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We present an effective, fast, and straightforward phase aberration compensation method in digital holographic
microscopy based on principal component analysis. The proposed method decomposes the phase map into a
set of values of uncorrelated variables called principal components, and then extracts the aberration terms from
the first principal component obtained. It is effective, fully automatic, and does not require any prior knowledge
of the object and the setup. The great performance and limited computational complexity make our approach a very
attractive and promising technique for compensating phase aberration in digital holography under time-critical
environments. © 2013 Optical Society of America
OCIS codes: (090.1995) Digital holography; (090.1000) Aberration compensation; (090.2880) Holographic

interferometry; (120.5050) Phase measurement.
http://dx.doi.org/10.1364/OL.38.001724

Digital holographic microscopy (DHM) is a powerful tool
which allows the digital recording and numerical
reconstruction of the complex wavefront of the samples
so that the amplitude and phase of the wave reflected by
the sample or transmitted through it can be quantitatively
retrieved with high accuracy and in near real time [1].
The object wave is generally a spherical wave due to
the use of a microscope objective to enhance the spatial
resolution. This will introduce a spherical phase curva-
ture, which needs to be compensated for in order to
accurately recover the phase information induced by
the object [2].
A lot of work has been done in the recent years to com-

pensate this curvature of the wavefront in DHM. They
can be categorized into two groups: physical [3–5] and
numerical [1,6–11]. The physical methods are generally
achieved by introducing the same curvature in the refer-
ence wave using a same objective lens [3] or a position-
adjustable lens [4]. However, a precise alignment of the
optical elements are required, and a perfect wavefront
curvature matching between the object and reference
arms is difficult to realize in practice. The numerical
methods remove the phase aberration during postpro-
cessing of the digital hologram. Double exposure [10]
can compensate the inherent wavefront curvature com-
pletely, but they need an additional hologram recording
without the samples. Other methods use a phase mask in
either the reconstruction plane or hologram plane
[6,8,10], or use two-dimensional fitting methods with a
standard spherical surface [9] or Zernike polynomials
[11] directly in the reconstructed phase map. Compared
with the reconstruction plane approaches, compensation
in the hologram plane avoids the need of adapting
the phase mask when the reconstruction distance is
changed [5,8]. But it involves additional two-dimensional
phase unwrapping and numerical reconstruction. The

techniques listed above present some disadvantages,
such as manual operation, preknowledge of the setup
or/and the specimen under test, making them difficult
to be fully automated. More importantly, existing meth-
ods, even for the simplest two-dimensional least-squares
surface fitting method [9], reside on the large computa-
tional requirements, which make them costly from a
processing and computational point of view, precluding
real-time monitoring.

In this work, we present a novel numerical phase aber-
ration compensation method based on the principal com-
ponent analysis (PCA). This study is based on but not
limited to the experimental setup for a transmission
DHM system with the Michelson interferometer configu-
ration, described in detail in [4]. The intensity distribution
of the recorded hologram can be written as [1]

IH�x; y� � jOj2 � jRj2 � RO� � R�O; (1)

R�x; y� and O�x; y� are the reference and object waves,
respectively, ∗ denotes the complex conjugate. Due to
a small angle between the reference and object waves,
the virtual image term then can be extracted by filtering
the hologram’s two-dimensional Fourier spectrum

IFH�x; y� � R�O � jRjjOj exp�iφ�x; y��Q�x; y�; (2)

where the φ�x; y� is the phase of the test object. Q�x; y� is
the phase aberration term that needs to be compensated,
which can be generally represented by

Q�x; y� � exp�i�kxx� kyy�� exp�i�lxx2 � lyy2��; (3)

where the factors kx, ky denote the linear phase differ-
ence between O and R due to the off-axis geometry.
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The parameters lx, ly in Eq. (3) describe the relative di-
vergence between the object and reference beam due to
the mismatch in spherical phase curvature. Normally, the
spherical phase factor is physically compensated and the
tilt term corrected by spectrum centering [8]. The typical
process for DHM demodulation and reconstruction are
illustrated in Fig. 1. However, the phase curvature is
difficult to be completely eliminated, which also makes
the spectrum centering (and hence tilt compensation)
difficult because in that case the spectrum no longer
demonstrates a punctual central frequency [4,8].
A close inspection of Eq. (3) reveals that the ideal

model for Q�x; y� is in fact a rank one matrix. This allows
the definition of two vectors p�x� � exp�i�kxx� lxx2��
and q�y� � exp�i�kyy� lyy2�� with the phase aberration
matrix rewritten as Q�x; y� � pqH , where f•gH denotes
the complex-conjugate transpose. In other words, the
phase aberration matrix should only have one principal
component, which describes the single best subspace in
the least-squares sense. As for thin objects localized in
small areas, we may assume that their phase φ�x; y� is
a small perturbation to the overall reconstructed phase
distribution. Therefore, the one principal component
approximation of exp�iφ�x; y��Q�x; y� should also be es-
tablished. The illuminating feature of this is the problem
of phase compensation is recast as finding the first prin-
cipal component of the exponential term of the filtered
hologram. A straightforward approach to perform PCA or
finding the dominant rank one subspace of Q is to use the
singular value decomposition. The linear and quadratic
coefficients in p and q can then be identified independ-
ently on the unwrapped phase components of left and
right dominant singular vectors using least-squares
fitting. Once the coefficients of Q�x; y� have been deter-
mined, its conjugate QH�x; y� can be multiplied with the
filtered hologram, leading to an aberration-free virtual
image term:

QH�x; y�IFH�x; y� � jRjjOj exp�iφ�x; y��: (4)

Note the basic idea behind Eq. (4) is somewhat similar
with the self-reference conjugate hologram method [7] in
which the self-reference hologram [corresponding to
QH�x; y� in Eq. (4)] is extracted via low-pass filtering
the hologram spectrum. Obviously, the linear filtering
cannot distinguish the object frequency from the aberra-
tion because of the overlapping between their frequency
bands, while our method does not suffer from this prob-
lem. The implicit eigen-filtering nature of identifying the
dominant singular vectors provides the unwrapping and
fitting with more “reliable” and less “noisy” data. Further-
more, because the unwrapping and fitting needs to be
done only in one dimension, it is inherently much less
complicated than the two-dimensional case. To further
reduce the computational complexity, the proposed algo-
rithm is performed only within the cropped m × n region
of the whole M × N spectrum. This operation helps to
avoid the highly redundant computation burden without
affecting the accuracy because once the hologram is
spatially filtered, the complex field is oversampled.
The whole processing steps of our PCA methodology
is illustrated on the right column of Fig. 1, just after
the spectrum centering step. All processing is limited
to the reduced m × n dimension within the spatial filter.

Experiments on human macrophage cells were per-
formed. Figure 2(a) shows the recorded digital hologram
with enlarged area showing part of the carrier fringe pat-
tern. Figure 2(b) is the Fourier spectrum of this holo-
gram. The maximum of the �1 order was identified,
and a 160 × 120 rectangular filter window with the spec-
tral maximum as center was applied. The spectrum of the
hologram after spectrum centering is shown in Fig. 2(c).
From the magnified three-dimensional distributions of
the selected �1 order spectrum, we can see the remain-
ing spherical wavefront broadened the spectrum to a rec-
tangular shape so that the real center of the spectrum
was fail to detect correctly. The reconstructed phase,
Fig. 2(d), shows concentric circular patterns introduced

Fig. 1. Block diagram illustrating the steps involved for tradi-
tional digital holographic demodulation and reconstruction
(left column) and the proposed PCA compensation algorithm
(right column). Exemplary images are given for an experimen-
tal result at the output of each step.

(a) (b)

(c) (d)

Fig. 2. Experimental results on human macrophage cells
without phase aberration compensation. (a) Captured digital
hologram. (b) Fourier spectrum with the red rectangle as the
bandpass filter. The insets in (a) and (b) are the enlargements
of the areas selected by the red rectangles. (c) Fourier spectrum
after spectrum centering. (d) Reconstructed phase map.
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by the quadratic phase factor. Besides, the center of
these concentric circles is shifted due to the residual tilt
caused by improper spectrum centering.
We have applied the proposed algorithm to the same

digital hologram and Fig. 3 shows various stages in its
implementation. The cropped region with dimension
160 × 120 was extracted and the exponential term was
analyzed by PCA. Figure 3(a) shows the reconstructed
phase by rank one approximation from the first dominant
singular vectors. Perhaps surprisingly, almost all phase
aberration terms were separated from the objects phase
if we compare Fig. 3(a) with Fig. 2(d). The singular value
for this dominant phase component is about 3.5 times
larger than that of second dominant one, validating the
one principal component approximation. If we further
add the second and third dominant components, the ob-
ject phase information gradually appears, as shown in
Figs. 3(b) and 3(c), respectively. The phase of the two
dominant singular vectors was then unwrapped and
fitted by least-squares parabolic functions [Figs. 3(d)
and 3(e)]. The final estimated phase aberration term
Q�x; y� is shown in Fig. 3(f), demonstrating improvement
in smoothness compared with the raw phase by rank one
approximation [Fig. 3(a)]. By multiplying QH with the
subsampled hologram and replacing the original region
in the full size spectrum with the modified one, the

spectrum of compensated hologram was obtained, as
shown in Fig. 3(g). The compensated spectrum shows
a concentrated distribution with a sharp peak located
at the center of both the rectangular box and the whole
spectrum. Using the angular spectrum algorithm for
reconstruction, the wrapped phase image free from
phase aberration was obtained, as shown in Fig. 3(h).
Figure 3(i) shows the color-coded unwrapped phase dis-
tribution and Fig. 3(j) highlights the three-dimensional
rendering of two individual cells. Subcellular features
as well as the thin borders of the cells can be clearly ob-
served without any curved or tilted background perceiv-
able. The whole processing time is only 0.091 s, using a
2.67 GHz laptop and processing with MATLAB, which is
approximately one order of magnitude faster than the
least-squares surface fitting method reported in [9].
Besides, not just limited to tilt and defocus, our method
can be extended to correct some high-order phase aber-
rations provided that only non-cross terms exists [8].

In conclusion, we have proposed a novel method to
automatically compensate phase aberrations in DHM
based on PCA. The advantages of the method are three-
fold. First, phase aberration can be directly extracted
without any manual operation or preknowledge of the
setup. Second, by separating the aberration terms to
two singular vectors, phase unwrapping and fitting of
the data is reduced to one dimension. Finally, implemen-
tation in cropped spectrum without redundant data ena-
bles a very fast processing speed. Quantitative phase
reconstruction of biological samples demonstrates the
capability and good performance of the proposed
method, rendering it a promising new technique for
applications where the processing time is restrictive.
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Fig. 3. Phase aberration compensation using the proposed
PCA algorithm. (a) The rank one phase aberration approxima-
tion formed from the dominant singular vectors. (b) and (c)
show the phase reconstructed from the first two and three sets
of the dominant singular vectors, respectively. (d) and (e) The
unwrapped left and right dominant singular vectors and their
corresponding quadratic fitted ones. (f) The obtained phase
aberration map. (g) Fourier spectrum after aberration compen-
sation. (h) Reconstructed phase map. (i) Unwrapped phase
map. (j) Pseudo-three-dimensional plot of two individual cells
indicated by red boxes in (i).
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