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A transport-of-intensity equation (TIE)-based phase retrieval method is proposed with putting an arbitrarily shaped
aperture into the optical wavefield. In this arbitrarily shaped aperture, the TIE can be solved under nonuniform
illuminations and even nonhomogeneous boundary conditions by iterative discrete cosine transforms with a phase
compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and nonuniform intensity
distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also car-
ried out to check the feasibility of the proposedmethod in real measurement. Comparing to the existingmethods, the
proposed method is applicable for any types of phase distribution under nonuniform illumination and nonhomo-
geneous boundary conditions within an arbitrarily shaped aperture, which enables the technique of TIE with hard
aperture to become a more flexible phase retrieval tool in practical measurements. © 2015 Optical Society of
America
OCIS codes: (100.5070) Phase retrieval; (200.3050) Information processing.
http://dx.doi.org/10.1364/OL.40.001976

Phase is not easy to directly detect as the intensity by
energy-based sensors, but sometimes it contains the re-
ally desired information. In optical metrology, phase
retrieval is a well-known terminology for either optical
fringes [1] or optical wavefield [2]. As one important
class of the noninterferometric propagation-based phase
retrieval techniques for optical wavefield, the transport-
of-intensity equation (TIE) [3] has gained increased inter-
est in many applications, including x-ray diffraction [4],
electron microscopy [5], wavefront sensing [6,7], and
quantitative phase microscopy [8–10].
The TIE is a second-order elliptic partial differential

equation that provides quantitative phase using only ax-
ially defocused intensity information, allowing for simple
and flexible experimental setups. The uniqueness of the
TIE solution, however, requires a strictly positive inten-
sity and, more importantly, the precise knowledge of
(Dirichlet, Neumann) boundary conditions [11]. To avoid
the complexity of obtaining such boundary conditions,
the TIE is usually solved under simplified homogeneous
boundary conditions or periodic boundary conditions,
with use of the fast Fourier transform (FFT)-based TIE
solver [12,13]. This method works well when the phase
is “flat” at the boundary of the image field of view
(FOV) as shown in Fig. 1(a) [14], in which case the energy
(intensity) conservation is fulfilled inside the FOV at dif-
ferent image recording locations. Nevertheless, this
configuration does not reflect general experimental con-
ditions, and is impractical in many other applications,
such as wavefront sensing. For example, as shown in
Fig. 1(b), the energy inside the FOV is not conserved,
as energy “leak” occurs at the FOV boundary during
the recording distance is being changed. In this case, non-
homogeneous boundary conditions are thus required for

the correct phase reconstruction based on TIE. The first
attempt to solve the TIE under nonhomogeneous
boundary conditions has been made by Roddier [6,7]
in adaptive optics. Recently, Zuo et al. [15] addressed
the solution of the TIE in the case of nonhomogeneous
Neumann boundary conditions under nonuniform illumi-
nations. By introducing a hard aperture to limit the wave-
field under test shown in Fig. 1(c), the energy
conservation can be satisfied, and the nonhomogeneous
Neumann boundary conditions are directly measured
around the aperture edge. In the case of the rectangular
aperture, the fast discrete cosine transform (DCT) can be
used to solve the TIE effectively and efficiently, which
has been well demonstrated in application of microlens
characterization [16]. However, one limitation of Zuo’s
technique is that the fast solution is only available for
a rectangular aperture because the DCT only applies
to rectangular domains. In practice, it is quite challenging
to add an aperture whose shape is exactly a rectangle due
to the difficulties in aperture fabrication and system
alignment, or the other existing pupils (e.g., reflecting
telescopes) obstructing the system aperture to be rectan-
gular. Until now, the solution to the TIE under nonhomo-
geneous boundary conditions in an arbitrarily shaped
region has not been considered explicitly.

In this work, we present a new iterative DCT (iter-
DCT) method to solve the TIE with a hard aperture [in
the case of Fig. 1(c)], but the aperture shape can be ar-
bitrary. To develop the iter-DCT formalism, we define the
complex amplitude of the paraxial beam to be measured
as

��������
I�r�

p
exp�ikϕ�r��, where k is the wave number 2π∕λ,

and r is the position vector representing the 2D spatial
coordinates �x; y�. I�r� is the in-focus image intensity.
∇ is the gradient operator over r, which is normal
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to the beam propagation direction. The TIE is given
by [3]

−k
∂I�r�
∂z

� ∇ · �I�r�∇ϕ�r��: (1)

The TIE is conventionally solved under the so-called
“Teague’s assumption” that the transverse flux
I�r�∇ϕ�r� is conservative so that can be fully character-
ized by a scalar potential ψ�r� [3]. The substitution
∇ψ�r� � I�r�∇ϕ�r� transforms the TIE into a Poisson
equation ∇2ψ�r� � −k∂I�r�∕∂z, with the solution of the
phase taking the following form

ϕ�r� � −k∇−2∇ ·
�
I−1�r�∇∇−2 ∂I�r�

∂z

�
; (2)

where ∇−2 is the inverse Laplacian. For simplified homo-
geneous boundary conditions or periodic boundary
conditions defined in a rectangular domain, the inverse
Laplacian can be effectively implemented with the FFT
[12]. For more general nonhomogeneous Neumann
boundary conditions defined on the rectangular domain
(with the boundary signal enclosed), the FFT should be
replaced by the DCT [15]. It should be noted that the
DCT-based TIE solver can also be effectively imple-
mented by combing the FFT-solver with a mirror padding
scheme.
Considering the optical field is limited by an arbitrary-

shaped aperture, the intensity captured at the in-focus
plane I�r� will contain a large number of zeros, preclud-
ing direct use of Eq. (2) for phase reconstruction (I�r�
appears in the denominator). Therefore, we “fix” these
intensity values beyond the extent of the physical pupil
with the average intensity inside, and then the DCT-based
TIE solver can be used to get an initial estimation of the
phase distribution ϕ0�r� (extended over the full support
size), as shown in the box in Fig. 2. Since the intensity
extrapolation with the average value inside (referring
to step D in Fig. 2) is not physically grounded, the
ϕ0�r� within the aperture is usually an inaccurate
solution. Therefore, if we substitute ϕ0�r� back to the
right hand side of the TIE [Eq. (1)], the resultant intensity
derivative on the left-hand side (where we define
J≔− k∂I∕∂z for succinctness) will be inconsistent with
the real measurement. This inconsistency can be treated
as the error signal, which is used as the source term for
another round of phase reconstruction. The solution
Δϕ0�r� is taken as the “correction term,” which is added

back to ϕ0�r� to get an updated phase estimate ϕ1�r�. The
procedure is iteratively repeated until the “stopping cri-
terion” is satisfied. The stopping criterion chosen to
assess the convergence is shown in step 5 in Fig. 2. It
should be noted that similar iterative algorithms have
been proposed to compensate “phase discrepancy” ow-
ing to the “Teague’s assumption” [17,18], while in this
work we adapt it to solve the boundary condition prob-
lem instead. By doing so, our approach can directly ob-
tain the “unbiased” solution of the TIE that free from any
boundary error and “phase discrepancy,” simultaneously.

A simulation is carried out to verify the proposed
method. The CCD FOV is 0.512 mm × 0.512 mm with
256 × 256 pixels. The wavelength λ � 633 nm. An irregu-
lar aperture is generated to enhance the complexity. The
aperture shape is generated with a combination of an
ellipse �x2 � y2 − 0.3xy < 0.04096

���
2

p
� while its central

region is blocked �x2 � y2 > 0.00524288� and a knife
edge �y < 0.1024

���
2

p
� as shown in Fig. 3(a).

The normalized nonuniform intensity is distributed as
I�x; y� � exp�−�x2 � y2�∕�2 × 0.182��. The in-focus image
intensity is captured as Fig. 3(b). The true phase distri-
bution can be theoretically arbitrary and here not pur-
posely set as ϕ�x; y� � 10x2 − 10y2 � 0.7x� 2y� 0.82,
which is distributed as shown in Fig. 3(c). Please note
only the measurable values inside the aperture are of in-
terest. Two oppositely defocused �z � �0.5 mm� images
are shown in Figs. 3(d) and 3(e). Once the intensity
images are obtained, the intensity derivative ∂I∕∂z can
be calculated and shown in Fig. 3(f). The calculated
J≔− k∂I∕∂z and the filled intensity shown in Figs. 4(a)
and 4(b) are used as the inputs to the DCT-based TIE
solver, which results in the initial phase ϕ0 shown in
Fig. 4(c).

Fig. 1. Energy conservation is required in TIE. (a) Energy is
conserved when phase derivatives in the normal directions at
boundary edges dϕ∕dn � 0. (b) Energy is not conserved when
dϕ∕dn ≠ 0. (c) A hard aperture is added in the optical wavefield
to make sure of the energy conservation.

Fig. 2. Iter-DCT-based TIE solver is illustrated for phase
retrieval with an arbitrarily shaped hard aperture.
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After employing the iterative compensations, the stan-
dard deviation (STD) of phase error (with piston term
ignored) inside aperture is reduced rapidly (see Fig. 5)
from the initial STD � 0.095 rad [Fig. 5(a)] down to
STD � 0.005 rad [Fig. 5(b)] in 10 iterations. In other
words, the accuracy of the retrieved phase is significantly
improved (about 19 times better) through the compen-
sations.
The estimated phase distribution in the complete FOV

after iterative compensations is shown in Fig. 5(c). Of
course, only the values inside the aperture are desired
and reliable. The final phase distribution shown in

Fig. 5(d) with its corresponding error distributed in
Fig. 5(b) indicates the high accuracy of the proposed
method.

In order to demonstrate its feasibility in practice, the
proposed method is also tested with a set of real TIE
data. As illustrated in Fig. 6, an inverted bright-field
microscope (Olympus IX71) attached with an electroni-
cally tunable lens-based TIE (TL-TIE) system is used to
acquire the intensity images in and out of focus. The
pixel size of the CCD (Imaging Source DMK 41AU02
1280 × 960) is 4.65 μm. In our experiment, the wavelength
is 550 nm. The specimen is a piece of microlens array. At
its image plane, a rectangle-like aperture is introduced.
The in-focus image is shown in Fig. 7(a) with its intensity
histogram in Fig. 7(b), which indicates it is not difficult to
set an intensity threshold to separate the regions in and
out of the aperture. By varying the focal length of the
tunable lens, the defocused images are sequentially ob-
tained at equivalent defocusing distances of −550 μm
in Fig. 7(c) and �550 μm in Fig. 7(d). The intensity
derivative ∂I∕∂z is shown in Fig. 7(e).

In order to have a benchmark to compare the accu-
racy, Zuo’s DCT method [15] is implemented by using
the data in a rectangular region Ω̄ (within dashed yellow

Fig. 3. TIE through a hard aperture, (a) which is in an irregular
shape, (b) is simulated with calculated intensity at focus,
(c) true phase, (d) calculated intensity at z � −0.5 mm and
(e) z � 0.5 mm, and (f) ∂I∕∂z.

Fig. 4. With the inputs of the calculated J (a) and filled inten-
sity (b), the DCT-based TIE solver can estimate an initial
phase (c).

Fig. 5. Proposed iter-DCT method effectively reduces the
errors of phase estimation from the initial errors (a) down to
the updated ones (b), and the phase in FOV (c) and inside
the aperture (d) can be retrieved as results.

Fig. 6. TIE experiment is implemented by using an inverted
bright-field microscope and a tunable lens-based TIE module
with placing an aperture at the image plane.

Fig. 7. Experimentally captured intensity at focus (a) with its
histogram (b), and the intensity at −550 μm (c) and �550 μm
(d) as well as their intensity derivative ∂I∕∂z (e).
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lines) including the aperture boundary shown in
Fig. 8(a). Due to its characteristics, the phase is only re-
constructed within a slightly smaller rectangular region
Ω (within solid green lines) instead of the whole Ω̄.
The retrieved phase in Fig. 8(b) is going to be a phase
benchmark for the following comparison. The classical
FFT-based TIE solver is implemented to retrieve the
phase within the rectangular region Ω (within solid green
lines), whose result is shown in Fig. 8(c). The phase
result within the whole irregular aperture shown in
Fig. 8(d) is retrieved by the proposed method after 6 iter-
ations. The difference between phase results from
classical FFT method and the DCT method is very large
(STD � 21.11 rad) as shown in Fig. 8(e), and Fig. 8(f)
shows the phase difference between the proposed iter-
DCT method and Zuo’s DCT one is much smaller (STD �
1.25 rad only). The comparison indicates the proposed
method can retrieve more accurate phase distribution
than the classical FFTmethod does under nonhomogene-
ous Neumann boundary conditions.
Although the proposed phase retrieved is similar to

that with the DCT method, it is worthy to note their dif-
ferences. Theoretically, Zuo’s DCT method requires that
a rectangular aperture is recorded with its boundaries
parallel to the CCD pixel coordinates in order to take
DCTs in the selected rectangular regions. Furthermore,
the “reconstruction region” is determined based on the
defocusing distance and wavelength in use. As a result,

it may require some experience to select proper regions
for a good result in practice. On the other hand, the
method proposed in this work handles apertures in arbi-
trary shapes and does not care about the relations
between aperture edges and image coordinates. More-
over, the proposed method treats input images as a
whole piece of data without cutting any regions in ad-
vance, and consequently it is pretty straightforward to
use in practice. When both methods are applicable, it
is not easy to say which one is more accurate as many
factors (e.g., noise, region selection) can influence the
accuracy.

In this work, an iter-DCT-based TIE solver is proposed
for phase retrieval under nonuniform illuminations and
nonhomogeneous boundary conditions in an arbitrarily
shaped region. In hardware, the added aperture can be
in an arbitrary shape, which results in a low requirement
on aperture fabrication and alignment. In data process-
ing, the procedure is extremely automatic and easy to
use. These features of the proposed method significantly
enhance the flexibility of TIE measurement with hard
aperture in real applications.
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Fig. 8. Zuo’s DCT method uses the information in “data region
Ω̄” to retrieve phase in reconstruct region Ω (a), and its result
(b) is used as a benchmark to judge the results from classical
FFT-based TIE solver (c) and the result from the proposed iter-
DCT method (d). The phase retrieved with the proposed
method is much closer to the DCT result (f) than the FFT
one is (e).
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