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O P T I C S

Lensless imaging with a programmable Fresnel 
zone aperture
Xu Zhang1,2,3†, Bowen Wang1,2,3†, Sheng Li1,2,3, Kunyao Liang1,2,3, Haitao Guan1,2,3,  
Qian Chen1,2,3*, Chao Zuo1,2,3*

Optical imaging has long been dominated by traditional lens-based systems that, despite their success, are inher-
ently limited by size, weight, and cost. Lensless imaging seeks to overcome these limitations by replacing lenses 
with thinner, lighter, and cheaper optical modulators and reconstructing images computationally, while facing 
trade-offs in image quality, artifacts, and flexibility inherent in traditional static modulation. Here, we propose a 
lensless imaging method with programmable Fresnel zone aperture (FZA), termed LIP. With a commercial liquid 
crystal display, we designed an integrated LIP module and demonstrated its capability of high-quality artifact-free 
reconstruction through dynamic modulation and offset-FZA parallel merging. Compared to static-modulation ap-
proaches, LIP achieves a 2.5× resolution enhancement and a 3 decibels improvement in signal-to-noise ratio in 
“static mode” while maintaining an interaction frame rate of 15 frames per second in “dynamic mode.” Experimen-
tal results demonstrate LIP’s potential as a miniaturized platform for versatile advanced imaging tasks like virtual 
reality and human-computer interaction.

INTRODUCTION
Lensless imaging, which originates from astronomical x-ray observa-
tions where traditional lenses are challenging to manufacture (1–4), 
has been extensively used in microscopic biomedical (5–12) and 
macroscopic (13–15) imaging due to its lightweight and cost-effective 
characteristics. By establishing a nonlinear, controllable, and revers-
ible system transfer function between the incident wavefront and the 
imaging plane, lensless imaging enables the encoding and decoding 
between two-dimensional intensity and high-dimensional light-field 
information (16–18). In a lensless configuration, the optical lens 
group, typically dominating the volume in conventional imaging sys-
tems, is replaced with amplitude or phase masks with a thickness that 
constitutes only a small fraction of its former volume (13). Once 
again breaking through the volume boundary of traditional optical 
imaging systems, lensless imaging drives us to rethink the essence of 
image formation and explore possibilities beyond point-to-point rep-
resentation (19, 20).

Lensless imaging systems can be generally classified into two cate-
gories, static modulation and dynamic modulation. In the static-
modulation configuration, an amplitude or phase mask is typically 
placed over the sensor as a modulator, and then each point source is 
coded as a designed pattern rather than a single point (14, 17, 21). The 
image captured by the sensor is ideally a linear superposition of pat-
terns generated by each point source, and then the scene information 
can be reconstructed through direct deconvolution (20). However, for 
nonanalytical static masks, the consistency between the designed pat-
tern and the actual manufactured mask remains uncertain, necessitat-
ing high-precision point spread function (PSF) calibration at different 

depths before experiments. In most cases, lensless imaging involves 
projecting a high-dimensional light field onto a low-dimensional in-
tensity image. The nonequivalence in information is fundamentally 
responsible for the ill-posedness of inverse problem (19, 22). In prac-
tice, static-modulation lensless reconstruction can achieve a unique 
solution only with the aid of prior constraints such as Tikhonov regu-
larization and total variation regularization (13, 14), as well as math-
ematical optimization methods like the alternating direction method 
of multipliers (13–15), compressive sensing (19, 23, 24), and learning-
based methods (25–34). However, because of the inflexibility of mask 
control, incorrect selection of optimal parameters, and inaccurate 
calibration of the PSF, static-modulation lensless imaging methods 
often struggle to achieve high-quality imaging results in more com-
plex scenarios (13, 14).

The emergence of programmable devices, such as the spatial light 
modulator (SLM) (35–38) and the reconfigurable scattering mask 
(39), offers a promising and potential dynamic-modulation approach 
to further enhance the imaging quality of lensless imaging. With 
dynamic-modulation capability, multiple measurements can be re-
corded in various ways for high-quality reconstruction (40–43). The 
static-modulation mask cannot be changed once designed and man-
ufactured, so that multiple measurements can only be used to reduce 
noise. In contrast, dynamic-modulation lensless imaging based on 
the programmable mask can capture multiframe complementary 
measurement encoded with different patterns, which can not only 
achieve high resolution and signal-to-noise ratio (SNR) reconstruc-
tion but also interpret more scene information (36, 44, 45). However, 
previous works with SLMs as programmable masks generally face 
challenges in low-cost planar integration and high-precision nonan-
alytical PSF calibration, still relying on the reconstruction framework 
of traditional static-modulation lensless imaging based on mathe-
matical optimization. Fresnel zone aperture (FZA), inspired by the 
Fresnel zone plate (FZP) for diffraction-coded imaging (46, 47), of-
fers its analytical physical model and isotropic frequency response 
for dynamic-modulation lensless imaging.

Similarly to incoherent self-interference holography (48), the FZA-
based lensless imaging method requires multiple measurements 
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encoded by different FZA patterns to achieve high-quality reconstruc-
tion, which brings challenges to its FZA pattern switching with differ-
ent parameters. As mature display devices (49,  50), liquid crystal 
displays (LCDs) provide low-cost, compact, and pixel-level modula-
tion capacity for FZA-based lensless imaging. Programmable FZA 
combines the benefits of both LCD and FZA, offering the potential 
for dynamic modulation and suppression of twin artifacts for lens-
less imaging. Combining the analytic forward model of the FZA 
with the dynamic-modulation capability of an LCD, the program-
mable FZA offers the potential to avoid complex precision calibra-
tion, simplify and robustly implement, and increase the flexibility of 
lensless imaging systems.

Here, we present lensless imaging with programmable FZA (LIP), 
a high-resolution, enhanced-SNR, and aliasing-free lensless imaging 
technique designed to produce high-quality images for compact and 
cost-effective applications. Under discrete sampling of the program-
mable mask, optimal parameter matching and offset-FZA parallel 
merging (OPM) were proposed to avoid aliasing artifacts and synthe-
size high-quality reconstructed results, respectively. To fully exploit 
the benefits of the compact lensless volume and the flexible program-
mable mask, we miniaturized the imaging system into a “LIP module” 
and incorporated adaptive mode switching (“static mode” and “dy-
namic mode”) to cater to diverse usage scenarios. Compared to the 
conventional FZA-based methods, the LIP module with OPM en-
hances resolution by 2.5 times, reaching the pixel size limit of the 
LCD, improves SNR by 3 dB in static mode, and maintains a real-time 

reconstruction rate of 15 frames per second (fps) in dynamic mode. 
Experimental results suggest that LIP presents a promising miniatur-
ized platform for various advanced optical imaging tasks, including 
virtual reality (VR) and human-computer interaction.

RESULTS
Integrated module for the lensless imaging system with 
programmable FZA
The schematic of the proposed lensless imaging system with pro-
grammable FZA is shown in Fig. 1A. The object o

(

x, y
)

 is illumi-
nated by incoherent light, and each point px,y on the object o

(

x, y
)

 is 
projected onto the sensor plane with a distinct pattern t

(

x, y
)

, which 
corresponds to the magnification of the programmable FZA. Because 
of the shift-invariant property, the image g

(

x, y
)

 captured by the 
sensor is a linear superposition of the projected FZA patterns. As a 
bridge between incoherent imaging and coherent holography, FZA 
provides a way to record incoherent point sources in quasi-coherent 
form (19, 48, 47). Therefore, the form of g

(

x, y
)

 is similar to that of 
the incoherent self-interference hologram.

In the traditional FZA-based method (47), the spatial division is used 
for the four-step phase-shift algorithm to reconstruct an image without 
twin artifact (Fig. 1B and note S1). However, with programmable FZA, 
LIP can extend the ability to obtain higher frequency information by 
displaying different offset FZA. Following offset-FZA computational re-
construction, the proposed OPM method fuses all the collected data 
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Fig. 1. The forward model of programmable FZA-based lensless imaging system. (A) Schematics explaining the basic principle of lensless imaging with program-
mable FZA. (B) Multiple measurements and computational reconstruction with the OPM method, where the designed adaptive mode switching includes static mode and 
dynamic mode. (C) Integrated lensless imaging system LIP module. The system mainly consists of a CMOS image sensor and a commercial LCD, where the LCD can provide 
programmable amplitude modulation. Photo credit: X.Z.
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into one image, resulting in a higher resolution and SNR. In addition, 
with the flexibility of the programmable mask, we designed adaptive 
mode switching (Materials and Methods), which can dynamically adjust 
parameters between high quality (static mode) and high frame rate (dy-
namic mode) according to different application scenarios, for better 
adaptability and practicality.

To achieve high-quality lensless imaging with the integrated LIP 
module, a more detailed forward model has been proposed, consid-
ering the programmable FZA’s characteristics from the spatial do-
main and frequency domain perspective (note S2, fig. S1, and movie 
S1). On the basis of the forward model, we designed an integrated 
lensless imaging system (Fig. 1C), namely, the LIP module, for ex-
perimental validation (Materials and Methods). The LIP module 
was assembled from a commercial LCD screen as a programmable 
FZA and a digital camera as an image sensor. All components were 
assembled in a three-dimensional (3D) printed case, requiring only 
simple alignment instead of complex and rigorous calibration. Inte-
grating these components eliminates the limitations imposed by 
bulky lenses, yielding a compact and versatile imaging system.

High-quality lensless imaging with optimal parameter 
matching and OPM
With the flexibility of programmable FZA, the LIP module has the 
complete capacity for tuning optical parameters dynamically. How-
ever, unlike the previous work, which only used the programmable 
mask as an ideal continuous mask, we first need to analyze and 
model its discrete sampling characteristics. The arrangement of pix-
els in a typical commercial LCD reveals that the actual display area 
does not attain 100% due to driving circuits (fig. S1B). In particular, 
as the pixel precision of the LCD increases, the augmentation of the 
fill factor faces heightened challenges. This, in turn, introduces ad-
ditional influencing factors into our lensless imaging process, in-
cluding discrete sampling of patterns and pixel diffraction. Under 
the discrete pixel sampling of the LCD, the transfer function T(u, v), 
induced by the pattern t

(

x, y
)

 displayed on the programmable mask, 
periodically replicates in the frequency domain with intervals of 
[

1∕Δx , 1∕Δy

]

, where Δx and Δy are the pixel pitches in the x and y 
directions, respectively (Materials and Methods).

The periodic repetition in the frequency domain caused by dis-
crete sampling makes it difficult to further improve the quality of 
lensless imaging based on programmable masks. The FZA parame-
ter β, which controls the fringe density of FZA, exhibits a linear 
positive correlation with the imaging resolution in the FZA-based 
lensless imaging system under a fixed aperture size. As β increases, 
each replicated spectrum expands until they overlap (fig. S1C). In 
the spatial domain, this manifests as the PSF’s periodic replication 
and the reconstructed image’s mutual overlap. This aliasing problem 
was not mentioned in previous works, mainly because program-
mable masks were only exploited as ideal masks, and their frequen-
cy response properties were not well modeled before (Materials and 
Methods).

Here, we propose a method that can use the characteristics of 
FZA and programmable mask simultaneously to recover the aliased 
information completely, that is, optimal parameter matching and 
OPM. OPM is carried out in four steps, as shown in Fig. 2. First, the 
optimal aperture size R is found according to the maximized angular 
field of view and the complete pattern sampling, and the maximum 
optical efficiency is satisfied at the same time (Materials and Methods). 
Next, we need to choose a β parameter as large as possible without 

aliasing the spectrum. A larger β will cause the spectrum of periodic 
replication to be aliased with each other, while a smaller β will not be 
able to make full use of the frequency domain information, thus re-
ducing the reconstruction efficiency. Only by selecting the optimal β 
can the periodic replication spectra be exactly independent of each 
other. Then, optimal parameters are used for subaperture reconstruc-
tion without aliasing. In the spatial domain, the FZA is shifted by step 
length α, corresponding to the spectral sampling position shifted by 
step length βα/π in the frequency domain. By designing an appropriate 
α, it is possible to perform a complete subaperture sampling of the tar-
get spectrum. After extracting the spectrum through support con-
straints, the amplitude and phase information of the subaperture can 
be recovered without aliasing (for more details about the FZA offset 
principle, see Materials and Methods). Last, the proposed OPM meth-
od synthesizes the information of different frequency components in 
the frequency domain to reconstruct the complex amplitude informa-
tion with high quality and high resolution. This spectrum synthesis 
concept aligns with the ptychography/Fourier ptychography (FP) 
technique (51–53). The difference is that FP generally uses the inten-
sity images acquired in the spatial domain as constraints, which re-
quires a high-precision aperture position in the spectrum. Our method 
combines the phase-shifting method in digital holography to obtain 
both the intensity and phase information of the subaperture simulta-
neously, thus directly obtaining the corresponding aperture position 
in the frequency domain, removing the dependence on the aperture 
position. After using OPM (note S3 and fig. S2), all the aliasing-free 
subaperture information is synthesized into one complete spectrum in 
the frequency domain to realize the high-quality lensless reconstruc-
tion without artifacts (for more details about OPM, see movie S2).

Static mode evaluation of the integrated 
programmable-FZA lensless imaging system
In the static mode, we aim to achieve lensless imaging with superior 
resolution and higher SNR with the ability to modulate the program-
mable mask dynamically. However, for a programmable mask, the 
aliasing problem caused by discrete sampling is the main limiting fac-
tor for image quality (see Materials and Methods). We conducted a 
numerical simulation to explain the connection between the aliasing 
factors and the FZA parameter β, as shown in Fig. 3A. Here, the alias-
ing factor is the downsampling scale of the undersampled mask com-
pared to the fully sampled FZA, whose physical meaning is the ratio of 
the pixel size of the programmable mask to the minimum feature size 
of the designed FZA mask. It can be observed that when the FZA dis-
played on the programmable mask avoids aliasing, all reconstructed 
images are clear and sharp. With an increase in β, the reconstructed 
spectral range expands, providing more high-frequency information. 
However, as the aliasing factor and β increase, both the replicated in-
terval Δx and the spectral range fFZA expand. This implies that the 
condition for avoiding aliasing will be violated, causing the periodi-
cally repeating FZA spectra to overlap until serious aliasing interfer-
ence occurs in the reconstructed spatial images (see Materials and 
Methods). Figure 3B illustrates the reconstructed image quality evalu-
ation index correlation coefficient (CC) and peak SNR (PSNR) under 
varying β parameters and aliasing factors. It is evident that, compared 
to scenarios without aliasing, different factors of aliasing have discern-
ible effects on the reconstruction quality. The impact is least pro-
nounced with an aliasing factor of 3, followed by 5. However, at β = 
75 rad/mm2, the reconstruction quality begins to decline noticeably. 
With an aliasing factor of 7, the degradation in reconstruction quality 
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starts even earlier, emerging as artifacts as early as β = 30 rad/mm2. 
This observation is further corroborated in the frequency domain. 
Whether it is the reduction in the distance between spectra due to an 
increased aliasing factor or the broadening of the central spectrum 
range from an elevated β, the mutual overlap of spectra becomes in-
evitable, resulting in unavoidable spatial aliasing. This aliasing issue 
severely constrains the quality of the reconstructed images. The close-
up regions of FZA under different pixel sizes (100%, 80%, and 40%) 
are shown in Fig. 3C. For most programmable masks, their fill factors 
do not reach 100%, which implies that the cutoff frequency caused by 
the pixel size mentioned earlier will generally be higher than the repli-
cation frequency caused by the pixel pitch. Therefore, even with alias-
ing present, high-frequency information can still be reconstructed. 
From the perspective of the PSF, as shown in 3D, under the same β 
parameter, the reconstruction results with smaller pixel sizes that cor-
respond to narrower PSFs, indicating that despite aliasing, the en-
hancement of high-frequency details is still achieved, and the true 
limiting factor for the upper-frequency response is the pixel size rather 
than the pixel pitch (for more details, see note S4 and fig. S3).

To verify the improvement of the proposed OPM method in 
terms of resolution, we first simulated the reconstruction of the US 
Air Force (USAF) resolution target (note S5 and fig. S4). Compared 
with smaller β and larger β, the optimal β chosen by optimal param-
eter matching can achieve superior resolution, higher SNR, and nar-
rower PSF with OPM. Besides, more simulations were conducted on 
10 groups of complex objects to validate the effectiveness of OPM 

method, as depicted in Fig. 3E (object “tower,” “flower,” “bear,” and 
“dog”) and fig. S5 (object “loong” to “temple”). Here, the equivalent 
β is the FZA parameter β required to reach the same spectral range 
as our proposed method under ideal aliasing-free FZA conditions. 
The calculation can be expressed as βeqv = Nβopt, where N is the 
spectrum expansion factor corresponding to a spatial-domain reso-
lution enhancement factor. In the simulation, we set the factor of 
spectrum expansion N to 2.86, i.e., βeqv = 2.86βopt. Comparing the 
reconstructions under the traditional method with equivalent β, ad-
herence to the optimal parameter matching enabled the extraction 
of aliasing-free high-frequency information from each subaperture 
for subsequent reconstruction. The proposed method resulted in a 
substantial improvement in reconstruction quality, with an average 
increase of 10.2 dB in PSNR and an average increase of 0.39 in the 
CC (Fig. 3F). The above numerical simulations show that the pro-
posed forward model of programmable FZA and the corresponding 
aliasing-free reconstruction method OPM effectively solve the alias-
ing problem, which is difficult for traditional methods under the 
programmable mask.

Then, we verified the imaging resolution of the LIP module under 
the static mode, and the experimental apparatus is illustrated in Fig. 
4A. The USAF resolution target was displayed on a monitor 200 mm 
away from the imaging system, with an actual physical size of 290 mm 
by 290 mm. Three sets of resolution experiments were performed 
separately, as shown in Fig. 4B. The optimal β parameter derived from 
the previously calculated optimal parameter matching (see Materials 
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and Methods) was used to image the central aperture using the tradi-
tional FZA-based method. It can be seen that the overall imaging 
quality of the traditional method with optimal β is fair, showing no 
discernible aliasing. However, the relative resolution exhibited limita-
tions, resolving only up to the line pairs in group −1 element 3, with 
an SNR of 6.38 dB (for more details about SNR calculation, see note 

S6). Upon increasing β, an enhancement in resolution was observed, 
enabling the discrimination of line pairs belonging to group 0 element 
4 at equivalent β. Here, the equivalent β is the β parameter required to 
reach the same spectrum range as our proposed method under ideal 
aliasing-free FZA. In the experiment, we set the factor of spectrum 
expansion N to 2.5, i.e., βeqv = 2.5βopt. Nevertheless, the improvement 

Object

Aliasing
3

Aliasing
5

Aliasing
7

No
aliasing

BA

C
or
re
la
tio
n
co
ef
fic
ie
nt

30 40 50 60 70 80 90

No aliasing
Aliasing 3×
Aliasing 5×
Aliasing 7×

(rad/mm2)

1

0.8

0.6

0.4

0.2

0

24

20

16

12

8
30 40 60 70 80 9050

P
S
N
R
(d
B
)

(rad/mm2)

No aliasing
Aliasing 3×
Aliasing 5×
Aliasing 7×

C

E

“Tower”

“Flower”

“Bear”

“Dog”

Single
pixel

Close-up
FZA

100% pixel size

= 120 rad/mm2= 80 rad/mm2= 40 rad/mm2

Amplitude Spectrum Amplitude Spectrum Amplitude Spectrum

u
v

u
v

u
v

u
v

u
v

u
v

u
v

u
v

u
v

u
v

u
v

u
v

FZA

D

80% pixel size 40% pixel size

PSF

1

0.5

0
-8 -4 0 4 8 -8 -4 0 4 8 -8 -4 0 4 8

A
m
p.
(a
.u
.) 100% pixel size

80% pixel size
40% pixel size

100% pixel size
80% pixel size
40% pixel size

100% pixel size
80% pixel size
40% pixel size

= 120 rad/mm2= 80 rad/mm2= 40 rad/mm2

Amplitude Spectrum Amplitude Spectrum Amplitude Spectrum

Trad. method with opt. β Trad. method with eqv. β Our method with opt. β

Ground truth

u
v

u
v

u
v

u
v

u
v

u
v

u
v

u
v

u
v

u
v

u
v

u
v

P
S
N
R
(d
B
)

30

20

10

0

1

0.5

0

C
or
re
la
tio
n
co
ef
fic
ie
nt

Object

X/pixel

F

T F B D L P
V

B P T

T
PB

V
PLDBFT

Fig. 3. Numerical simulations on lensless imaging with programmable FZA. (A) Reconstruction results with different aliasing factors (no aliasing, aliasing 3×, aliasing 
5×, and aliasing 7×) under β = 40, 80, and 120 rad/mm2. (B) PSNR and CC of different aliasing factors’ (no aliasing, aliasing 3×, aliasing 5×, and aliasing 7×) reconstruction 
results under β = 30 to 90 rad/mm2. (C) Close-up FZA under 100, 80, and 40% pixel size. (D) Comparison of PSF profiles reconstructed at different LCD pixel sizes (100, 80, 
and 40%) with β = 40, 80, and 120 rad/mm2. (E) Reconstruction results of the traditional method with optimal β and equivalent β, as well as our method with optimal β for 
object “tower,” “flower,” “bear,” and “dog.” (F) PSNR and CC for our method with optimal β and traditional method with equivalent β reconstruction results for object “tower” 
to “temple.” Photo credit: X.Z.

D
ow

nloaded from
 https://w

w
w

.science.org on A
pril 09, 2025



Zhang et al., Sci. Adv. 11, eadt3909 (2025)     21 March 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

6 of 13

came at the expense of a considerable decline in overall imaging qual-
ity with only 3.63 dB in SNR, marked by artifacts and aliasing infil-
trating the central region of the reconstructed image. Subsequently, by 
introducing the FZA offset with a step size of 40 pixels based on opti-
mal parameter matching, combined with the OPM method using a 
9 × 9 aperture, imaging quality that surpasses the equivalent β is ulti-
mately achieved. The improvement is evident in the smoother and 
more distinguishable line-pair profiles of group −1. In addition, our 
approach guarantees reconstruction resolution, allowing for the dif-
ferentiation of group 0 element 5 pairs that are challenging to distin-
guish using equivalent β and traditional methods, due to the high 
SNR of 6.65 dB achieved in the reconstruction results (for more de-
tails about imaging resolution analysis, see Materials and Methods).

In addition, we conducted experiments involving complex color 
objects, including “SCILab” as a simple color target and “Astronaut” 
as a complex color target displayed on the monitor, using the same 
configuration as the resolution experiments and reducing the num-
ber of apertures to 5 × 5 for acquisition efficiency. The reconstruc-
tion results and the corresponding close-up regions of interest (ROIs) 
are presented in Fig. 4C. For the simple target SCILab, compared with 

the reconstruction results of the traditional method under the op-
timal β and equivalent β, the proposed method can completely pre-
serve the edge details of the logo (ROI 1) and the text (ROI 2),while 
greatly reducing artifacts and background noise. Similarly, for the 
complex target Astronaut, we can also reconstruct the texture of the 
astronaut’s helmet (ROI 1) and the bottom text (ROI 2), which are 
difficult to recognize with the traditional method.

To further demonstrate the advantages of our method in high-
quality lensless reconstruction, we conducted two sets of real-world 
scene experiments (Fig. 4D). In scene 1, we selected the hat of a 
snowman doll and the label on a wine bottle as ROIs. As can be seen, 
in traditional reconstruction methods, the β parameter determined 
by optimal parameter matching can maximize the reconstruction 
SNR, but the resolution is still limited. Under the equivalent β pa-
rameter, the resolution of the traditional method improves to some 
extent, but at the cost of notably deteriorating SNR, making previ-
ously distinguishable details indiscernible. Our method, while en-
suring imaging SNR, also enhances the resolution to the physical 
limit of the LCD. The details of the snowman doll’s hat (ROI 1) and 
the text “HENIBECK” on the wine bottle (ROI 2) are both visible. 
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The same conclusion can be verified in the more complex scene 2. 
The text “CHINADA” in the newspaper (ROI 1) is sharper and clearer 
than the results of the traditional reconstruction. The stripes on the 
zebra (ROI 2) have better resolution and SNR under our reconstruc-
tion method. It is worth noting that due to the paraxial model ap-
proximation and the intensity attenuation of the LCD screen under 
a large viewing angle, there is some vignetting at the edges of the 
reconstruction results. The vignetting artifacts can be effectively 
mitigated through advanced postprocessing correction algorithms 
(54, 55) or performing intensity compensation based on precalibrat-
ed response curves. In brief, the LIP module with the proposed 
OPM method not only preserves the advantage of a higher SNR at 
optimal β but also effectively mitigates aliasing artifacts present in 
reconstruction results under equivalent β, thereby achieving high-
quality artifact-free lensless imaging.

Dynamic mode experiment and hand gesture sensing 
application of the integrated programmable-FZA lensless 
imaging system
The dynamic mode of the LIP module, unlike the static mode that 
only considers resolution, requires a more intricate balance between 
image quality and speed (see Materials and Methods). After consid-
ering the response time of the LCD, the speed of sensor acquisition, 
and the reconstruction time, we have set the imaging rate for the 
experiments of the dynamic mode at 15 fps with 3 × 3 apertures. We 
first built a dynamic scenario consisting of a playing card positioned 
closer and a hand repeatedly opening and closing at a slightly far-
ther distance, and the results are depicted in fig. S6. A total of 64 
frames were captured and reconstructed (fig. S6A), and frame 29 
was specifically chosen for the refocusing test (fig. S6B). At the 
−0.300 m position, neither the playing card nor the hand is on the 
focal plane. The negative distance here represents a digital refocus 
from the opposite direction of the incident light. However, at posi-
tions −0.334 m and −0.339 m, clear images of the hand and the 
playing card are obtained, respectively. The dynamic representation 
of the hand is provided in fig. S6C, showcasing the transition from 
blurred to clear images as the refocusing position changes (for more 
details, see movie S3). Compared with the focusing mechanism 
in traditional lens groups, the refocusing characteristics of the 
LIP module also pave the way for further reducing the volume of 
the imaging system and promoting miniaturization and integra-
tion application.

Furthermore, the powerful imaging ability and miniaturized size 
of our LIP module also shed light on volume-limited devices such as 
VR headsets. As an example, we demonstrated the application of the 
LIP module in hand gesture sensing and the potential for future in-
tegration into VR headsets (Fig. 5). Gesture sensors, being one of 
the most crucial components in VR devices, offer an intuitive means 
of interacting with the virtual world and liberate users from the con-
straints imposed by traditional control joysticks. As shown in Fig. 
5A, the gesture sensor is generally located right in front of the VR 
headset to capture the user’s gesture interaction. However, the utili-
zation of a traditional camera module as a gesture sensor often leads 
to substantial increases in the volume and weight of the VR device, 
which inevitably compromises the user experience. The traditional 
camera modules before optimization generally have lens structures 
more than 20 mm above the sensor surface, while the LIP module’s 
LCD-based programmable mask requires only 1.66 mm, which 
greatly compresses the imaging system by more than 90%. This size 

reduction is critical for space-constrained VR headsets, freeing up 
space for other more important components (Fig. 5B).

To verify the hand gesture sensing capability of the LIP module, 
we consulted the Apple Inc. developer guidelines and designed four 
groups of common interactive gestures in VR devices (Fig. 5C), 
namely, “Tap,” “Drag,” “Zoom,” and “Rotate.” The Tap gesture re-
quires the forefinger and thumb to touch each other once, as a click-
confirm interaction. The Drag gesture involves moving the hand 
slowly while holding the forefinger and thumb together, as an inter-
action to drag a virtual object. The Zoom gesture requires the left 
and right hands to be separated from each other at the same level, as 
an interaction to zoom in on a virtual object. The Rotate gesture in-
volves rotating the left and right hands around each other, as an in-
teraction to rotate a virtual object. The results of hand gesture 
collection and reconstruction are illustrated in Fig. 5D. We collected 
and reconstructed 16 frames for each gesture and displayed 5 frames 
among them. Despite the 90% reduction in imaging space, our inte-
grated LIP module can still accurately image and capture hand ges-
tures and ensure that the next step of hand key point detection can 
be carried out smoothly.

Last, we constructed a gesture interaction scenario to demon-
strate the potential of our LIP module further, as shown in Fig. 
5E. The user’s interaction gestures are captured by the LIP module in 
front of the user, sent to a PC for recognition, and applied to the 
virtual object “Earth.” As shown in Fig. 5F, the four gestures we de-
signed are well recognized by the hand key-point detection algo-
rithm, allowing the Earth to be selected, dragged, enlarged, and 
rotated accordingly (for more details, see movie S4). With its adap-
tive mode switching capability, our LIP module can be integrated 
into a broader range of sensors on VR headsets, enhancing the user 
experience with its lightweight and portable design.

DISCUSSION
By incorporating dynamic-modulation capability and the OPM meth-
od into the lensless imaging system, we not only address the ill-
conditioned problems and twin artifacts associated with static FZA but 
also mitigate aliasing artifacts caused by programmable masks in the 
reconstruction process. The high degree of freedom in modulation 
and flexibility in reconstruction provided by our LIP module allows for 
adaptive mode switching and parameter tuning tailored to specific ap-
plication requirements, ensuring optimal encoding and decoding. 
Last, we achieved a 2.5× resolution improvement (to the pixel size 
limit of the LCD), 3 dB SNR improvement (static mode), and 15 fps 
imaging speed (dynamic mode) on our miniaturized system LIP mod-
ule. Moreover, we demonstrate the potential of the LIP module for 
hand gesture sensing in volume-limited devices such as VR headsets. 
Given the widespread adoption of LCD technology in smart devices, 
our approach provides low-cost, compact, and lightweight imaging ca-
pabilities beyond conventional display applications. In essence, the 
impressive performance and adaptive mode switching of LIP can pri-
marily be attributed to the programmable mask’s ability, which effi-
ciently and rapidly maps high-dimensional object information onto 
collected two-dimensional intensity data in a controlled way. This fea-
ture ensures stable, fast, and well-conditioned solutions for the more 
inverse problem.

However, it must be acknowledged that the primary source of the 
aliasing artifacts and other issues originates from defects introduced in 
the LCD with nonideal pixel size and insufficient fill rate. Fortunately, 
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the recent rapid development of liquid crystal technology in the 
field of precise display and optical communication, which brings 
higher resolution, smaller size, and faster response speed, can fur-
ther enhance the dynamic-modulation capability of LIP technol-
ogy and gradually mitigate artifact problems, thereby advancing 
LIP toward a more practical future. Thanks to the dynamic tuning 
capability of the programmable LCD and the effective implemen-
tation of the OPM method on discrete sampling patterns, the ar-
chitecture of our proposed LIP module can be easily extended to 
lensless imaging systems based on different mask configurations 
(56,  57). By adjusting the mask position, multiview and high-
precision depth information can be extracted (36). When the mask 
is adjusted to specific pinhole shapes, computational spectral re-
construction becomes possible (58). Moreover, the principles of 
the OPM method can be extended to other lensless imaging tech-
niques, enabling the acquisition of high-dimensional information 
across different frequencies and modalities by manipulating vari-
ous mask configurations.

In the context of technological development for hand gesture in-
teraction in VR headsets, improvements can be sought from two ap-
proaches: enhancing performance limits or optimizing other aspects 
while meeting application requirements. Our LIP module for hand 
gesture interaction in VR follows the latter approach, achieving a 
91.7% reduction in the imaging system’s size and improving the user 
experience in VR headsets while maintaining high-quality gesture 
recognition. Furthermore, it is important to highlight that current 
VR headsets typically incorporate infrared illumination to ensure 
stable lighting conditions and increase the success rate of gesture rec-
ognition. The hand gesture interaction experiments presented in our 
work were conducted under well-controlled lighting conditions, 
closely simulating real-world usage scenarios. In future work, we 
plan to integrate compact illumination sources within the LIP mod-
ule and leverage the programmable LCD to precisely control the light 
source, enhancing adaptability to varying environments.

In summary, the potential of LIP lies not only in its compact size and 
cost-effectiveness but also in its capability to capture high-dimensional 

Tap

Drag

Zoom

Rotate

DC
Frame 1 Frame 3 Frame 5 Frame 7 Frame 9

A

Hand gesture sensor

20 mm

Traditional camera module LIP module

1.66 mm91.7%

VR headset

Gesture 
interaction

B

F

Ta
p

D
ra
g

Zo
om

R
ot
at
e

LIP module

Hand gesture

Virtual object interface

E

Fig. 5. Application of LIP module with the dynamic mode in hand gesture sensing. (A) User gesture interaction scene when wearing a VR headset. (B) Thickness 
comparison between the traditional camera module and LIP module. (C) Four groups of common interactive gestures in VR devices, namely, Tap, Drag, Zoom, and Rotate. 
(D) The results of different gesture collections and reconstructions. (E) Gesture interaction scenario with LIP module. (F) The recognition results corresponding to the four 
gesture interactions and the virtual object interaction demonstration. Photo credit: X.Z.
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light fields in various forms within a two-dimensional intensity plane. 
This enables the retrieval of high-quality and valuable high-dimensional 
information. In the future, our objective is to progressively extend the 
framework of LIP toward miniaturized and multimode imaging sys-
tems, facilitating diverse plug-and-play applications ranging from bio-
medical imaging to human-computer interaction.

MATERIALS AND METHODS
LIP module configuration
The LIP module was assembled from a commercial LCD screen as a 
programmable FZA and a digital camera as an image sensor (Fig. 1C). 
The LCD screen used is a BOE VS021XRM-NW0-DKP0, with a pixel 
resolution of 1600 × 1600, a pixel pitch of 24 μm, and a viewing angle 
(

θx , θy
)

 of 40°. The image sensor used is a Sony IMX183 with a pixel 
resolution of 5544 × 3694 and a pixel pitch of 2.4 μm. Considering the 
optical efficiency and the pixel size of LCD, the actual image acquisition 
is set to “pixel_binning = 3” (equivalent pixel resolution 1824 × 1216 
and equivalent pixel pitch 7.2 μm). To reduce the size of the LIP mod-
ule, we positioned the LCD screen close to the image sensor, resulting 
in a mask-sensor distance z2 of 1.66 mm, equivalent to the thickness 
of the LCD screen. Following the optimal parameter matching, 
we computed the optimal aperture size Rm and FZA parameters 
βm for the LIP module: Rm =

[

W∕2−z2tan
(

θy
)]

∕m = 2.72 mm, 
βm = πm∕

(

2ΔyRm

)

= 24.24 rad∕mm2, where W=1824 × 7.2 μm =
8.86 mm  represents the width of the sensor and magnification factor 
m = 1.11 (for more details, see the “Optimal parameter matching for 
LIP module” section). Further discussion of the sensor measurement 
overflow and color-space characteristics (59) of the raw data is given in 
note S7 and fig. S7.

In the numerical simulation, we used high-resolution images (1024 × 
1024 pixels) as the ground truth to validate the proposed method. The 
programmable mask had a pixel pitch 

(

Δx ,Δy

)

 of 24 μm, a pixel size 
(a, b) of 19.2 μm, and a viewing angle 

(

θx , θy
)

 of 40°. The sensor size was 
designed to be 7.37 mm by 4.92 mm (pixel pitch 4.8 μm). The object-
mask and mask-sensor distances z1 and z2 were set at 100 and 1 mm, 
respectively, resulting in a magnification factor m = 1.01. A discussion of 
programmable LCD transmittance is given in note S8 and fig. S8.

Adaptive mode switching between the static mode and the 
dynamic mode
We designed an adaptive mode switching for the LIP module, which 
is, respectively, the static mode and the dynamic mode. In the dy-
namic mode, by selecting the optimal parameters βm and Rm through 
the optimal parameter matching, the LIP module can gather infor-
mation from the nine subapertures in the multiplexing measurement. 
Here, unlike the simulation, where each aperture is individually cap-
tured, in the actual experiment, we took into account the limited 
magnification resulting from the much shorter distance between the 
mask and the sensor compared to the distance from the object to the 
mask. As a result, the reconstructed image occupies only about one-
ninth of the sensor area. Therefore, we adopt the 3 × 3 spatial multi-
plexing method (47, 60) to maximize the sensor area, improve the 
image acquisition efficiency, and adjust the optimal aperture size Rm 
and FZA parameter βm to one-third and three times the design pa-
rameters, respectively, to ensure the resolution. We captured four 
different FZA encoded measurements for each frame reconstruction, 
used the phase shift algorithm for phase retrieval and twin image 

suppression, and simultaneously resolved the spectral information of 
nine subapertures. Then, we used the OPM method to perform fre-
quency synthesis without iteration in the frequency domain and, last, 
executed an inverse Fourier transform back to the spatial domain to 
obtain the intensity and phase of the object. The LCD used has a re-
fresh rate of 120 Hz, theoretically allowing for high-quality dynamic 
imaging at frequencies ranging from 1 to 30 Hz. In the actual dy-
namic scene experiment, the LCD’s refresh rate was set to 60 Hz, and 
the dynamic imaging frame rate was set to 15 Hz to ensure an expo-
sure time of up to 16 ms and acceptable imaging SNR. In the results 
shown in Fig. 5, we set the sensor exposure to 10 ms and the gain to 
6 dB to ensure a certain SNR while reducing motion artifacts. The 
camera and LCD screen were triggered by a synchronized signal gen-
erated by our self-developed circuit.

In the static mode, to further enhance imaging quality, the OPM 
algorithm incorporates the concept of aperture overlap from FP and 
resolves the cophasing problem by overlapping the apertures, en-
abling high-quality lensless reconstruction. Unlike the dynamic 
mode, which requires only nine apertures, the static mode necessi-
tates 5  ×  5 or more apertures for reconstruction, resulting in ap-
proximately a triple acquisition time. Thus, the highest imaging rate 
for the static mode is 5 Hz under the multiplexing method. In the 
static scene results shown in Fig. 4, to characterize the upper limit of 
imaging resolution and SNR of the OPM method, we displayed each 
aperture separately instead of multiplexing nine apertures, and set 
the sensor exposure settings and gain to 16 ms and 5.5 dB, respec-
tively; other settings were consistent with the dynamic mode.

Discrete sampling of programmable mask
When projecting a designated pattern on a programmable mask, it 
is imperative to discretize the ideal continuous image and present it 
in each pixel, ensuring consistent intensity within each pixel region. 
Given the uniform sampling in both the x and y directions of the 
LCD, we define the sampling intervals (pixel pitch) in these direc-
tions as Δx and Δy, respectively. Moreover, when considering LCD 
pixels with a defined area, the scenario becomes more intricate. As-
sume that each pixel is a rectangle of dimensions a × b (pixel size). 
Consequently, the discrete sampling function s

(

x, y
)

 introduced by 
the LCD screen can be expressed as follows

When the ideal pattern to be displayed is denoted as t
(

x, y
)

, the 
actual pattern ts

(

x, y
)

 resulting from the discrete sampling on the 
LCD screen can be expressed as

Using the convolution theorem of the Fourier transform, the corre-
sponding transfer function Ts(u, v) is

s
(

x, y
)

=
[

rect
(

x

a

)

rect
( y

b

)]

∗

[

comb

(

x

Δx

)

comb

(

y

Δy

)]

(1)

ts
(

x, y
)

= s
(

x, y
)

t
(

x, y
)

=
[

rect

(

x
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)
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b
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∗

[
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]
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{
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This implies that, under the discrete pixel sampling of the LCD, the 
transfer function T(u, v), induced by the pattern t

(

x, y
)

, periodically 
replicates in the frequency domain with intervals of 

[

1∕Δx , 1∕Δy

]

. 
When T(u, v) is a band-limited function, and each replicated spec-
trum remains nonoverlapping, accurate extraction of the complete 
spectrum can be achieved through band-pass filtering. This allows 
for precisely restoring the ideal transfer function T(u, v).

Aliasing resulting from the discrete sampling of 
programmable FZA
Considering the forward model for a programmable mask with an 
FZA pattern, we can derive the frequency response characteristics 
of programmable FZA

The aliasing problem arises when the range of the equivalent transfer 
function T

P-FZA
 of the FZA is larger than its periodic interval 

[

1∕Δx , 1∕Δy

]

. When β increases, the frequency range that is repeated 
at intervals of 

[

1∕Δx , 1∕Δy

]

 in the frequency domain also increases se-
quentially, until they overlap. In this process, unwanted frequency 
components from the surroundings gradually mix into the central 
spectrum, resulting in disordered phase information for the frequency 
range corresponding to the overlapping part. In our forward model, 
the discrete sampling of mask in the spatial domain corresponds to the 
aliasing in the frequency domain, and the mutual overlap of the spec-
tra will also affect the intensity distribution in the spatial domain, so 
the PSF will also periodically repeat like the frequency domain. How-
ever, it is essential to note that, despite overlap, this does not imply the 
absence of high-frequency information within the central transfer 
function. When we further reduce the pixel size of the programmable 
mask, the cutoff range of the two-dimensional sinc’s zero points 
2∕a × 2∕b will expand. This is counterintuitive, as we typically tend 
to equate pixel pitch with pixel size or solely consider pixel pitch, pre-
suming that reducing pixel pitch is the only method to enhance reso-
lution by recovering high-frequency information before aliasing.

Frequency offset characteristics and spectrum range of FZA
Lensless imaging based on FZA shares fundamental parallels with holog-
raphy. In holography, the sample details are embedded within the holo-
graphic image’s high-frequency components or the interference pattern’s 
dense fringes. Likewise, the cutoff frequency of an ideal lensless imaging 
system is contingent on the density of FZA fringes exhibited within the 
aperture. The denser the fringes, the better the recorded information for 
reproducing high-frequency details of the object. The similarity implies 
that, if we can modulate high-frequency fringes, there is the potential to 
retrieve intricate details of the object’s high-frequency information.

As the FZA undergoes spatial shifting, the density of intensity 
fringes also varies. During a four-step phase shifting process, the 
equivalent phase factor similarly shifts (note S2 and fig. S1A). Ac-
cording to the Fourier transform properties of the exponential func-
tion, a corresponding shift in the central position occurs in the 
frequency domain (fig. S1A)

where TFZA is the equivalent transfer function after the four-step 
phase shifting, and TFZA is the transfer function after an 

(

x0, y0
)

 off-
set of the FZA. The offset of the original FZA in the spatial domain 
after the four-step phase shifting can be observed to be equivalent to 
the phase shift of TFZA, while in the frequency domain, it corre-
sponds to the translation of the transfer function. The spatial and 
frequency domain offset ratio is −β∕π.

After considering the effect of magnification for the actual ex-
perimental system due to the distance between the mask and the 
sensor, we calculated the actual spectral offset size fstep of the recon-
structed image with different FZA offset sizes and the spectral sam-
pling range fdiam corresponding to the aperture diameter as follows

where αoffset and αdiam are the offset step and the aperture diameter R 
on the LCD, respectively. To ensure data redundancy in static mode, 
we selected a 39.1% subaperture overlap rate as the basis for design-
ing the offset step size, a choice well justified in conventional FP 
microscopy (FPM) (61). At this overlap rate, we can calculate that 
αoffset = αdiam ∕2, and only the intensity information of subapertures 
is used for high-precision reconstruction. In the dynamic mode, to 
improve imaging efficiency, subapertures will no longer overlap; 
that is, αoffset = αdiam. The complete spectrum information of the 
subaperture can be obtained directly by Fourier transform using the 
complex amplitude reconstructed by the subaperture, and the re-
construction result can be obtained by simple superposition.

Optimal parameter matching for LIP module
To achieve optimal sampling, we consider the following three as-
pects in determining the optimal parameters βm and Rm:

1) Aliasing-free spectrum sampling: The primary cause of alias-
ing arises from the mismatch between the replication period of fre-
quency domain convolution, dictated by the pixel pitch of the LCD, 
and the spectral range determined by FZA parameter selection. 
Therefore, it is crucial to ensure that each replicated spectrum is en-
tirely free from mutual aliasing to optimize the efficiency of subap-
erture data collection.

2) Maximized angular field of view: The system’s angular field of 
view is primarily determined by the LCD’s inherent viewing angle 
characteristics. The viewing angle limits the maximum angle of light 
the imaging system can receive, with light intensity diminishing as 
the angle increases. When selecting the optimal parameters, we 
maximize the utilization of the LCD’s viewing angle to achieve the 
widest possible angular field of view for the system.

3) Complete pattern recording: If the pattern of the object pro-
jected on the sensor through the LCD is not adequately recorded, 

T
P-FZA

= ab sinc(au) sinc(bv)
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the reconstruction quality will degrade radially from the center to 
the periphery, resulting in a ringing effect at the edges. The issue 
primarily stems from the improper selection of the FZA aperture 
size. Hence, it necessitates a trade-off between complete pattern re-
cording and maximizing light efficiency.

Assume the LCD has x and y directional viewing angles of θx and 
θy, respectively, and the sensor dimensions are L ×W. To satisfy the 
second and third conditions, the pattern generated at the maximum 
incident angle must fall within the sensor’s range, ensuring complete 
sampling by the sensor (Fig. 2A). The requirement can be expressed 
by the following equation

To maximize the light utilization rate, R is generally the maximum 
value, and for a general sensor, W ≤ L, that is

Next, we consider aliasing free sampling of the spectrum. Ac-
cording to the analysis of FZA, the diameter of the spectral range of 
FZA is fFZA = 2βRm ∕π. To achieve aliasing-free sampling, there 
must be no overlap between the spectral ranges of the periodically 
recurring FZA

When the spectrum is exactly not aliased, it is the optimal parame-
ter we need

Given the same sampling intervals and viewing angles in the x 
and y directions, the following optimal parameter is designed

OPM for aliasing-free reconstruction
Combining the frequency offset characteristics of FZA with the sup-
port domain constraint method, we can acquire aliasing-free spec-
tral information for all apertures within the cutoff frequency. As a 
promising solution for optical superresolution, FP algorithm (62–
64) has proven its effectiveness in FPM (65–67), long-range synthet-
ic aperture (68,  69), etc. In addition, we use the concept of a 
difference map (70–73) in ptychography and process multiple algo-
rithmic steps in parallel to increase processing speed. Drawing on 
insights from FP about frequency-domain synthesis and difference 
map about parallel reconstruction, we can effectively restore all 
frequency information within 2∕a × 2∕b, achieving aliasing-free, 
high-resolution lensless reconstruction. The detailed OPM method 
is given in note S3 and fig. S2.

Imaging resolution analysis
For a lensless imaging system based on a programmable mask, the 
cutoff frequency is given by fc = m × fLCD, where m =

(

z1+z2
)

∕z1 is 
the magnification and depends on the object-mask distance z1 and the 

mask-sensor distance z2. fLCD is the cutoff frequency determined by 
the pixel size of the programmable mask. Ignoring the sensor’s sam-
pling limitations, the maximum spatial frequency that the system can 
resolve in the object space is fo = fc × z2 ∕z1. When using traditional 
reconstruction methods, the frequencies within fo can be addressed, 
but ensuring imaging quality and SNR remains challenging.

The pixel pitch of the LCD screen used is 24 μm, and the pixel 
size is 9.6 μm, corresponding to a cutoff frequency of fLCD = 1∕

fLCD = 1∕(2×9.6 μm) = 52.08 mm−1. The USAF target used for the 
test measures 290 mm × 290 mm and is placed at a distance of z1=
200 mm from the system. The distance between the LCD and the 
sensor is z2 = 1.66 mm, with an equivalent magnification m =
(

z
1
+z

2

)

∕z
1
= 1.0083. Therefore, the highest frequency response that 

can be received in the sensor plane is fc = m × fLCD = 52.51 mm−1. 
The highest frequency response of the LCD, fc, is lower than 
the highest frequency response of the sensor, fs=1∕[2× (3×

2.4 μm)]=69.44mm−1, so the frequency information can be fully 
captured. The highest spatial frequency of the USAF target that can 
be captured is fo = fc × z2 ∕z1 = 0.4358 mm−1, meaning the resolv-
able line-pair spacing (theoretical resolution) is Δt = 2.29mm. 
The magnification of the tested USAF target compared to the stan-
dard USAF target is 3.8 times, corresponding to a line width of 
314.98μm × 3.8 = 1.20mm for line pairs group 0 element 5, and a line-
pair spacing (actual resolution) of Δr = 1.20mm × 2 = 2.40mm. 
The relative error is E =∣Δt − Δr ∣ ∕Δt = 4.8%, which mainly comes 
from the distance measurement error and the assembly error of 
the system.

Comparison of LIP and state-of-the-art lensless 
imaging methods
To illustrate the advantages of the FZA combined with our proposed 
algorithm over state-of-the-art (SOTA) lensless imaging methods, 
we chose separable mask (13), contour (15), diffuser (14), and ran-
dom binary mask (1) as SOTA static-modulation masks for com-
parison, while selecting translated separable mask (36) and random 
binary array (44) for multishot method comparison.

For single-shot lensless methods, fig. S9A shows the PSF patterns 
corresponding to different static-modulation masks, where the FZA 
without offset and FZA with offset require the four-step phase shift-
ing, and the FZA with OPM synthesizes the frequency response of 
various FZA offsets using our proposed OPM method. Figure S9B 
displays the normalized frequency response curves for each mask 
derived from the Fourier transform of each PSF pattern. The fre-
quency responses of traditional static masks concentrate at the zero 
frequency, with a large direct current (dc) component, which sup-
presses responses at other higher frequencies. In contrast, the FZA-
based masks, using the four-step phase-shift method, greatly reduce 
the impact of the dc component, allowing the high-frequency compo-
nents to achieve better response. Notably, with our proposed OPM 
method, we can synthesize the parts of each subaperture that ex-
hibit higher frequency responses, resulting in an almost flat response 
across the entire frequency range. More comparisons of LIP and 
static modulated lensless reconstruction results (74) are given in 
note S9 and fig. S10.

For multishot lensless methods, fig. S11 compares the FZA-based 
method with multishot methods, including translated separable 
mask from SweepCam (36) and random binary array from noise re-
duced dynamic synthetic coded aperture imaging camera (NoRDS-
CAIC) (44). Figure S11 (A to D) shows each mask’s patterns and the 

R≤min
{[

L∕2−z2tan
(

θx
)]

∕m,
[

W∕2−z2tan
(

θy
)]

∕m
}

(9)

Rm =
[

W∕2−z2tan
(

θy
)]

∕m (10)

f
FZA

≤min

{

1

Δx

,
1

Δy

}

(11)

βm=min

{

πm

2Δx

[

W∕2−z
2
tan
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)] ,

πm

2Δy
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W∕2−z
2
tan
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}
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corresponding normalized frequency responses. SweepCam uses 
translated separable masks to capture multiview information, while 
NoRDS-CAIC uses randomly distributed coded masks to obtain 
slightly varied responses. By comparison, although the frequency 
response of a single FZA mask is similar to the above two methods, 
with a higher response at zero frequency, the four-step phase-shift 
method effectively suppresses the influence of the dc component 
and improves response consistency. Likewise, when using our pro-
posed OPM method, a uniform response is achieved across the en-
tire frequency range, which is substantial for reconstruction quality. 
Figure S11E presents a comparison of reconstruction results be-
tween the multishot methods and the FZA-based method. Because 
of the limitations in frequency response, reconstruction results ob-
tained with the translated separable mask and random binary array 
methods struggle to achieve accurate reconstruction under nonideal 
conditions, with limited improvement from multishot measure-
ments. In contrast, the FZA-based method inherently provides 
strong noise robustness and further enhances resolution and SNR 
when combined with the OPM method. The qualitative comparison 
between LIP and existing static- and dynamic-modulation methods 
is given in note S9 and fig. S12.

In summary, the FZA-based approach offers an analytical mask 
form and is closely related to incoherent self-interference hologra-
phy (48), which is grounded in established theoretical foundations. 
In contrast, traditional lensless imaging methods fundamentally 
model the measurements as the scene modulated by one or more 
masks, necessitating deconvolution for reconstruction. With only 
single-shot or random configurations, it is difficult to ensure stable 
deconvolution and reliable solutions from single or multiple mea-
surements. Consequently, the FZA-based lensless imaging method 
enables a deeper understanding of the essence of lensless imag-
ing, shifting the focus from an optimization problem to an optical 
problem with historical underpinnings. The unique features of the 
FZA-based lensless imaging, combined with the OPM method, 
effectively address the limitations encountered in SOTA lensless im-
aging methods, presenting a promising solution for high-quality, 
efficient lensless imaging. Moreover, by linking the underlying prin-
ciples of incoherent self-interference holography (note S10 and fig. 
S13), we can rethink resolution analysis and aperture synthesis from 
a more optical perspective, enabling higher imaging quality and 
supporting more diverse imaging modes in lensless imaging.
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