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�We introduce a new scene-based technique to correct the fixed-pattern noise in array sensors.
� This method register a pair of image frames exhibiting small translation.
� The noise pattern can be reconstructed using constrained least squares estimation.
� Accurate estimates of the bias nonuniformity can be achieved with only two frames.
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This paper introduces a new scene-based technique to correct the fixed-pattern noise (FPN) in array sen-
sors. This method registers a pair of image frames exhibiting small relative scene translation and then the
noise pattern can be reconstructed using the constrained least-squares estimation. The key advantage of
this technique is that the accurate estimates of the bias nonuniformity can be obtained with only two
images, without imposing any assumptions on the structure of the FPN. Besides, the method works on
almost static scene, and therefore does not require larger scale global motion and statistical assumptions
on the scene irradiance. We test our method on synthetically generated FPN as well as with real infrared
data, and experimental results demonstrate the significant reduction in FPN, validating the effectiveness
of our approach. Finally, we validate the feasibility and validity of using the proposed method as a first
step fostering the success of more sophisticated registration-based time-evolving correction algorithms.

Crown Copyright � 2013 Published by Elsevier B.V. All rights reserved.
1. Introduction

Focal-plane array (FPA) sensors have become the most promi-
nent detector used in infrared (IR) and visible-light imaging sys-
tems in recent years. However, FPA sensors, especially IRFPA are
strongly affected by the nonuniform spatial response of each pixel
sensor which arises due to the different responses of each photode-
tector within a FPA sensor [1,2]. This nonuniformity problem rep-
resents the main cause of fixed pattern noise (FPN) which is easily
noticeable in the acquired images. Furthermore, for uncooled infra-
red cameras the problem is even worse because the nonuniformity
of the sensor response is not stationary and often drifts with time.
For this kind of camera, scene-based nonuniformity correction
(SBNUC) is required throughout the sensor operation to eliminate
the influence of temporal drift without interrupting its normal
operation.
Numerous scene-based nonuniformity correction techniques
have been developed over the years. Such algorithms are generally
identified by two main approaches, namely, statistical methods [1–
6] and registration-based methods [7–9]. Statistical methods usu-
ally impose some spatiotemporal assumptions on the irradiance
collected by each detector in the array, and then some quantities
are extracted to estimate the correction coefficients for the FPN.
For example, the temporal high-pass filtering method [1] assumes
that the FPN should reside in the low temporal frequency domain
while the real scene not. The constant-statistics method [4] as-
sumes that, over time, the mean and variance of the irradiance of
the scene become spatially invariant. The constant-range method
[6] is based on the assumption that all pixel locations are exposed
to the same range of possible values within a sequence of frames.
Scribner’s algorithm [3] employed the ideal that the real scene
should spatially local smooth and belongs to the high temporal fre-
quency domain, but with the FPN the opposite is true. A common
drawback of these methods is the requirement of a large number of
frames and the camera needing to move in such a way in order to
satisfy the spatiotemporal assumptions made. To ensure these
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Fig. 1. The block diagram for the image degradation model.
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spatiotemporal assumptions stand, statistical algorithms typically
require a large number of frame samples (hundreds of frames),
particular conditions of observation, and sufficiently random cam-
era motion [10].

The registration-based methods, however, consider that each
detector should have identical response when observing the same
scene position and the response difference between the two detec-
tors is due to the FPN. Evidently, this assumption is much less
stringent than the ones made by statistical methods, therefore reg-
istration-based methods are more efficient in terms of the number
of frames used for parameter estimation. The first registration-
based method technique developed by Hardie et al. [7] employs
the idea that the average of properly registered observed image
frames gives an unbiased estimate of the true scene based on sim-
plified assumptions of identical Gaussian distributions of parame-
ters from pixel to pixel. Ratliff et al. [8] proposed a algebraic SBNUC
algorithm which uses pairs of image frames that exhibit arbitrary
one-dimensional or two-dimensional translational motions to help
remove non-uniformity in the bias of the FPA response. Recently,
we presented an interframe-registration-based algorithm (IRLMS)
[9] in which NUC could be achieved by estimating the global trans-
lation between two adjacent frames and minimizing the mean
square error between the two properly registered images.

Since both approaches rely on some assumptions about the
scene observed, they are susceptible to ghosting artifacts when
the undying assumptions break down. This problem is more seri-
ous among statistical methods and several some solutions for
reducing ghosting effect have been proposed: A simple deghosting
method is to detect the changes between frames and deselect the
input image if the change is less than a threshold [11], which has
been proven to be effective but still insufficient. Some methods
introduce spatial filtering into temporal high-pass filtering method
[12–14] and constant statistic method [10,15] to reduce ghosting,
considering local statistics assumptions are much easier to be sat-
isfied than the global ones. The adaptive learning rate [16], edge-
preserving spatial filter [17], and temporal statistics thersholding
[18] strategies have been introduced in the Scribner’s algorithm
to preventing ghosting artifacts and object degeneration. On the
other hand, the ghosting effect in registration-based methods ap-
pears less serious, but it also still nonnegligible. A recent work im-
proved IRLMS method by introducing three strategies to reduce the
ghosting effect resulting from inaccuracy of registration, local mo-
tion, scene warping and rotation, etc. [19].

The above mentioned NUC methods, both statistical methods
and registration-based methods are known collectively as time-
evolving SBNUC, wherein a relatively larger number of image
frames (even for registration methods, at least tens of frames are
required) are needed to estimate the NUC parameters reliably, in
a recursive matter. Quite different from the time-evolving SBNUC,
some single frame SBNUC method are proposed recently to correct
FPN with only single capture and thus no camera/scene motion and
no registration is required [20–22]. Besides, they are free from the
ghosting problem because their single-frame property. However,
these methods are only limited to the one-dimensional case (stripe
nonuniformity) and of little avail when the FPN is arbitrary two-
dimensional pattern.

The propose of this paper is to present a novel scene-based NUC
method, two-frame NUC (TFNUC), wherein NUC can be achieved
employing only two image frames which exhibit a small relative
scene translation. Since our method employ image registration, it
should be categorized into the registration-based SBNUC. But more
strictly speaking, it constitutes a class by itself, falling in between
the time-evolving SBNUC and single-frame SBNUC, because the
complete, non-recursive NUC can be achieved with only two image
frames, without imposing any assumptions on the structure of FPN.
We introduce the principles of the new method; and simulations
and experimental results are given to verify the effectiveness of
the TFNUC method. Some practical considerations and potential
applications of the proposed method will be also discussed.

2. Proposed method

Consider s1(x, y) as a two-dimensional (2-D) scene image de-
fined in continuous space with real-number indices x and y. Be-
cause of the small camera motion or jitter, there is a small
relative scene translation (strictly horizontal or vertical global mo-
tion) between a pair of consecutive frames observed during a
rather short time. Let (dx, dy) represent this displacement in x and
y directions respectively. If we choose the coordinate system of
s1(x, y) as the reference coordinate system, then the displaced
scene image in the camera’s field of view can be represented as s2-

(x, y) = s1(x � dx, y � dy). Thus the corresponding two observed
frames can be defined as:

f1ðx; yÞ ¼ s1ðx; yÞ þ oðx; yÞ þ n1ðx; yÞ; ð1Þ

and

f2ðx; yÞ ¼ s2ðx; yÞ þ oðx; yÞ þ n2ðx; yÞ: ð2Þ

Since laboratory measurements have demonstrated that the off-
set component is the dominant source of FPN [7,8], we assumed a
unitary gain. o(x, y) stands for the offset nonuniformity which is
signal independent and assumed to be fixed between two observed
images. The term n1 and n2 correspond to the additive temporal
noise, which are assumed to be signal independent. The FPN and
additive temporal noise are also assumed mutually independent.
It is noted that these conditions are valid in general applications.
According to the shift property of Fourier transform:

S1ðu;vÞ ¼ S2ðu;vÞe�jðudxþvdyÞ; ð3Þ

where we adopt the notation of upper case letters for the corre-
sponding Fourier-transformed function. Further, if the f2(x, y) is
shifted in frequency domain properly, and then subtracted by the
Fourier transform of f1(x, y), it follows that:

Fðu;vÞ ¼ F1ðu;vÞ � F2ðu;vÞe�jðudxþvdyÞ

¼ Oðu;vÞf1� e�jðudxþvdyÞg þ Nðu;vÞ: ð4Þ

The term N(u, v) is the combination of the two noise terms and
equals to N1ðu;vÞ � N2ðu;vÞe�jðudxþvdyÞ. Since n1(x, y) and n2(x, y) are
signal independent, n(x, y) should also be signal independent. Note
that Eq. (4) fits the mathematical model of image degradation [23]
very well and the block diagram is shown in Fig. 1. We rewrite Eq.
(4) in spatial domain:

f ðx; yÞ ¼ oðx; yÞ � hðx; yÞ þ nðx; yÞ; ð5Þ

where ⁄ represents the convolution operation. In image recovery
problem, h(x, y) is commonly referred as degradation operator and
its Fourier transform, which is known as the degradation function,
can be obviously expressed as below:

Hðu; vÞ ¼ 1� e�jðudxþvdyÞ: ð6Þ
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Note the above discussion is limited to the continuous case.
When dealing with digital images, (x, y) are specified only in finite
size discretized arrays (N �M). However, replacing the Fourier
transform by the discrete Fourier transform (DFT), and also assum-
ing a periodic extension of the images outside their compact sup-
port, it follows immediately upon substituting u ¼ 2pk

N and v ¼ 2pl
M

that the degradation function becomes as below:

Hðk; lÞ ¼ 1� exp �j
2pk

N
dx þ

2pl
M

dy

� �� �
; ð7Þ

where k = 0, ..., N � 1 and l = 0, ..., M � 1. Similarly, Eq. (4) should be
rewritten as:

Fðk; lÞ ¼ F1ðk; lÞ � F2ðk; lÞ exp �j
2pk

N
dx þ

2pl
M

dy

� �� �

¼ Oðk; lÞ 1� exp �j
2pk

N
dx þ

2pl
M

dy

� �� �� �
þ Nðk; lÞ: ð8Þ

Then the continuous version of the degradation system for two-
dimensional signals formulated in Eq. (5) can be expressed in dis-
crete form by replacing the continuous arguments with arrays of
samples in two dimensions. In this case, it is convenient for image
recovery purposes to represent the discrete formulation of Eq. (5)
as a system of linear equations, which expressed as [24]:

f ¼ Hoþ n; ð9Þ

where f, o, and n are the lexicographic row-stacked versions of the
discretized versions of f(x, y), o(x, y), and n(x, y) and H is the degra-
dation matrix composed of the h(x, y).

In the presence of FPN, a fairly accurate estimates of (dx, dy) can
be obtained with the image registration technique described in de-
tail in [25]. At first glance, the solution to the signal recovery prob-
lem seems to be straightforward if H can be obtained precisely –
find the inverse of the matrix H to solve for the unknown vector
o. However, it turns out that the solution is not so simple because
in practice the degradation matrix is usually ill-conditioned or
rank-deficient and the problem of inconsistencies or noise must
be addressed. Fig. 2 shows the 3D plots of the magnitude of degra-
dation function H(k, l), with (dx, dy) = (0.5,0.5) and (1.3,2.7) (the
zero-frequency component is shifted to center of spectrum). It
can be seen that H(k, l) assumes zero along some specific lines,
which means that, at these frequencies the information of o is
unrecoverable. Particularly, the origin (0,0) is always on the zero
lines, so we cannot get the direct current (DC) part of the FPN.
However, it is not a problem because the offset FPN is usually as-
sumed zero-mean without loss of generality. Another problem is,
in practical applications, there are many uncertain factors, such
as random noise, registration error, and tiny inconsistence of be-
tween the two scene images. Even small amount of errors may lead
to a meaningless estimate with huge high frequency perturbations.
Fig. 2. The magnitude of the degradation function, wh
Regularization is one way to avoid the problems associated with
inverting ill-conditioned degradation operators for signal recovery.
The regularized solution of the inverse problem can be equiva-
lently formulated by the following regularization-based least-
squares problem [26]:

ô ¼ arg min
O

ko� Hf k2
2 þ ckQok2

2

n o
; ð10Þ

where the hat is used to denote an estimated value. The data fidelity
item ko�Hf k2

2 is the L2 norm (o � Hf)T(o � Hf). kQok2
2 is the prior

item. c is commonly referred as the regularization parameter, which
controls the tradeoff between fidelity to the data and the prior item.
Q is known as the regularization matrix and one typical choice of Q
is the Laplacian operator. By taking derivative with respect to f, the
solution for this overdetermined set of equations (Eq. (10)) becomes
as:

ô ¼ ½HT H þ cQ T Q ��1HT f : ð11Þ

The regularization parameter c in Eq. (11) plays a very impor-
tant role in the restoration process. Fig. 3 shows the examples of
reconstructed offset image using Eq. (11) with three different reg-
ularization parameters. From Fig. 3, it can be seen that a small va-
lue of c results in amplified errors in the estimated offset image. On
the other hand, a large c helps to suppress error while the nonuni-
formity would not be fully recovered. Since we can get the offset
estimates with different c, the corresponding corrected images
can also be obtained. A proper c should be chosen to provide best
quality of the corrected image. The roughness index (q) is often
used as a reference-free method to evaluation the quality of the
corrected image [9,16]. So the optimal value of c can be deter-
mined according to the follows criteria:

ĉ ¼ arg min
c

qðcÞ ¼ arg min
c

kh1 � ŝ1ðcÞk1 þ kh
T
1 � ŝ1ðcÞk1

kŝ1ðcÞk1

( )
; ð12Þ

where ŝ1ðcÞ is estimated true scene two-dimensional image matrix
without FPN, which can be obtained via f 1 � ôðcÞ, h1 is a horizontal
mask [�1,1], k � k1 is the L1 norm, and ⁄ represents discrete convo-
lution. A typical curve of q(c) is illustrated in Fig. 4. It is not difficult
to understand, if c is too small, the high-frequency offset estimate
error will result in an increase of the roughness index, whereas if
c is too large, the effect of non-uniformity correction will be weak-
ened, q(c) will become larger too. The search of that minimum va-
lue can be achieved by a Newton–Raphson-like procedure [26]
iteratively until |q(ci) � q(ci�1)| < a, where a determines the final
accuracy. Convergence to the optimal value of c is usually achieved
in 4–7 iterations, depending on the initial choices of c and the accu-
racy parameter a.
en (a) (dx, dy) = (0.5,0.5) and (b) (dx, dy) = (1.3,2.7).



Fig. 3. Three reconstructed offset images with three different regularization parameters. (a) Regularization parameter that is too large. (b) Proper regularization parameter.
(c) Regularization parameter that is too small.

Fig. 4. Iterative scheme for determination of c. The two previous values are used to
project the next value of c.
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Fig. 5. PSNR results of the synthetic noisy test sequence.
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3. Results

We present results over simulated and real IR image data. First,
a 50-frame clean video sequence was captured using a well-cali-
brated mid-wave IRFPA camera. The sequence originally contained
scene global motion introduced by moving the camera. This clean
video sequence was artificially corrupted by Gaussian distributed
offset nonuniformity. The PSNR value for the noisy raw images is
27.8 dB. We compared the performance of the proposed algorithm
with IRLMS [9]. The metrics used to measure the NUC performance
are given by the peak signal-to-noise ratio (PSNR) and the rough-
ness index [9,16]. IRLMS was initialized with unitary gain, null off-
set, and a step size of 0.05. Its correction video can be found in
Video 1, replayed at 5 frames per second. For the proposed method,
the correction was performed using only the last two frames. Since
best regularization parameter c needs to be determined by New-
ton–Raphson searching, to clearly demonstrate the c evolution
and how the regularization parameter could affect the final correc-
tion result, the regularization parameter searching process with
the corresponding corrected images are animated in Video 2. In
this video, the raw last two frames from the 50-frame video se-
quence are displayed at the very beginning. Two values c1 = 1
and c2 = 0.01 were used as the initial values for projecting the next
value of c, and the accuracy parameter a was chosen as 0.001. The
video shows the quality of the corrected image gradually improved
with the regularization parameter approaching to the optimal va-
lue. The optimal value of c was obtained as 0.032, after 7 iterations.
Then the estimated offset was applied to all the 50 noisy images.
Fig. 5 shows the PSNR curves of the two methods as a function of
the frame number. It can be seen our method achieved a constant
image quality of 38.1 dB, while the IRLMS method took about 43
frames to reach the same level. The final PSNR obtained by IRLMS
is 38.9 dB, after 50 times iterations. For better illustration of the
correction performance, the corrected images of the last frame
(50th) of both methods are shown in Fig. 6. The results show that
although the proposed TPNUC method used only two frames to
estimate the nonuniformity coefficients, it gave a comparable
NUC result with IRLMS wherein the correction was performed by
analyzing 50 noisy frames.

We also tested the proposed method using real IR images with
unknown FPN collected by two 320 � 256 HgCdTe FPA cameras
operating in the 3–5 lm and 8–14 lm range, respectively. We cap-
tured two groups of noisy images, and each group includes two
images exhibiting a small relative scene translation. Fig. 7a and c
shows one of the two raw images of each group, from which
stripe-like fixed pattern noise can be seen clearly. The striped pat-
terns in the raw frame are mainly due to the readout architecture
of the IRFPA – the photo-detectors along one column are grouped
and multiplexed into each output channel by means of different
readout amplifier circuits. Corrected images are presented in
Figs. 7b and d, respectively. Two evolution videos are also pre-
sented (Videos 3 and 4), using the same parameter as our simula-
tion. It can be seen TFNUC always shows a significant FPN
reduction and the visual quality of the corrected images is satisfac-
tory, as confirmed by the low roughness value displayed.
4. Other practical considerations

As one of many scene-based nonuniformity correction tech-
niques developed, our method should find its ground of practical
applications in this area. The most important characteristic of our
method is that only two frames are needed to perform a complete
correction, without imposing any assumption and pre-knowledge



Fig. 6. NUC results on the simulated test images. (a) RAW frame 50: PSNR = 27.8 dB, q = 0.272. (b) IRLMS: PSNR = 38.9 dB, q = 0.092. (c) TFNUC: PSNR = 38.1 dB, q = 0.096.

Fig. 7. NUC results on real IR images: (a) RAW frame: q = 0.231, (b) TFNUC: q = 0.139, (c) RAW frame: q = 0.157, and (d) TFNUC: q = 0.089.
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about the characteristic of the nonuniformity. So it is well-suited
for the applications of recovering the underlying true signals from
the limited acquired data contaminated by FPN, as a post-process-
ing algorithm. Despite its high efficiency in reducing the frame
number needed, it is not a wise idea to perform our method recur-
sively due to its relatively high computational complexity. Besides,
since only two frames are employed to estimate the correction
parameters, the NUC accuracy of our method is undoubtedly can-
not go higher than some other time-evolving methods wherein
the correction parameter can be estimated by analyzing tens, or
even hundreds of image frames. Given all this, we believed our
method is more suitable for to be a pre-correction SBNUC method,
used along with other time-evolving methods. Once the camera
starts, our method is performed as a first step to quickly reduce
the initial FPN, and then other time-evolving methods can be then
applied to further refine the correction parameters and follow the
temporal drift of FPN. Such a combination could significantly in-
crease the convergence rate of the time-evolving method, produc-
ing substantially clear and virtually usable images for observation
purposes within only two-frame time interval. And meanwhile, the
combination will not affect the steady-state accuracy and long-
term performance of the NUC.
To validate the feasibility and validity of this idea, we conduct a
simulation using another 200-frame clear video sequence, artificially



Fig. 9. The visual effect comparison of NUC results for 2nd, 10th, 40th, 100th, 200th frames (from left to right) from the video sequence. (a) Raw images. (b) IRLMS corrected
images. (c) Combination method corrected images.

C. Zuo et al. / Infrared Physics & Technology 60 (2013) 190–196 195
corrupted by the same level of Gaussian distributed FPN as in Sec-
tion 3. Two methods are compared, first using IRLMS alone, and sec-
ond method combining the proposed TFNUC with IRLMS – apply the
TFNUC with the first two frames and then switch to IRLMS (using the
offset estimated by TFNUC as the initial correction parameters) for
recursively update the NUC parameter. The PSNR comparison is
shown in Fig. 8. The raw frames 2, 10, 40, 100, 200 and their corre-
sponding corrected versions are shown in Fig. 9. The correction video
is also presented in Video 5. It can be seen by combining the two
methods, the PSNR value directly jumped above 37 at first, and then
gradually increased further, reaching 41.2 at frame 50. Then the algo-
rithm began to converge after about 60th frame, and finally the value
of PSNR reached 43.2 by the end of this sequence. While the using
IRLMS alone, it took about 40 frames to pass the 35 dB barrier and
at frame 200, there was still a 2 dB gap from the combination method.
The PSNR results and the images displayed validate the feasibility and
validity of using the proposed method as a first step fostering the suc-
cess and accelerating the convergence process of more sophisticated
registration-based time-evolving correction algorithms. It should be
noted that although the time saved is not so much (only a few sec-
onds); it may be very precious on some time-critical occasions.

Another problem existing in most time-evolving SBNUC meth-
ods is the NUC is performed based on sufficient global motion be-
tween the camera and the scene under observation. While for
some special applications, e.g. fixed-spot IR surveillance, such kind
of global motion is impractical. In this case, our method can be well
applied because it only requires a very small relative scene motion
and do not depend on larger scale global motion. Since the tempo-
ral drift of FPN is comparatively slow, the NUC can be performed
periodically (e.g. every 1 min for one correction), by artificially
introducing a small mechanical translation. Furthermore, com-
pared with the ‘‘mechanical shutter’’ NUC approach, in which a
uniform, and nontransparent surface covers the detector array
periodically, our method is shutterless, and therefore free from
the problems of image blocking or freezing.

Finally, since our method is based on registration, it also shares
some limitations with most registration-based NUC methods. The
validity of the proposed method is based on the following assump-
tions: (1) The infrared irradiance field of the observed scene re-
mains unchanged during the two-frame time interval. (2) The
scenes in the captured two frames exhibit only small global trans-
lations. These two assumptions should be met in order to guaran-
tee a successful use of the TFNUC method.

5. Conclusions

In conclusion, we have presented a novel technique for scene-
based nonuniformity compensation in FPA sensors. By using a pair
of image frames with small relative translation, the NUC can be
recasted as a particular image restoration problem wherein the
correction parameters are extracted by using the regularization-
based constrained least-squares estimation. The unique advanta-
ges of the proposed method include that: it is direct, non-recursive,
and employs only two image frames to obtain the NUC parameter
without any assumptions on the structures of the FPN. Experi-
ments on both simulated and real infrared data demonstrate the
effectiveness of this technique. The future work will be focused
on reducing its computational complexity for hardware implemen-
tation, and incorporating it within existing SBNUC methods to im-
prove the real-time performance of practical imaging systems.
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