-

tant angular resolution (i.e., 9 × 9). In this subsection, we discussed

he effect of angular resolution on FS-LFR. As a computational light

eld imaging technique, FS-LFR with additionally selected angular res-

lutions of 5 × 5 and 7 × 7 were performed in object and image spaces,

espectively. In the experiment, the angular sampling rate was kept con-

tant, so different angular resolutions were equivalent to using the main

ens with different aperture sizes for FS-LFR. Fig. 6 (a) and 6(c) show

he error maps from different views of 𝐿 im and 𝐿 obj corresponding to

he three angular resolutions, respectively. Fig. 6 (b) and 6(d) plot the

rror distribution curves of 𝐿 im and 𝐿 obj for different views, correspond-

ng to the red lines marked in Fig. 6 (a) and 6(c), respectively. It can be

een that the reconstruction error of 𝐿 im is much lower than that of 𝐿 obj ,

nd the latter is still sensitive to the edges of the measured objects, re-

ardless of the angular resolution chosen for FS-LFR. Furthermore, the

rrors of both 𝐿 im and 𝐿 obj increase with the angular resolution. From

he perspective of numerical computation, the attempt to recover more

nformation using the same detected signals is associated with greater
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Fig. 6. FS-LFR with different angular resolutions: (a) error maps of 𝐿 im at different views; (b) error distribution curves related to the red lines marked in (a); (c) 

error maps of 𝐿 obj at different views; (d) error distribution curves related to the red lines marked in (c). 

6 
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Fig. 7. FS-LFR at different depth ranges: (a) error maps of 𝐿 im at different views; (b) error distribution curves related to the red lines marked in (a); (c) error maps 

of 𝐿 obj at different views; (d) error distribution curves related to the red lines marked in (c). 

7 
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Fig. 8. FS-LFR at different depth sampling rates: (a) error maps of 𝐿 im at different views; (b) error distribution curves related to the red lines marked in (a); (c) error 

maps of 𝐿 obj at different views; (d) error distribution curves related to the red lines marked in (c). 
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Fig. 9. FS-LFR at different viewpoints and depth ranges: (a) different viewpoint maps of 𝐿 im in 𝑧 whole ; (b) error maps of 𝐿 im at different views; (c) different viewpoint 

maps of 𝐿 obj in 𝑧 whole ; (d) error maps of 𝐿 obj at different views. 
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Table 1 

LFR error at different depth ranges. 

( 𝜃, 𝜔 ) ( − 4, − 4) (0, 0) (4, 4) 

RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM 

𝐿 im 𝑧 front 0.0102 39.7912 0.8673 0.0089 40.6937 0.8662 0.0115 38.7947 0.8273 

𝑧 back 0.0141 36.9885 0.8587 0.0177 35.0519 0.7885 0.0175 35.1547 0.7874 

𝑧 whole 0.0061 44.2559 0.9123 0.0048 46.3601 0.9210 0.0080 41.9536 0.8694 

𝐿 obj 𝑧 front 0.0443 27.0645 0.6751 0.0360 28.8680 0.7036 0.0441 27.1125 0.6073 

𝑧 back 0.0285 30.9158 0.7196 0.0369 28.6530 0.6861 0.0327 29.7087 0.6934 

𝑧 whole 0.0872 21.1899 0.5418 0.1025 19.7819 0.5454 0.0879 21.1190 0.5419 

Table 2 

LFR error at different depth sampling rates. 

( 𝜃, 𝜔 ) (-4,-4) (0,0) (4,4) 

RMSE PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM 

𝐿 im N = 6 0.0064 43.8939 0.9067 0.0049 46.2201 0.9204 0.0082 41.7278 0.8641 

N = 9 0.0062 44.1068 0.9112 0.0048 46.3351 0.9210 0.0080 41.8983 0.8686 

N = 15 0.0061 44.2559 0.9123 0.0048 46.3601 0.9210 0.0080 41.9536 0.8694 

𝐿 obj N = 6 0.0855 21.3592 0.5512 0.1050 19.5751 0.5449 0.0870 21.2139 0.5462 

N = 9 0.0861 21.2970 0.5502 0.1038 19.6747 0.5462 0.0874 21.1735 0.5486 

N = 15 0.0872 21.1899 0.5418 0.1025 19.7819 0.5454 0.0879 21.1190 0.5419 
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omputational uncertainty. From the perspective of light field imaging

echanism, a smaller angular resolution corresponds to a lower angu-

ar frequency sampling rate when the angular sampling rate is constant.

hus, the effect of the dimensionality gap between 3D FS and 4D light

eld on FS-LFR is reduced to some extent. However, high-accuracy FS-

FR using small angular resolution may sacrifice the sensitivity of re-

onstructed light fields to depth sensing. 

.4. Depth range and sampling rate 

According to the Fourier slice photography, the spectrum of a refo-

used image is a slice of 4D light field spectrum, so FS is equivalent to

he plane sampling in light field spectrum space. In this subsection, we

nalyzed the effect of the spectrum sampling rate on FS-LFR. The pri-

ary considerations are the depth range of FS and the depth sampling

ate. The former is associated with the frequency coverage of the light

eld spectrum, and the latter corresponds to the plane sampling rate in

 specific frequency range. 

For the depth range, we divided the calibration space of the light

eld camera into three parts: 𝑧 front ∈ ( 440 , 500 ) , 𝑧 back ∈ ( 580 , 640 ) , and

 whole ∈ ( 440 , 640 ) . Keeping the same depth sampling rate, 𝐿 im and 𝐿 obj 
ere reconstructed in the three depth ranges and then compared with

 ref . Fig. 7 (a) shows the error maps of 𝐿 im at different views (see Visu-

lization 2), where the error distribution curves related to the marked

ed lines are shown in Fig. 7 (b). Fig. 7 (c) and 7(d) show the error maps

nd distribution curves of 𝐿 obj at different views, respectively. Simi-

arly, no matter which depth range is used, the error of 𝐿 im is smaller

han that of 𝐿 obj . Intuitively, it can be seen that the increase in the depth

ange improves the accuracy of 𝐿 im . However, the result related to 𝐿 obj 
hows an opposite trend, i.e., the accuracy decreases with increasing

he depth range. Table 1 lists the relative values of root-mean-square

rror (RMSE), peak signal-to-noise ratio (PSNR), and structural simi-

arity (SSIM) corresponding to the error maps in Fig. 7 . These values

uantitatively reflect the observed phenomena in Fig. 7 . Specifically,

he increase of the depth range respectively improves the average RMSE,

SNR, and SSIM by –52.69%, 17.07%, and 8.21% for 𝐿 im , but respec-

ively impair the relative values by 149.53%, –27.94%, and –20.24% for

 obj . Consequently, increasing the frequency coverage with the detec-

ion depth range can effectively improve the FS-LFR accuracy when the

bject-image space consistency is satisfied. On the contrary, if the con-

ition is not met, the reconstruction error becomes significantly larger

ith increasing the depth range. 
10 
For the depth sampling rate, we reconstructed light fields in object

nd image spaces using FS containing 6, 9, and 15 images, respectively,

ithin the same depth range 𝑧 whole . Fig. 8 (a) and 8(c) show the error

aps of 𝐿 im and 𝐿 obj at different views, respectively, while the cor-

esponding error distribution curves related to the red lines marked

n Fig. 8 (a) and 8(c) are shown in Fig. 8 (b) and 8(d), respectively.

able 2 lists the RMSE, PSNR, and SSIM values corresponding to the

rror maps in Fig. 8 . Similar to FS-LFR at different depth ranges, the

ccuracy of 𝐿 im is higher than that of 𝐿 obj at different depth sampling

ates. It can be seen from Fig. 8 and Table 2 that a higher depth sampling

ate results in a lesser error of 𝐿 im and a larger error of 𝐿 obj . However,

he effect of the depth sampling rate on FS-LFR is small compared to

hat of the depth range. 

.5. Other scenes 

In this section, we demonstrate the influencing factors by measuring

nother scene. It can be seen that the viewpoint and depth range are

wo main factors for FS-LFR (see also Discussion). We reconstructed 𝐿 im 
nd 𝐿 obj in the three depth ranges: 𝑧 front ∈ ( 440 , 500 ) , 𝑧 back ∈ ( 580 , 640 ) ,
nd 𝑧 whole ∈ ( 440 , 640 ) . Fig. 9 (a) shows different viewpoint maps of 𝐿 im 
n 𝑧 whole . The error maps of 𝐿 im at different viewpoints and depth ranges

re shown in Fig. 9 (b). Fig. 9 (c) and (d) show the viewpoint and error

aps of 𝐿 obj . Similar to the comparison results in Fig. 7 , the error of

 im is smaller than that of 𝐿 obj in any depth range. Furthermore, when

atisfying the object-image space consistency, the increase of the depth

ange can effectively improve the LFR accuracy. 

iscussion 

The comparison and analysis of FS-LFR between object and image

paces from four aspects, involving digital refocusing, viewpoint switch-

ng, angular resolution, and depth range and sampling rate, can be sum-

arized as follows: 

(1) FS-LFR satisfying the object-image space consistency boasts a

higher accuracy and less error in multi-view and refocused im-

ages regardless of angular resolution, depth range, and depth

sampling rate. 

(2) Among the influencing factors on FS-LFR in comparison and anal-

ysis, two aspects have nothing to do with the object-image space

consistency. First, the FS-LFR error in the central view is gener-

ally smaller than in other views, which may be associated with
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the imaging distortion of the main lens. Second, the FS-LFR error

decreases with the angular resolution, which in turn may reduce

the sensitivity of light field depth sensing. 

(3) When against the object-image space consistency, the FS-LFR er-

ror for refocused and multi-view images is sensitive to the edges

of objects. Even for the central sub-aperture image, the recon-

struction error is still more significant at the edges of objects. 

(4) Increasing the depth range and sampling rate of FS can effectively

improve the LFR accuracy when satisfying the object-image space

consistency. On the contrary, increasing the depth range of FS

will significantly reduce the LFR accuracy in the case of incon-

sistency. In comparison, the effect of the depth sampling rate on

FS-LFR is weaker. 

onclusion 

In this paper, we investigate the object-image space consistency of

S-LFR on the base of the pre-calibrated metric mapping of depths be-

ween object and image spaces. In experiments, we quantitatively com-

ared and analyzed the reconstruction performances of FS-LFR in the

wo spaces in terms of four aspects: digital refocusing, viewpoint switch-

ng, angular resolution, and depth range and sampling rate. The results

alidate that the object-image space consistency needs to be met for

igh-accuracy FS-LFR. In practice, when using a traditional camera to

apture an image sequence for high-quality computational light field

maging and measurement, the images can be transformed into the space

here light field information are recovered through pre-calibrating the

amera, which will be studied and realized in our future work. 
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