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ABSTRACT. A lens-free on-chip digital holographic microscope (LFOCDHM) is essential for a
variety of biomedical applications such as cell cycle assays, drug development,
digital pathology, and high-throughput biological screening. However, due to the unit
magnification configuration of the lens-free system, the field-of-view (FOV) contains
over a hundred times more cells than a conventional 10× microscope objective.
Consequently, the segmentation process becomes labor-intensive and time-
consuming due to the complex and variable morphology of cells within the large
FOV. To address this issue, numerous deep learning-based cell segmentation meth-
ods have been proposed. Nevertheless, convolutional neural networks, limited by
their localized receptive field, are unsuitable for segmenting and processing large
FOV imaging results from LFOCDHM. Therefore, we propose a high-throughput live
cell analysis processing method called Swin Transformer U-Net (STU-Net). Based
on the reconstructed phase results, a shift window is utilized to compute the self-
attention to extract its features at five scales, which can compute the normalized
inner distance and pixel-level classification and achieve high-throughput accurate
cell segmentation (accuracy >0.9743). We validated the robustness and generaliz-
ability of our STU-Net by the accurate segmentation of data from HeLa cell slides
across the full FOV and live C166 cells in vitro. Given its capability for quantifying
cell growth and proliferation based on the multi-cell parameters generated from seg-
mentation results, the proposed approach is expected to provide a strong foundation
for subsequent drug development and biological screening.
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1 Introduction
Quantitative phase imaging (QPI)1–5 has become an important optical tool in biomedical research
by imaging optical thickness changes in live cells and tissues without specific staining. However,
most of the QPI methods are based on convolutional microscopes,6–11 which suffer from the
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inherent trade-off between the field-of-view (FOV) and imaging resolution due to the limitation
of the spatial bandwidth product.12 With the technological innovations of photoelectric sensors,
the emergence and rapid development of lens-free on-chip digital holographic microscope
(LFOCDHM) in the last few years have provided a promising solution to the above-mentioned
problems.13–17 The LFOCDHM can be built directly into the incubator for in situ observation of
in vitro cultured cells due to its compactness.18

LFOCDHM is primarily used for pre-experiments and live cell growth experiments, offering
unique advantages in drug development and biological screening through its dynamic monitoring
capabilities.1,19,20 It can accurately quantify and monitor the effects of various drug concentra-
tions or classes on live cell cultures in real time, providing dynamic data on changes in cell
morphology and activity at different time points. These macroscopic responses to drug effects
provide crucial experimental data for further molecular and genetic research. Among them,
parameters such as cell number, area, perimeter, concavity, area-perimeter ratio, and aspect ratio
are key indicators to describe the cell growth status, which are obtained from cell segmentation
results.21,22 Traditional cell segmentation algorithms include threshold segmentation,23 Canny
edge detection,24 and watershed algorithms.25,26 Segmenting morphologically diverse cells in
the FOV accurately using traditional methods requires adjustment and optimization based on
the actual situation, which can be time-consuming and computationally intensive.

To address the above problem, deep learning-based segmentation methods can automatically
learn high-level features in image data through pre-training to obtain an end-to-end cell segmen-
tation model.27–29 For example, the U-Net-based biomedical image segmentation method,
proposed by Ronneberger et al.,30 treats cell segmentation as a binary classification problem
and trains the model to act as an end-to-end classifier to distinguish cells from background pixels.
Despite the strong representation learning capability of such U-Net methods, their performance
in learning features is limited to their local receptive fields. As a result, this shortcoming in cap-
turing multi-scale information leads to suboptimal segmentation of structures of variable shape
and size (e.g., cells of different sizes). Unlike methods such as U-Net that treat cell segmentation
as a classification problem, Koyuncu et al.31 treated cell segmentation as a regression problem
and proposed a deep-distance network model based on multi-task learning32,33 with shared
encoder paths. Their work focused on the problem of detecting cells, aiming to identify cell
locations in unlabelled images without identifying the exact boundaries of the cells.

To solve the aforementioned problems, we propose Swin Transformer U-Net (STU-Net)
with multi-task decoding paths. By symmetrically skip connection to connect coded features
at different scales, STU-Net learns the normalized internal distance (NID)31,34 and pixel-level
classification (PLC) to refine cell boundaries using two parallel decoder paths. Based on our
proposed network, we successfully realized the precise segmentation of HeLa cells across a large
FOV of 19.5 mm2 (accuracy >0.9743). Finally, we performed consistent segmentation of the
dynamic data of C166 cells over an extended period and generated multidimensional cellular
parameters based on the segmentation results to quantify cell proliferation and growth. Our
method can accurately and stably segment wide-field cell results of LFOCDHM, providing a
strong guarantee for drug development and biological screening.

2 Method

2.1 Overview of Method
Our method enables intelligent analysis from a single-shot hologram to wide-field cellular results
based on deep learning on the LFOCDHM system. The schematic diagram of LFOCDHM is
shown in Fig. 1(a). It does not contain any objective lens and can be placed in an incubator for
in situ living cell observation. It consists of two fundamental components: a complementary metal
oxide semiconductor (CMOS) sensor (5664 × 4256, pixel size: 0.9 μm, 24,000 pixels, Jiangsu
Team one Intelligent Technology Co., Ltd.) and a quasi-monochromatic light-emitting diode
(LED) that can emit a wavelength of 623 nm. The LED light wave travels roughly (Z1 ∼ 90 mm)
to interact with the sample, generating a diffraction pattern. The diffraction pattern is recorded by a
CMOS sensor, placed close to the sample (Z2 ∼ 1000 μm). The cell slides are directly placed on
the sensor plane to achieve diffraction patterns, resulting in twin image interference due to a lack of
phase information. The cell slides are directly placed on the sensor plane to achieve diffraction
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patterns, resulting in twin image interference due to a lack of phase information. To solve this
problem, we utilized a framework for phase reconstruction based on deep learning,35 as shown
in Fig. 1(b). The initial stage of the framework consists of training U-Net. The training involves
learning the statistical transformation between amplitude and phase images obtained from a single
hologram intensity through the free-space backpropagation of the object and the same object’s
image that is reconstructed using a multi-height phase retrieval algorithm (treated as the gold stan-
dard for the training phase). Specifically, the multi-height retrieval algorithm first acquires 10 raw
images with an axial step size of 3μm and then calculates the reconstruction of phase images
through the adaptive pixel-super-resolved lens-free imaging method.36 The hyperparameters,
including a dynamically adjusted learning rate initially set to 0.001, batch size of 16, 100 epochs,
and Adam optimizer, were fine-tuned using grid search and manual adjustments based on valida-
tion performance. The training process, performed only once, yields a fixed U-Net used for blind
reconstruction of phase images of any object using a single hologram intensity.

The pixels of each cell unit were manually annotated within the reconstructed phase results.
This manual annotation enabled us to derive NID and PLC based on these label masks. NID is
used to locate cells and identify cell boundaries. PLC calibrates the position of each pixel relative
to the cell, distinguishing among the whole cell, cell boundary, and background.

To compute NID, first, for each intracellular pixel p, its distance r to the center of mass pixel
ðxc; ycÞ of the cell unit in which it is located is calculated

EQ-TARGET;temp:intralink-;e001;117;232r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxp − xcÞ2 þ ðyp − ycÞ2

q
: (1)

After that, the NID of that pixel point is calculated by the distance r

EQ-TARGET;temp:intralink-;e002;117;189NID ¼ 1

1þ βr∕
ffiffiffiffiffi
Sc

p ; (2)

where Sc is the number of pixels in the cell unit where it is located, which makes NID
independent of differences in cell size. Based on experimental results and empirical observations,
we set β as a hyperparameter to adjust the data distribution during the distance transformation,
taking its value as 1.

Finally, we use STU-Net as an end-to-end model, trained with ∼1000 experimentally
collected images from living cell experiments, to process the reconstructed phase results and
generate two sets of predictions with the same size as the input image: NID and PLC. Then,

Fig. 1 LFOCDHM setup and overview of cell segmentation process based on lens-free phase
images. (a) Schematic diagram of LFOCDHM, where Z 1 is the distance from the LED light source
to the sample, and Z 2 is the distance from the sample to the CMOS sensor. (b) Step I:
Reconstruction. The amplitude and phase images obtained by free space backpropagation of
a single hologram intensity are used as U-Net inputs to implement phase reconstruction. Step
II: Generate training datasets. Converting manually annotated cell label masks to PLC and
NID. Step III: Cell segmentation. Predict PLC and NID using STU-Net and estimate cell boundary
realization based on the prediction using a region-growing algorithm.
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we apply a Gaussian filter smoothing transformation to NID to remove small abrupt changes.
Next, we used a peak-finding algorithm to locate the center of mass of each cell to determine the
location of the cell. After that, we combine cell plasmas, PLC, and NID to further optimize the
details of cell boundaries by region-growing algorithm.37,38

2.2 Swin Transformer U-Net
The convolution-based U-Net architecture has an inherent limitation in capturing long-range
spatial relations.39 Similarly, the Swin Transformer architecture has limitations in capturing
low-level features.40 It has been demonstrated that both local and global information are crucial
for dense prediction tasks, such as segmentation in challenging contexts.41,42 Consequently,
STU-Net has been proposed as a hybrid model that effectively combines U-Net and Swin
Transformer for cell segmentation.

2.2.1 Encoder

The self-attention module in Vision Transformer allows for modeling long-range information
through the pairwise interaction among token embeddings, leading to more effective local and
global contextual representations.43,44 Swin transformers40,45 have been proposed as a hierarchi-
cal vision transformer that computes self-attention in an efficient shifted window partitioning
scheme, which reduces the computational complexity dramatically by decreasing the relationship
with the pixel size squared to linear, making it more suitable for processing lens-free wide-field
images. The architecture of STU-Net is shown in Fig. 2 using the Swin Transformer as a feature
extractor in the encoder. Swin Transformer computes self-attention according to

EQ-TARGET;temp:intralink-;e003;114;459Attention ðQ;K; VÞ ¼ softmax

�
QKTffiffiffi

d
p

�
V; (3)

where Q, K, and V denote queries, keys, and values, respectively; d represents the size of the
query and key.

Fig. 2 Overview of the STU-Net architecture. STU-Net uses Swin Transformer as a feature extrac-
tor with U-shaped architecture. The STU-Net creates non-overlapping patches of the input data and
uses a patch partition layer to create windows with a desired size for computing the self-attention.
The encoded feature representations of different scales in ST are concatenated to multi-task decod-
ing paths through symmetric skip connections. The final output consists of NID and PLC.
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The window-based self-attention module lacks interconnections among windows, restricting
its modeling capabilities. To incorporate cross-window connections while preserving the efficient
computation of non-overlapping windows, Swin Transformer proposes a shifted window parti-
tioning approach, which involves alternating between two partitioning configurations in consecu-
tive Swin Transformer blocks. Two successive Swin Transformer blocks are computed as follows:
EQ-TARGET;temp:intralink-;e004;117;676

ẑl ¼ W-MSAðLNðzl−1ÞÞþ zl−1;

zl ¼ MLPðLNðẑlÞÞþ ẑl;

ẑlþ 1 ¼ SW-MSAðLNðzlÞÞþ zl;

zlþ 1 ¼ MLPðLNðẑlþ 1ÞÞþ ẑlþ 1; (4)

where W-MSA and SW-MSA are regular and window partitioning multi-head self-attention
modules, respectively; ẑl and zl denote the output features of the (S)W-MSA module and
the multi-layer perceptron (MLP) module for block l, respectively; and LN denotes layer
normalization.

Swin Transformer constructs a hierarchical representation by starting from small-sized
patches and gradually merging neighboring patches in deeper transformer layers. Each stage
provides features at different scales. With output scales of H

4
× W

4
× 144, H

8
× W

8
× 288, H

16
× W

16
×

576 and H
32
× W

32
× 1152 for stages 1 to 4, respectively, the features can be efficiently combined

with the U-Net network, which is also of a multilayered structural type.

2.2.2 Decoder

The original U-Net model is designed for single-task learning and consists of a single decoder
path. In contrast, the STU-Net model employs two decoder paths for multi-task learning, utiliz-
ing the shared features generated by the encoder. These two paths correspond to the tasks of NID
and PLC, respectively. Simultaneous skip connections facilitate the recovery of spatial informa-
tion that is lost during the downsampling process of the encoder. The features extracted by the
decoder will undergo distinct processing mechanisms via separate output headers because the
outputs of the two tasks vary. The regression map resulting from the NID task will have the same
size as the input image, and the output of the PLC task will consist of three category probability
maps, each containing three categories.

2.2.3 Loss function

The multi-task loss function comprises two primary components: the root mean square error loss
function,46 which is used to calculate NID, and the cross-entropy loss function,47 which is used
for PLC. The two components of the loss function are calculated as follows:

EQ-TARGET;temp:intralink-;e005;117;273LRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N ×M

XN
y¼1

XM
x¼1

ðIðx; yÞ − Îðx; yÞÞ2
vuut ; (5)

where N ×M is the total number of pixels, Iðx; yÞ is the pixel value at the ðx; yÞ position in the

truth image, and Îðx; yÞ is the pixel value at the ðx; yÞ position in the predicted image.

EQ-TARGET;temp:intralink-;e006;117;198LCE ¼ −
1

N ×M

XN
y¼1

XM
x¼1

XK
i¼1

Iðx; y; iÞ log Îðx; y; iÞ; (6)

where K is the total number of categories, i.e., it is divided into three categories containing whole

cell, cell boundary, and background, and Îðx; y; iÞ is the predicted probability of the pixel at the
ðx; yÞ location corresponding to category i. The overall loss function is defined as follows:

EQ-TARGET;temp:intralink-;e007;117;117L ¼ α1LRMSE þ α2LCE; (7)

where α1;2 are the weight coefficients. Here, α1;2 are set as hyperparameters to 0.8 and 0.2 for
balancing the multi-task output loss imbalance problem and predicting NID as the main task,
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respectively.33,48 When the discrepancy in loss among different tasks is substantial, the network
prioritizes convergence toward the task with a higher loss. Setting α1;2 facilitates achieving a
balanced weighting for multi-task learning, enabling better management of differences and
imbalances among multi-tasks and enhancing the STU-Net performance and prediction
capabilities.48

3 Results
To evaluate the cell segmentation capability of our method in processing wide-field LFOCDHM
images, we performed full FOV segmentation experiments. As shown in Fig. 3(a1), we
demonstrated the segmentation results of HeLa cells across the full FOV (19.5 mm2), with

Fig. 3 STU-Net provides accurate segmentation results across the full FOV. (a1) Approximately
6500 cells are identified in the 19.5 mm2 full FOV. (a2) Each cell can be observed with fine cell
edges in area 1. (a3) Reconstructed phase results in area 1 (b1) Corresponding three classification
probabilities for area 2. (b2) NID of area 2. (b3) PLC of area 2. (b4) Reconstructed phase results of
area 2. (b5) Unique mask for each cell.
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∼6500HeLa cells. HeLa cells were cultured in 20 mm glass bottom dishes with 10% fetal bovine
serum. The delicate outlines of cells in area 1 were successfully segmented, and the intercon-
nected cells were efficiently separated from each other, as illustrated in Fig. 3(a2). Based on the
reconstructed phase results in Fig. 3(b4), its NID and PLC results are calculated using the STU-
Net shown in Figs. 3(b1)–3(b3). It is segmented into cell instances by region growth algorithm
and a unique mask is assigned to each cell as in Fig. 3(b5).

Figure 4 shows the comparison results of STU-Net and U-Net for live C166 cell segmen-
tation. The cell segmentation results of our proposed cell segmentation method are first compared
with the semantic segmentation results using the U-Net output directly. Figures 4(a)–4(c) dem-
onstrate the difference between the segmentation results of the two methods in the four regions
with labels. We used true positive, true negative, false positive, and false negative to represent
these differences. As indicated by the arrows in the figure, we can observe the presence of the
U-Net misidentifying cells as background or misidentifying background as cells. In contrast, our
proposed cell segmentation method can perform cell segmentation more accurately. According to
Table 1, our method outperforms the traditional U-Net model and Cellpose across49,50 the board
in terms of accuracy, recall, precision, and F1 score.51 The calculation formulas are as follows:

Fig. 4 Comparative experimental results of STU-Net and U-Net. Panels (a)–(c) show the compari-
son of the results using our cell segmentation method with the traditional U-Net network semantic
segmentation within the four regions. Panels (d1) and (d2) are the differences between the inner
distance transforms of our STU-Net network and the traditional U-Net outputs within the regions
(a1) and (a2). Panels (d3) and (d4) represent the profiles of the two methods with the labels.

Table 1 Comparison of STU-Net, U-Net, and Cellpose segmenta-
tion metrics.

Accuracy Precision Recall F1 score

U-Net 0.9646 0.8721 0.9508 0.9096

Cellpose 0.9563 0.8634 0.9213 0.8905

STU-Net 0.9743 0.8895 0.9882 0.9358
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EQ-TARGET;temp:intralink-;e008;114;736

accuracy ¼ TPþTN

TPþTNþ FPþ FN
;

precision ¼ TP

TPþ FP
;

recall ¼ TP

TPþ FN
;

F1 score ¼ 2 ×
Precision × Recall

PrecisionþRecall
; (8)

where true positives (TPs) represent the number of pixels correctly predicted as cells; true
negatives (TNs) denote the number of pixels correctly predicted as background; false positives
(FPs) refer to the number of pixels incorrectly predicted as cells (which are actually background);
and false negatives (FNs) indicate the number of pixels incorrectly predicted as background
(which are actually cells).

We then compared the NID output from the STU-Net with those from the U-Net trained on a
single task. Figures 4(d1) and 4(d3) show the differences between the NID and the labels for the
corresponding regions of Figs. 4(a1) and 4(a4). The results of the NID computed by the U-Net
are severely distorted, which results in an inability to further refine the boundaries of the cells.

We performed long-term dynamic live C166 cell segmentation experiments. C166 cells were
cultured in 20 mm glass bottom dishes with 10% fetal bovine serum. Our compact system
allowed for in situ observation by placing it directly in the incubator, shooting one frame every
10 min for a total duration of ∼17 h. Figure 5(a) displays the results of cell segmentation for a
small area within the full FOV at 00:00:00, comprising ∼100 cells.

Figure 5(b) displays the curve of cell count variation in the selected FOV. In addition, we
further calculated the multi-dimensional parameters of the cells, such as cell area, perimeter,
concavity, perimeter-area ratio, and aspect ratio. Figure 5(c) demonstrates the experimental

Fig. 5 Long-term dynamic C166 cells segmentation results. A total of 100 frames were taken at
10 min intervals in an area of 1.729 mm2. The results of the dynamic experiment: Panel (a) shows
the segmentation results at the beginning. Panel (b) demonstrates the change in cell number over
16 h. Panel (c) demonstrates that for the cell area, perimeter, concavity, perimeter-area ratio, and
aspect ratio of the cells within the area of 1.729 mm2 at T 1 ¼ 10 min, T 2 ¼ 8 h, T 3 ¼ 12 h, and
T 4 ¼ 16 h. Panel (d) demonstrates the cell division process within area 1.
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results for key frames within the FOVof Fig. 5(a), including T1 ¼ 10 min, T2 ¼ 8 h, T3 ¼ 12 h,
and T4 ¼ 16 h. As shown in Fig. 5(d), we can observe the dynamic division process of a cell
within Fig. 5(a) area 1. Through the analysis of these indicators, the growth and division of the
cells were further investigated. Our method demonstrates the ability to accurately and consis-
tently segment LFOCDHM live cell data with a wide field over an extended period, thereby
ensuring reliable support for drug development and biological screening.

4 Conclusions
In this paper, we proposed STU-Net, which achieves multi-tasking through two decoding paths
and shares the multi-scale features extracted by Swin Transformer. Based on NID and PLC, the
segmentation of cells with complex and variable morphology achieves accurate cell positions
and clear cell boundaries (accuracy > 0.9743) across the whole FOV (19.5 mm2). In addition,
multi-dimensional cell parameters can be generated to quantify cell proliferation and growth,
thereby improving the accuracy of downstream analysis tasks such as cell tracking and cellular
genealogy research. This capability facilitates the analysis of cell morphology, structure, and
function, which holds a critical role in the investigation of disease mechanisms, diagnosis, and
therapeutic approaches. However, the Swin Transform architecture excels on large datasets due
to its ability to capture complex patterns and features as a large model. In future work, we will
explore the training of Transformer architectures on larger microscopy datasets with a broader
range of cell types.

Code and Data Availability
The data that support the findings of this article are not publicly available due to privacy. They
can be requested from the author at liwnenhui@njust.edu.cn.
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