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There are wide applications for zonal reconstruction methods in slope-based metrology due to its good capability of
reconstructing the local details on surface profile. It was noticed in the literature that large reconstruction errors occur
when using zonal reconstruction methods designed for rectangular geometry to process slopes in a quadrilateral geo-
metry, which is a more general geometry with phase measuring deflectometry. In this work, we present a new idea for
the zonal methods for quadrilateral geometry. Instead of employing the intermediate slopes to set up height-slope
equations, we consider the height increment as a more general connector to establish the height-slope relations for
least-squares regression. The classical zonal methods and interpolation-assisted zonal methods are compared with our
proposal. Results of both simulation and experiment demonstrate the effectiveness of the proposed idea. In imple-
mentation, the modification on the classical zonal methods is addressed. The new methods preserve many good
aspects of the classical ones, such as the ability to handle a large incomplete slope dataset in an arbitrary aperture,
and the low computational complexity comparable with the classical zonal method. Of course, the accuracy of the
new methods is much higher when integrating the slopes in quadrilateral geometry. © 2017Optical Society of America
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1. INTRODUCTION

The two-dimensional shape/wavefront reconstruction is a key
process in slope-measuring profiling techniques, such as phase
measuring deflectometry such as phase measuring deflectome-
try (PMD) [1–5], which reconstruct the surface height as a
final result from the measured slopes. Many efforts have been
made to improve the reconstruction accuracy as well as the in-
tegration speed. In the literature, there are two major families
in wavefront reconstruction. One large family is named “zonal
wavefront reconstruction” [2,6,7], which uses local relations be-
tween heights and slopes to connect all the valid measures with
unknown height values and finally estimate the height with a
least-squares method. The other one is called “modal wavefront
reconstruction” [8–10], which describes the surface shape and
its slopes with a certain mathematical model, e.g., Zernikes,
and uses the measured slopes to estimate the coefficients in
the model to represent the height distribution by the math-
ematical model with the determined coefficients.

Comparing to the modal methods, the zonal methods are
good at reconstructing the local detailed features, and therefore

they have been widely applied in phase measuring deflectom-
etry, which can measure free-form specular surfaces. The zonal
reconstruction is proposed in rectangular geometry [6].
However, the mesh grids in phase measuring deflectometry
are generally in quadrilateral geometry, due to its off-axis con-
figuration and lens distortion. Through a comparison work on
the existing zonal reconstruction methods [11], it is noticed
that directly applying zonal algorithms developed for rectangu-
lar geometry to process the slopes in quadrilateral geometry can
generate large reconstruction errors and ruin the technique-
claimed accuracy as a result. Recently, Ren et al. suggested
two methods [4,5] to overcome this issue. The first one [4]
interpolates x- and y-slope values in a rectangular mesh at first,
and then applies the zonal integration for rectangular geometry
to get the height distribution on the rectangular mesh, and at
last interpolates back to the quadrilateral geometry again if
the height in the original geometry is wanted. The other
method [5] connects the height and slopes with assistance from
another integration method, such as radial basis functions, as a
supplementary constraint. In this work, we present a simple,
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straightforward, and efficient approach to deal with the zonal
wavefront reconstruction in quadrilateral geometry. By consid-
ering the height increments between two neighboring grids in
the x- and y-directions, this approach can be regarded as a more
general form of the zonal wavefront reconstruction.

2. PRINCIPLE OF THE PROPOSED METHOD

In the existing zonal methods [6,7,12], the slope value at the
halfway position between two neighboring sampling points is
treated as the connector and described by either the unknown
heights at sampling locations or the measured slopes locally, and
these two expressions should be equal in a least-squares sense as
Eq. (1). It is correct and straightforward to implement in a
rectangular geometry:

8<
:

zm;n�1−zm;n
xm;n�1−xm;n

≙ f m;n�1
2
�sx�

zm�1;n−zm;n
ym�1;n−ym;n

≙ f m�1
2;n
�sy� ; (1)

where xm;n, ym;n, and zm;n are the coordinates at (m, n). s
x and sy

are the measured x-slope and y-slope. f m;n�1
2
�·� and f m�1

2;n
�·�

are local slope functions for the x-direction and y-direction.
The expressions of those local slope functions depend on the
selected zonal reconstruction method, e.g., f m;n�1

2
�sx� �

�sxm;n � sxm;n�1�∕2 and f m�1
2;n
�sy� � �sym;n � sym�1;n�∕2 in

Southwell’s method [6].
However, the locations where slopes are measured may not

be in a perfect rectangular geometry in a practical measure-
ment. As illustrated in Fig. 1, several types of sampling position
errors can contribute to the final data mesh, e.g., the random
positioning error, the lens distortion, and perspective effect, or
say keystone. In fact, any of the effects mentioned above will
change the ideal rectangles into quadrilaterals in general.

Facing a quadrilateral geometry, the existing zonal methods
have difficulty in implementation, more particularly, the crea-
tion of the height-slope relations, because the slope value at the
halfway position is no longer a pure x-slope or y-slope as it was
in a rectangular mesh and the description of this slope with
unknown heights at sampling locations cannot separate the
contributions from the x- and y-slopes, as shown in Fig. 2(a).
As a result, the height-slope relations between the unknown
height and the measured slopes cannot be established.

We consider this problem from a different angle, as shown
in Fig. 2(b). Instead of linking the unknown heights and mea-
sured slopes with an intermediate slope, the height increments
are considered as the connectors as Eq. (2):

� zm;n�1 − zm;n ≙ gxm;n�1
2

� gym;n�1
2

zm�1;n − zm;n ≙ gxm�1
2;n

� gym�1
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where the height increments at different sections described by
the x-slopes and y-slopes are
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2

� f m;n�1
2
�sx��xm;n�1 − xm;n�; (3)
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In this way, the contributions from the x-slopes and y-slopes
can be successfully separated, which is essential to build the
connections from the unknown heights with the measured
slopes. Equations (2)–(6) can be considered as an extension
of Eq. (1) and it pushes the zonal reconstruction method from
a rectangular geometry to a more general quadrilateral geom-
etry. In the next section, we will show the significance of getting
this general solution via simulation.

3. SIMULATION OF RECONSTRUCTION
IN QUADRILATERAL GEOMETRY

In our simulation, the height distribution of the surface under
test (SUT) is expressed as

z�x; y� �
�
3�1 − x�2 exp�−x2 − �y � 1�2�

ffiffiffi
2

p

− 10

�
x
5
− x3 − y5

�
exp�−x2 − y2�

−
1

3
exp�−�x � 1�2 − y2�

�
× 0.1: (7)

Three effects (random error, distortion, and keystone) are
simulated to generate a quadrilateral geometry. The random
position errors are normally distributed, distortion is simulated
by introducing the radial lens distortion, and the keystone phe-
nomenon is generated by setting a certain off-axis viewing angle
to the SUT. More implement details can be found in our
MATLAB codes [13]. The analytical solutions of the x-slope
and y-slope are derived to calculate the corresponding nominal

Fig. 1. Several effects in practice can make a rectangular mesh
become quadrilateral, and usually these effects work together.

Fig. 2. Height-slope relations are not easy to establish with an
“intermediate slope” (a), but they can be established by considering
the “height increments” as connectors (b).
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height values, x- and y-slopes in quadrilateral geometry, as
shown in Fig. 3.

Three existing zonal methods for rectangular geometry
(ZM-r) [6,7,12] are implemented to demonstrate their large er-
rors when handling data in quadrilateral geometry. The classical
Southwell’s method [6] is marked as TFLI (traditional finite-
difference-based least-squares integration), The Li’s method [7]
is marked as HFLI (higher-order finite-difference-based least-
squares integration), and the recently proposed spline-based
integration method [12] is marked as SLI (spline-based
least-square integration). The reconstruction error of TFLI,
HFLI, and SLI are shown in Figs. 4(a)–4(c), respectively. All
error maps are similar, which indicates that the error due to the
quadrilateral geometry is dominating the reconstruction error.

By using the interpolation-assisted strategy proposed in [4],
the x- and y-slopes can be interpolated into a rectangular
geometry first, and then use the zonal methods to integrate
the new slopes to get a height map in the pre-defined rectangular
geometry. Lastly, the final height in the original quadrilateral
geometry is calculated via another interpolation. These interpo-
lation-assisted zonal methods (ZM-i) are able to handle the
slopes in quadrilateral geometry, and they are marked as
TFLIi, HFLIi, and SLIi in our comparison. The letter “i” stands
for the interpolation version. Their reconstruction error maps
are shown in Fig. 4(d) for TFLIi, Fig. 4(e) for HFLIi, and
Fig. 4(f ) for SLIi. The reconstruction error is smaller, and no-
ticeable error is found at the boundary areas due to the interpo-
lation operation. Increasing the sampling numbers during the
slope interpolation may reduce the resultant error at the
boundary regions, but the drawback is it will take obviously
longer time to complete the interpolation and integration.

With the proposed “height increments” strategy in this
work, these existing zonal methods can be modified to be new
zonal methods applicable for quadrilateral geometry (ZM-q)
and marked as TFLIq, HFLIq, and SLIq, accordingly. The let-
ter “q” stands for the quadrilateral version. Their reconstruction
error maps are shown in Fig. 4(g) for TFLIq, Fig. 4(h) for
HFLIq, and Fig. 4(i) for SLIq. The modified methods highly
reduced the reconstruction errors and this simple idea works
well for all three zonal methods in use here, which indicates

Fig. 3. (a) Analytical height, (b) x-slope, and (c) y-slope in quadri-
lateral geometry are simulated as the nominal values.

Fig. 4. Existing zonal methods for rectangular geometry generate large reconstruction errors in quadrilateral geometry (a)–(c), while the existing
interpolation-assisted zonal methods can improve the performance (d)–(f ), and by contrast, the proposed general solutions perform better with far
fewer errors (g)–(i).
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the new proposal approach pushes the zonal method from rec-
tangular geometry to a more general situation, the quadrilateral
geometry. The codes in MATLAB can be downloaded via [13].
This is important for many applications which have quadrilat-
eral data mesh. Next, we will show an experimental case in
phase measuring deflectometry.

4. EXPERIMENT

A phase measuring deflectometry setup is used to measure a
smooth specular surface, whose size is about 60 mm × 50 mm.
The mono-PMD system is composed with a CCD camera
(Manta G-145 with 1388 × 1038 pixels and 12-bit pixel depth)
and an LCD screen (Dell P2414H with 1920 × 1080 pixels and
0.2745 mm × 0.2745 mm pixel pitch). The system geometry
after PMDcalibration [14,15] is illustrated in Fig. 5. The camera
is about 2.5 m away from the SUT.

The typical fringe patterns from the camera side are shown
in Figs. 6(a) and 6(b). The surface slopes and height can be
simultaneously determined with a technique called modal
phase measuring deflectometry (MPMD) [16,17]. We choose

the cubic B-splines with 15 by 15 breaks as the surface model to
represent the SUT. The x-slope and y-slope from MPMD in
Figs. 6(c) and 6(d) are used as the inputs to test the zonal
reconstruction algorithms.

Because the modal wavefront reconstruction methods use
models to represent the slopes and height and these models
can be established in any irregular meshes including quadrilat-
eral geometry, intrinsically they can handle slopes in quadrilat-
eral geometry. The idea of modal wavefront reconstruction is
inherently used inside the iterations of MPMD; therefore,
the resultant height from MPMD in Fig. 7(a) is treated as
our benchmark to make a quantitative evaluation. A good zonal
method in quadrilateral geometry should have a good consis-
tency with the benchmark when the same modal-method-
delivered slopes are used, especially when there are almost no
high-frequency components as the surface in our experiment.
For simplicity, we only show the comparison between the
HFLI method and the HFLIq method, since the observations
are similar for the other groups. The reconstruction results are
shown in Fig. 7(b) for HFLI, Fig. 7(d) for HFLIi, and Fig. 7(f )
for HFLIq. These three reconstructed results [Figs. 7(b), 7(d),
and 7(f )] are close to the modal results [Fig. 7(a)]. Here, the
reconstruction error is defined as the discrepancy from the
MPMD height result.

Although the distortion and keystone effects are not very
evident in our experiment owing to the large camera-to-
SUT distance, which is about 2.5 m, it is still obvious that the
HFLI method gets much larger reconstruction error in Fig. 7(c)
than the HFLIi and HFLIq methods do in Figs. 7(e) and 7(g).
Due to the boundary effect of the interpolation in HFLIi, at-
tention is required while interpolating around the edges, oth-
erwise obvious errors may appear in the final height values. The
integration result by using the proposed HFLIq method shows
good agreement with the MPMD result. Moreover, very similar
phenomena are observed when using the TFLIq method and
the SLIq method, which indicates that the proposed approach
works well in pushing the zonal method from rectangular
geometry to quadrilateral geometry.
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Fig. 5. Calibrated system geometry of phase measuring deflectom-
etry in experiment.

Fig. 6. Typical patterns of (a) x-fringe and (b) y-fringe in the experi-
ment, and the (c) x-slope and (d) y-slope from MPMD.

Fig. 7. MPMD reconstructed height (a) is chosen as the benchmark
in the evaluation of the zonal reconstruction results of HFLI (b),
HFLIi (d), and HFLIq methods (f ). The error of HFLI (c) is larger
than the error of HFLIi (e) and HFLIq (g).
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5. DISCUSSION

The reconstruction accuracy of the proposed ZM-q methods is
higher than the existing ZM-r and ZM-i methods when dealing
with slopes in quadrilateral geometry. As presented in Fig. 8,
the root mean square error (RMSE) of the reconstruction
results in Fig. 4 by using different methods indicates the effec-
tiveness of the proposal.

In order to study the noise influence to the proposed meth-
ods, the performances with measurement noise on slope are also
investigated under the same simulation condition in Section 3.
Normally distributed random noises with standard deviation
varying from 0 to 20 mrad with a step of 1 mrad are added
onto the analytical slopes. The RMSE of the reconstructions
by using these nine methods in comparison are shown in Fig. 9.

The RMSEs of reconstruction with the proposed ZM-q
(TFLIq, HFLIq, and SLIq) gradually raise up with the increas-
ing of the slope noise, but they are still much lower than those
of the methods for rectangular geometry ZM-r (TFLI, HFLI,
and SLI) and smaller than those of the interpolation-assisted
methods ZM-i (TFLIi, HFLIi, and SLIi) when the error

due to sampling geometry is still dominating the reconstruction
error.

In addition, when handling slopes in rectangular geometry,
the proposed ZM-q methods are as good as the ZM-r. The
height increments in Eqs. (4) and (5) vanish in a rectangular
mesh, because ym;n�1 − ym;n � 0 and xm�1;n − xm;n � 0. In this
situation, the proposed ZM-q degenerates to its corresponding
ZM-r.

The proposed ZM-q (TFLIq, HFLIq, and SLIq) keeps the
same sparse matrix as the ZM-r does. It has relatively low
memory cost and consequently is good for processing large
slope data. Since the major computing time is spent by the in-
verse operation of that sparse matrix and the additional calcu-
lation for height increment in the other direction is negligible,
the integration speed of ZM-q is preserved. Therefore the com-
puting time of ZM-q is comparable with ZM-r, as shown in
Fig. 10. Owing to the additional time for interpolation, the
interpolation-assisted zonal methods ZM-i (TFLIi, HFLIi,
and SLIi) are slower than the classical ZM-r and our ZM-q.
The speed comparison is carried out with slope datasets with
128×128×2 pixels in MATLAB running on an i7-4600M CPU
at 2.90 GHz with 16 GB memory.

In practice, the height increments gym;n�1
2

in Eq. (4) or gxm�1
2;n

in Eq. (5) may not be easy to calculate for the SLIq method,
because the splines require the monotonic y to get sectional
f m;n�1

2
�sy� or monotonic x to get sectional f m�1

2;n
�sx�. For con-

venience, the corresponding height increments gym;n�1
2

and

gxm�1
2;n

calculated in the HFLIq method can be used as a simple

and accurate substitute.

6. SUMMARY

The zonal wavefront reconstruction in quadrilateral geometry is
studied in our work. A new consideration on the height-slope
relations is carried out by taking the height increments as con-
nectors instead of using the intermediate slopes in the existing
methods. From this new angle, the proposed methods can be
established via simple modifications from the existing zonal
methods for rectangular geometry, and as a result, the im-
provements are tremendous. The codes in MATLAB can be
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downloaded from [13]. Simulation and experiment are carried
out to show the significance in applications with shape
reconstruction from slopes in quadrilateral geometry, such as
phase measuring deflectometry.
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