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Deep learning based fringe-pattern
analysis with uncertainty estimation:
supplemental document

This document provides the information about the theory and the implementation of the Bayesian
convolutional neural network (BNN) using Concrete dropout, the optical set-up, the prediction
of the phase and the uncertainty maps, the evaluation of predicted uncertainty, and other supple-
mentary contents to the primary manuscript “Deep learning based fringe-pattern analysis with
uncertainty estimation”.

1. THE BNN APPROXIMATED BY CONCRETE DROPOUT AND DETAILS ABOUT ITS
PREDICTION

To calculate the uncertainty of a neural network, people usually place a priori probability distri-
bution on the weights of the neural network. BNN replaces the deterministic network’s weight
parameters with probability distributions over them. Here, we present a BNN that uses the
Concrete dropout [1] to approximate Bayesian inference in deep Gaussian processes for learning
the numerator M (x, y) and the denominator D (x, y) statistically. We assume that X is a set of

input fringe images, which can be represented as X =
{

xk
}K

k=1
where xk is the kth input fringe

pattern and K the size of the set. Y is a set of ground-truth labels corresponding to the training

data, which can be written as Y =
{

yk
}K

k=1
where yk consists of the ground-truth numerator and

denominator (Mk, Dk). w represents the weight matrix of the BNN. To investigate the distribution
of the output of BNN, we model the predictive distribution p (y∗|x∗, X, Y) as

p (y∗|x∗, X, Y) =
∫

p (y∗|x∗, w)p (w|X, Y) dw, (S1)

where p (y∗|x∗, w) is the probability of the output y∗ given the input x∗, the weights w and
p (w|X, Y) the probability of the weights w given the training data (X, Y). The distribution
p (y∗|x∗, w) describes the data uncertainty and the distribution p (w|X, Y) characterizes the
model uncertainty.

To measure the data uncertainty, we assume that yk has N pixels, p
(

yk|xk, w
)

can then be
written as

p
(

yk|xk, w
)
=

N
Π

i=1
p
(

yk
i |x

k, w
)

. (S2)

Assume that the distribution of yk is Gaussian for pixel i, p
(

yk
i |x

k, w
)

can be calculated as

p
(

yk
i |x

k, w
)
=

1√
2πσk

i
exp

− (yk
i − µk

i )
2

2(σk
i )

2

 , (S3)

where the pixels are assumed to be independent, and µk
i is the mean and σk

i the standard deviation
of the pixel. The data uncertainty can be captured by minimizing the negative log-likelihood
function at the training stage

− 1
K ∑

k
log p

(
yk|xk, w

)
=

1
K

K

∑
k=1

[
1

2(σk)
2

∥∥∥yk − ŷk
∥∥∥2

+
1
2

log (σk)
2
]

, (S4)

where y is the ground truth label, ŷ the result predicted by BNN, and σ2 the predicted variance.
Our BNN learns to output ŷ and σ2 during the training. It is noteworthy that it is not necessary
to collect the ground-truth variance σ2. It can be learned automatically by the minimizing the Eq.
(S4).

To measure the model uncertainty, the Concrete dropout network is applied [1]. Here, the
dropout rate of each layer is no longer fixed and can be tuned automatically in the training stage.



By placing the Concrete dropout before every weight layer, we can use a simple variational
distribution q (w) to approximate p (w|X, Y) that is usually hard to calculate analytically. By
using the Monte Carlo (MC) integration over T samples satisfying w(t) ∼ q (w), Eq. (S1) can be
approximated as

p (y∗|x∗, X, Y) ≈
∫

p (y∗|x∗, w)q (w) dw ≈ 1
T

T

∑
t=1

p
(

y∗|x∗, w(t)
)

. (S5)

At the training stage, the loss function of our BNN can be defined according to the variational
interpretation as [1]

LBNN=− 1
K

K

∑
k=1

log p
(

yk|xk, w
)
+

1
K

KL [q (w) ||p (w|X, Y)] . (S6)

where the first term is the mentioned negative log-likelihood function and the second term is the
Kullback–Leibler(KL) divergence that be used to minimize the difference between the selected
simple distribution and the actual distribution. The drop rate is learned with convergence of the
KL divergence. Regarding the second term of LBNN , since we adopt a simple distribution q (w)
to approximate the complex p (w|X, Y), we hope that the difference between them could be as
smaller as possible. The distribution q (w) can be written as

q (w) = Π
l

qwd
l
(wl) . (S7)

And qwd
l
(wl) can be expressed as

qwd
l
(wl) =wd

l · diag
[

Bernoulli(1− pl)
Sl
]

, (S8)

where L is the number of dropout layers, wd
l the deterministic weights of the lth layer, wl the

stochastic weights obtained after applying the dropout on wd
l . pl is the dropout rate of the lth

layer and Sl the size of weights wl . The KL divergence in Eq. (S6) can be approximate according
to [1]

KL [q (w) ||p (w|X, Y)] =
L

∑
l=1

KL
[
qwd

l
(wl) ||p (wl)

]
, (S9)

KL
[
qwd

l
(wl) ||p (wl)

]
=λ1

l2 (1− pl)

2

∥∥∥wd
l

∥∥∥2
− λ2Sl H (pl) , (S10)

where λ1 is the regularizer for the weights and λ2 the regularizer for the dropout. H (pl) is the
entropy of a Bernoulli random variable with probability pl that can be written as

H (pl) = −pl log pl − (1− pl) log (1− pl) . (S11)

In Concrete dropout, the Concrete distribution is a continuous distribution that is applied to
approximating discrete Bernoulli random variables. For traditional dropout where the discrete
Bernoulli distribution is applied, the random variable can only take 0 or 1. In this work, however,
we sample realizations from the Concrete distribution with some temperature α which results
in fractional values between 0 and 1. For the discrete Bernoulli random variable z, the Concrete
distribution relaxation zc can be parameterized as a sigmoid function

zc = sigmoid
{

1
α
[log pl − log (1− pl) + log u− log (1− u)]

}
, (S12)

where the random variable u has an uniform distribution, i.e., u ∼ U (0, 1). The temperature
α is positive and a small value is suggested for our applications (here, the α is selected as 2/3
empirically). By the Concrete dropout, the dropout probability of each layer can be optimized
during the training of BNN. Further experimental results corresponding to the learned dropout
rates are provided in the section of Dropout rates learned by BNN.

At the prediction stage, the diagram is shown in the Fig. 1 of the main manuscript. The dropout
layers in our BNN randomly set input neurons to zero with learned dropout rates. By collecting
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the results of stochastric forward propagation through the trained model, the predictive mean
can be computed and be used as the prediction of BNN

µ̂ = E (y∗|x∗, X, Y) ≈ 1
T

T

∑
t=1

E
(

y∗|x∗, w(t)
)
=

1
T

T

∑
t=1

y∗(t), (S13)

where E is the expectation. The model uncertainty is measured by the variance of the predicted
results:

σ̂model =
√

E [Var (y∗ |w, x∗, X, Y )] ≈

√√√√ 1
T

T

∑
t=1

(
y∗(t) − µ̂

)2
. (S14)

Then, the data uncertainty is quantified by the average of the estimated variance:

σ̂data =
√

Var (E [y∗ |w, x∗, X, Y ]) ≈

√√√√ 1
T

T

∑
t=1

(σ2)

(t)

. (S15)

According to Eq. (S13), we can calculate the µ̂M and µ̂D over the T pairs of M and D by using

µ̂M =
1
T

T

∑
t=1

M∗(t), (S16)

µ̂D =
1
T

T

∑
t=1

D∗(t), (S17)

where M∗(t) and D∗(t) is the numerator and the denominator predicted by the model at tth MC
sampling respectively. By substituting µ̂M and µ̂D into the arctangent function, we obtain the
final wrapped phase µ̂ϕ by

µ̂ϕ= arctan
µ̂M
µ̂D

. (S18)

Then, according to Eqs. (S14) and (S15) the numerator’s model uncertainty and data uncertainty
can be calculated by

σ̂model
M =

√√√√ 1
T

T

∑
t=1

(
M∗(t) − µ̂M

)2
. (S19)

σ̂data
M =

√√√√ 1
T

T

∑
t=1

(
σ2

M
)(t), (S20)

The uncertainties of the denominator can be obtained in the same way. Next, with the model/data
uncertainty of the numerator and denominator, we can compute the corresponding uncertainties
of the phase using the propagation of uncertainty

σ̂model
ϕ =

√(
∂ϕ

∂M
σ̂model

M

)2
+

(
∂ϕ

∂D
σ̂model

D

)2
, (S21)

σ̂data
ϕ =

√(
∂ϕ

∂M
σ̂data

M

)2
+

(
∂ϕ

∂D
σ̂data

D

)2
, (S22)

where σ̂data
ϕ is the data uncertainty of the phase and σ̂model

ϕ the model uncertainty of the phase,
and ϕ = arctan (M/D).

Actually, one may also calculate the T wrapped phase maps with T pairs of M and D and then
take the average over them for the mean wrapped phase. We show the error of this strategy with
our experiment where the condition is the same as the one of the main manuscript. The test
objects are two plaster models. The absolute phase error is shown in Fig. S1 (a). We can see that
there are many points that are calculated with obvious errors as can be found from our selected
ROIs. On contrary, these errors can be avoided with the proposed method as shown in Fig. S1 (b).
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Fig. S1. Comparison of the absolute phase error. (a) The phase error of the unwrapped phase
that is obtained by unwrapping the mean of T wrapped phase maps calculated by T pairs of M
and D. (b) The phase error of the proposed method.
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2. THE STRUCTURE AND THE IMPLEMENTATION OF BNN

Our BNN is constructed based on the architecture of the U-Net that is a fully convolutional
networks with a encoder and a decoder [2]. Figure S2 shows the architecture of the BNN, in
which we add Concrete dropout layers prior to every convolutional layers. The input of the
network is a fringe image and we train the model to learn to predict the numerator M, the
denominator D and their variance maps. To be specific, the input fringe image in our experiments
has resolution of W × H. It is then handled by the encoder, where C channels of features are
extracted from the fringe pattern (C=50 in our experiments) by the convolutional layer that is
activated by the rectified linear unit (ReLU) as activation function, i.e., ReLU(x) = max(0, x). The
extracted features are then down-sampled by 1/2 along both x and y directions. With the next
several similar down-sampling convolutional blocks that extract more image details at different
scales, high-level features of W

16 ×
H
16 × 16C are obtained by the encoder at last. They are then

handled by the decoder that performs up-sampling to synthetize and recover the final results of
the input image’s original size. The up-sampling is carried out by bilinear interpolation that is
followed by some Concrete convolutional layers. A skip connection can be found at each step
of the decoder, which is used to concatenate the convolutional layers’ output with feature maps
from the encoder at the same level. Features at different levels can be collected at the same time
with this architecture. The last layer of our BNN is a merged layer that include two convolutional
layers. One is linearly activated and learns to output the numerator and the denominator. The
other one is activated by the softplus function (i.e., so f tplus (x) = log [exp (x) + 1]) and learns to
predict the variance of the numerator and denominator. The loss function is shown by Eq. (S6).
It is noteworthy that we only need to provide the ground-truth data for the numerator and the
denominator and the variance can be learned automatically.

H

Down-sampling 

layer

Up-sampling 

layer

Convolutional layer

(with Concrete dropout)

Merged convolutional layer

(Linear for 𝑀 and 𝐷; softplus for 𝜎𝑀
2 and 𝜎𝐷

2 )

Input

Channel 1

Channel 3

C

2C

8C 16C

4C

C

2C

8C
4C

×0.5

×0.5 ×0.5 ×2 ×2
×2

×2

×0.5

Skip connection

A fringe image

Encoder Decoder

W

𝑀 𝐷

C: number of channels

Channel 2

Channel 4

𝜎𝑀
2 𝜎𝐷

2

Fig. S2. The architecture of the proposed BNN that is built by modifying the U-Net. The input
is a single fringe pattern. The model learns to predict a four-channel tensor that includes the
numerator (M), the denominator (D) and their variance maps. Different from the architecture
of the traditional U-Net, the BNN has concrete dropout layers prior to every convolutional
layers. The dropout rates are learned during the training stage and are activated in the testing
stage.

To train the BNN, we captured fringe images of different kinds of objects. Our training dataset
consisted of 984 different fringe patterns, in which about 80% images were used for training
and the rest for validation. The ground-truth labels for each fringe pattern were computed with
the 12-step PS algorithm. Before being fed into the BNN, the input fringe pattern was divided
by 255 for normalization, which can make the learning easier for the network. In the training
stage of BNN, the adaptive moment estimation (ADAM) was used to tune the parameters to find
the minimum of the loss function [3]. In the implementation of ADAM, we started the training
with a learning rate of 10−4. We dropped it by a factor of 2 if the validation loss has stopped
improving for 10 epochs, which helps the loss function get out of local minima during training.
All the data processing and the DNN’s training and testing were implemented in Python by using
Keras. The number of MC sampling was 50. The dropout rate of each layer (22 layers in our
BNN) was learned by BNN during the training. Empirically, λ1 = 10−6 and λ2 = 10−5 were
used in this work. In each layer of BNN, the dropout rate was initialized randomly according
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to a uniform distribution [0.2, 0.6] and then it was updated within the range [0.0, 1.0] during the
training process. We further demonstrate experimental results of the learned dropout rates in the
section of Dropout rates learned by BNN.

3. OPTICAL SET-UP AND THE CALCULATION OF GROUND-TRUTH DATA

The fringe projection system consists of a projector (DLP 4100, Texas Instruments) with resolution
of 1024× 768 and a camera (V611, Vision Research Phantom) with resolution of 1280× 800. The
projector illuminates test objects with pre-designed fringe patterns and the camera captures
the images simultaneously from a different perspective. The captured fringe patterns are 8-bit
grayscale images. The schematic is shown in Fig. S3.

B

C

Projector Camera

Projector
pixel

Camera
pixel

Object 
point 

Fig. S3. Schematic of the fringe projection system.

To generate ground-truth labels, the 12-step phase-shifting (PS) algorithm was applied [4]. The
projected 12-step PS fringe patterns can be written as

Ip
n (xp, yp) = a + b cos

(
2π f xp − 2πn

Nps

)
, (S23)

where (xp, yp) is the pixel coordinate of the projector, Nps = 12, and n = 0, 1, 2, ..., 11. Parameters
a, b, f are the DC component, amplitude and spatial frequency of the fringe pattern, respectively.
The spatial frequency of the projected fringes is f = 160 in our experiments. These PS patterns
are projected onto a test object and the captured images can be expressed as

In(x, y) = A(x, y) + B(x, y)
[

ϕ(x, y)− 2πn
Nps

]
, (S24)

where (x, y) is the pixel coordinate of the camera, A the background signal, B the modulation,
and ϕ the phase of test objects. The ground-truth numerator and denominator (in Eq. (2) of the
primary manuscript) can be calculated as

M(x, y) =
Nps−1

∑
n=0

In(x, y) sin
(

2πn
Nps

)
, (S25)

D(x, y) =
Nps−1

∑
n=0

In(x, y) cos
(

2πn
Nps

)
. (S26)

4. EVALUATION OF PREDICTED UNCERTAINTY

The numerator and the denominator are predicted by BNN directly and the phase is obtained by
substituting them into the arctangent function. Since the uncertainties of phase are calculated
with the propagation of uncertainty, it is not easy to evaluate the phase uncertainties directly.
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Therefore, we tend to evaluate the accuracy of the predicted uncertainty of the numerator
and the denominator which are assume to have Gaussian distribution in our method. The
phase uncertainty can then be considered reliable if the uncertainty of the numerator and the
denominator are correct. To evaluate the uncertainty of the numerator and the denominator
predicted by BNN, the reliability diagram is computed [5], which demonstrates how the empirical
probability of the ground truth matches the predicted results. The probability density of a pixel i
to take an estimated value y is

fi (y
∗ = y) = p (y∗ = y |x∗, X, Y ) ≈ 1

T

T

∑
t=1

G
(
y; µt

i , σt
i
)
. (S27)

By defining the credible interval Cε
i =

[
ut

i − ε, ut
i + ε

]
. The credibility pε

i is the estimated probabil-
ity that the true mean falls within Cε

i

pε
i =

∫ µt
i+ε

µt
i−ε

fi (y) =
1
T

T

∑
t=1

[
F
(
µt

i + ε
)
− F

(
µt

i − ε
)]

(S28)

where F is the cumulative distribution function of the tth predicted Gaussian distribution from
the Monte Carlo sampling. The bound ε can be determined by the error propagation of the image
noise.

To create the reliability diagram, we define the bin interval ∆p and the number of bins is 1
/

∆p.
The mth bin Pm falls within (pm−1, pm]. The averaged credibility Cred (Pm, ε) takes the average
over the set of pixels Sε

m that have similar credibility within (pm−1, pm]

Cred (Pm, ε) =
1

NSε
m

∑
i∈(pm−1,pm ]

pi (S29)

where NSε
m

is the number of pixels in the set Sε
m. The empirical accuracy Acc (Pm, ε) can be defined

as the fraction of the pixels in the set Sε
m where the true mean µ∗i is within the corresponding

credible intervals Cε
i

Acc (Pm, ε) =
1

NSε
m

∑
i∈(pm−1,pm ]

I{µ̂i−ε≤µ∗i ≤µ̂i+ε} (S30)

In theory, the true mean is unknown and is approximated by the results obtained by 12-step
phase shifting algorithm in our experiments.

To analyze the predicted uncertainty for the numerator and the denominator, we created the
reliability diagrams for them respectively. The bound of the numerator εM and the denominator
εD can be obtained by

εM =

√√√√ Nps

∑
n=1

(
∂M
∂In

)2
σ2

In
(S31)

εD =

√√√√ Nps

∑
n=1

(
∂D
∂In

)2
σ2

In
(S32)

where the partial differential terms can be derived by Eqs. (S25) and (S26) and σIn is the image
noise during the capture. In the experiments, the tested image noise of our camera σIn is 2.4. The
bin interval ∆p was set as 0.04. Figure S4 shows the predicted numerator and the denominator of
the BNN for the test case where both the training data and the testing data are f = 160 fringe
patterns. It can be seen that the uncertainty maps can successfully indicate the errors of the
numerator and the denominator. From the reliability diagrams, although the model shows a little
overconfidence, the whole predicted credibility generally matches the actual accuracy, leading to
a curve close to y = x and indicating that the proposed model has been well calibrated.

Further, to test the accuracy of the predicted uncertainty maps for the out-of-distribution (OOD)
scenarios, we analyzed the estimated numerator and denominator in the case where the BNN was
trained with fringe patterns of projected frequency f = 160 but was tested with fringe patterns
of f = 80. The results are shown in Fig. S5, in which the error has been increased significantly
and this problem was captured successfully by our uncertainty maps. From the corresponding
reliability diagrams, we can see that the model has also been well calibrated in this case.
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Fig. S4. Analysis of the estimated uncertainty for the numerator and the denominator of in-
distribution testing data. In each scene, the first row corresponds to the results of the numera-
tor, and the second row corresponds to the results of the denominator. The reliability diagrams
indicate a well-calibrated BNN.

8



Fringe image

Mean numerator & 

mean denominator Data uncertainty Model uncertainty Reliability diagram Error

#1

0

10

20

30

50

40

60

0

30

60

90

150

120

0

10

20

30

50

40

60

0

10

20

30

50

40

60

0

10

20

30

50

40

60

#2

0

10

20

30

50

40

60

0

10

20

30

50

40

60

#3

Fringe image

Fringe image

0

30

60

90

150

120

0

30

60

90

150

120

0

30

60

90

150

120

0

30

60

90

150

120

0

30

60

90

150

120

Fig. S5. Analysis of the estimated uncertainty for the numerator and the denominator of out-
of-distribution testing data. In each scene, the first row corresponds to the results of the nu-
merator, and the second row corresponds to the results of the denominator. The error increases
significantly and the uncertainty maps faithfully captured this issue. From the reliability dia-
grams, the BNN has also been well calibrated in this case.
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5. ANALYSIS OF FRINGE PATTERNS IN UNSEEN IMAGE DOMAINS

More never-experienced (i.e., out-of-distribution) input data were tested to show the effectiveness
of the proposed method. In the first experiment, we trained the BNN with fringe images of spatial
frequency of f = 160 but tested it with fringe images of a different spatial frequency, i.e., f = 80.
The first scene consisted of two plaster models. The second scene was a plastic desktop fan and
the third an industrial part made of aluminum alloy. The first column of Fig. S6 demonstrates the
scenes captured with f = 80 projected gratings, which appear wider than the fringes of f = 160
as shown in the primary manuscript. The second column of Fig. S6 shows the wrapped phase of
BNN. After phase unwrapping, we calculated the absolute phase error of the BNN, and the results
are shown in the third column of Fig. S6. It can be seen that all the test scenes were measured
with heavy phase errors, which have been captured faithfully by both the data uncertainty and
the model uncertainty, as shown in the last two columns of Fig. S6.

#5

Test objects BNN error Data uncertainty Model uncertaintyBNN wrapped phase

#3

#1

0

0.3𝝅𝝅

-𝝅

0

𝝅

-𝝅
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0
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0
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0.4

0.6

0

0.2

0.4

0.6

0

0.2

0.4

0.6

Fig. S6. Experimental results when the BNN was trained with fringe images of spatial fre-
quency of f = 160 but was tested with fringe images of f = 80. The first column shows the
input fringe image. The second and the third show the wrapped phase and the phase error of
the BNN. The last two columns demonstrate the data uncertainty and the model uncertainty of
the predicted phase respectively.

In Table S1, we calculated the mean absolute error(MAE) and mean uncertainties for quantita-
tive comparison. It can be seen that the phase quality of BNN was severely degraded, since these
models never saw the fringes of f = 80 in the training stage. Compared with the errors shown
in Table S2 where both the training data and the testing data were captured from the projected
fringes of f = 160, the MAE of BNN here almost tripled or even quadrupled. Our BNN also
captured this problem, giving almost significant increasing uncertainties. Further, we find that
the change of the model uncertainty is more obvious than that of the data uncertainty, indicating
the model’s sharply rising uncertainty about its predictions.

Table S1. Quantitative analysis of the BNN when the testing data were captured from a differ-
ent image domain that consisted of fringes of f = 80.

#1 #2 #3

MAE of BNN (rad) 0.34 0.19 0.24

Mean data uncertainty (rad) 0.17 0.10 0.13

Mean model uncertainty (rad) 0.18 0.10 0.12

In the second experiment, we kept the training data unchanged but further modified the testing
dataset, which purely consisted of background images without any stripe structures. The input
images are shown in the first column of Fig. S7. The wrapped phase of BNN is demonstrated
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Table S2. Quantitative analysis of the BNN when both the training data and the testing data
were captured from the projected fringes of f = 160.

#1 #2 #3

MAE of BNN (rad) 0.072 0.071 0.066

Mean data uncertainty (rad) 0.073 0.072 0.059

Mean model uncertainty (rad) 0.029 0.026 0.024

in the second column. It can be seen that the predicted phase maps were terrible. As there is
no stripe structures in the input image, the outputs were far from normal wrapped phase maps.
The last two column of Fig. S7 show the uncertainty maps of the BNN, both of which have
indicated serious errors for these scenes. By calculating the mean uncertainty as shown in Table
S3 , we find that the second scene shows that largest mean data and model uncertainties that are
1.37 rad and 1.24 rad respectively while the first scene has the relatively small mean uncertainty
that is still around 0.7 rad. From these experiments, we can see that the phase error tends to
increase significantly when the testing image is extracted from a different image domain and the
uncertainty maps given by our BNN can faithfully predicted the corresponding error distribution.

Test objects Model uncertaintyBNN wrapped phase

#1
𝝅

-𝝅

0

𝝅

-𝝅

0

#3

𝝅

-𝝅

0

#2

Data uncertainty

0

2

1

0

2

1

0

2

1

Fig. S7. Experimental results when the BNN was trained with fringe images of spatial fre-
quency of f = 160 but was tested with background images that were captured without pro-
jected fringes. The first column shows the test scenes. The second column demonstrates the
wrapped phase predicted by BNN. The last two column show the data uncertainty and the
model uncertainty predicted by BNN respectively.

Table S3. Mean uncertainties of the BNN that was trained with fringe images of spatial fre-
quency of f = 160 but was tested with background images that were captured without pro-
jected fringes.

#1 #2 #3

Mean data uncertainty (rad) 0.76 1.37 1.23

Mean model uncertainty (rad) 0.69 1.24 0.52

11



6. PROCESSING FRINGE PATTERNS OF DIFFERENT SPATIAL FREQUENCIES

Here, we tested the BNN with fringes of different spatial frequencies. The selected spatial
frequency includes f = 40, f = 80, f = 160, and f = 200. Fringe patterns with the same
frequency form a group of training and testing dataset. Then, we trained and tested our BNN
with the fringe patterns that have the same spatial frequency. Figures S8, S9, S10, and S11
demonstrate the phase error and the uncertainty maps of the BNN in these cases. We can see
that when the frequency is 200, the phase error of the smooth region is relatively small. The
large error can be found at the areas with complex contour, such as the hair of the two models
and the edges of these objects. Also, we find that there are highlight regions in the second scene.
Since the pixels in the highlight region are saturated, it is difficult for the BNN to recover the
phase information of these regions accurately. We can see that the areas with large errors are
labeled with large data uncertainty and model uncertainty by the neural network. When the
spatial frequency reduced to 160, the surface with complex shapes still shows relatively large
errors, which are also indicated by the predicted uncertainty successfully. We can see that the
measurement error increases obvious when the frequency decreases to 40. Some smoother areas
begin to have increasing errors and the uncertainty maps have accurately captured this issue.

Figure S12 summarizes the BNN’s mean absolute error, mean data uncertainty, and mean
model uncertainty. Figure S12(a) shows the MAE of BNN. We can see that for our system when
the projection frequencies is 80 or 160, the measurement error of BNN is relatively small. When
the fringe becomes denser or sparser, the error begins to increase. The reason may be the fact
that when the fringes are dense, the modulation of the grating tends to decrease, thus leading
to larger errors. On contrary, if the fringe is too wide, most of the useful information would be
easily hidden in the wide and dark stripe, make the BNN hard to perceive. Figures S12(b) and (c)
show the measurement uncertainty of the phase. It can be found that for each tested scene, when
the BNN error increases, the corresponding data uncertainty and model uncertainty increase
accordingly. As this work only focuses on the uncertainty estimation of the neural network’s
output, the BNN trained by the f = 160 fringe patterns can used to validate the proposed method.
We tend to further investigate how to retrieve the phase accurately from quite dense or sparse
fringe patterns in the future.

Fringe image BNN error Data uncertainty Model uncertainty
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Fig. S8. Analysis of fringe patterns with f = 200. Three scenes were tested. The input fringe
image to the BNN is shown in the first column. The second column demonstrates the abso-
lute phase error of BNN (MAE: mean absolute error). The third and the fourth column shows
the data uncertainty (MDU: mean data uncertainty) and the model uncertainty (MMU: mean
model uncertainty) of predicted phase.
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Fringe image BNN error Data uncertainty Model uncertainty
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Fig. S9. Analysis of fringe patterns with f = 160. Three scenes were tested. The input fringe
image to the BNN is shown in the first column. The second column demonstrates the abso-
lute phase error of BNN (MAE: mean absolute error). The third and the fourth column shows
the data uncertainty (MDU: mean data uncertainty) and the model uncertainty (MMU: mean
model uncertainty) of predicted phase.
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Fig. S10. Analysis of fringe patterns with f = 80. Three scenes were tested. The input fringe
image to the BNN is shown in the first column. The second column demonstrates the abso-
lute phase error of BNN (MAE: mean absolute error). The third and the fourth column shows
the data uncertainty (MDU: mean data uncertainty) and the model uncertainty (MMU: mean
model uncertainty) of predicted phase.
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Fringe image BNN error Data uncertainty Model uncertainty
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Fig. S11. Analysis of fringe patterns with f = 40. Three scenes were tested. The input fringe
image to the BNN is shown in the first column. The second column demonstrates the abso-
lute phase error of BNN (MAE: mean absolute error). The third and the fourth column shows
the data uncertainty (MDU: mean data uncertainty) and the model uncertainty (MMU: mean
model uncertainty) of predicted phase.

(a) (b) (c)

Fig. S12. BNN’s performance for fringe pattern analysis with different spatial frequencies.
(a) The mean absolute error (MAE) of BNN. (b) The predicted mean data uncertainty. (c)The
predicted mean model uncertainty.
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7. DROPOUT RATES LEARNED BY BNN

In the theory of dropout, the neurons of a certain layer are set inactive according to the dropout
rate. The corresponding probability distribution is Bernoulli distribution. In this work, the
dropout rate of each layer (22 layers in our BNN) can be learned by BNN during the training. In
each layer of BNN, the dropout rate was initialized randomly according to a uniform distribution
[0.2, 0.6] and then it was updated within the range [0.0, 1.0] during the training process. We
trained the BNN with fringe patterns of different frequencies and the learned dropout rates are
shown in Fig. S13. For all these cases, we can see that the overall distribution of the dropout rate
is like a Gaussian distribution. To be specific, in the cases of f = 200, f = 160, f = 80 the first
several layers and the last several layers nearly do not drop neurons while the middle layers tend
to drop near 50% neurons. The reason may be the fact that the basic architecture of our BNN is
the U-Net which has a symmetrical structure. The BNN learns to use almost all the neurons so
as not to miss pixel-level information in some of the first layers and the last layers (which can
observe the low-level information owing to the concatenation and upsampling processes in the
U-Net). While, the middle layers handle the high-level information that is extracted from the
low-level information. It is advantageous to drop a part of neurons to avoid overfitting. We find
that the learned dropout rates are very small when frequency reduces to f = 40. It indicates that
nearly all neurons of the BNN are used. Actually, the BNN error of f = 40 is relatively larger than
that of f = 80, f = 160, f = 200 as can be seen in Fig. S12(a). It may imply that more powerful
networks with increasing neurons may be necessary to process the sparse fringe patterns. We
will further investigate methods that can handle sparse patterns in the future.

(d) f = 40(c) f = 80

(b) f = 160(a) f = 200

Fig. S13. The dropout rates of each layer learned by the BNN. (a) The BNN trained with fringe
patterns of f = 200. (b) The BNN trained with fringe patterns of f = 160. (c) The BNN trained
with fringe patterns of f = 80. (d) The BNN trained with fringe patterns of f = 40. The solid
line shows the actual learned dropout rate and the dashed line represents the overall trend of
the varying dropout rate.

8. 3D RECONSTRUCTIONS OF BNN

As it may be difficult to observe the retrieved details from the recovered phase, we converted
the unwrapped phase into 3D reconstructions as shown in Fig. S14. For comparison, we also
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used the widely applied Fourier transform profilometry(FTP) to analysis the single input fringe
image [6] and used the 12-step phase-shifting (PS) algorithm to obtain the ground-truth 3D
reconstruction. We can see that it is difficult for FTP to accurately reconstruct the surfaces with
complex shapes, e.g., the hairs of both models in the first scene. For our method, however, it can
faithfully reconstruct the 3D surfaces for both complex details and smooth areas. Further, the
BNN only used a single fringe image and almost reproduced the ground-truth 3D results that
were obtained with 12 PS images.

BNN FTP Ground truthFringe image

Fig. S14. Comparison of the 3D reconstruction obtained with different methods. The first col-
umn shows the test fringe image with projected frequency of f = 160. The second column the
3D models of BNN. The third column the 3D models of FTP. The last column the ground-truth
3D models.
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