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In this paper, we propose a high-speed three-dimensional (3-D) shape measurement technique for dynamic scenes 

using geometry-constraint-based number-theoretical phase unwrapping. As a classical algorithm for temporal 

phase unwrapping (TPU), the number-theoretical approach is suitable for the binary defocusing fringe projection 

system since it can retrieve an absolute phase without using low-frequency fringe patterns. However, the con- 

ventional number-theoretical TPU approach cannot provide sufficient stability to unwrap a high-frequency phase 

since it requires the two fringe frequencies to be coprime within the global range of the projector coordinate. In 

contrast, using low-frequency fringe patterns tends to make phase unwrapping more reliable, but at the expense 

of the measurement precision. By introducing depth constraint into the traditional number-theoretical TPU, we 

only need to eliminate the phase ambiguity of each pixel within a small period range defined by the depth range, 

which means that our method just requires the two fringe frequencies to be coprime within the local period range 

instead of the conventional global range. Due to the reduction of fringe order candidates and the unambiguous 

phase range, the reliability of phase unwrapping can be significantly improved compared with the traditional 

number-theoretical TPU approach even when high-frequency fringe patterns are used. The proposed method has 

been successfully implemented on a high-frame-rate fringe projection system, achieving high-precision, robust, 

and absolute 3-D shape measurement at 3333 frames per second. 
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. Introduction 

Three-dimensional (3-D) shape measurement plays an increasingly

mportant role in various fields such as machine design, medical sci-

nce, entertainment, and so on. Among all the methods, fringe projec-

ion profilometry (FPP) is one of the high-performance techniques due

o its accuracy and high efficiency. With the rapid development of the

igh-speed camera and high-speed digital light processing (DLP) pro-

ection technique, three-dimensional shape measurement of transient

cenes such as high-speed motion and rapid deformation has attracted

idespread attention [1–6] . According to the phase retrieval technique

sed for extracting the depth information of the measured surface, main-

tream FPP approaches can be classified into two categories: Phase-

hifting profilometry (PSP) [7,8] and Fourier transform profilometry

FTP) [9,10] . FTP is highly suited for dynamic 3D acquisition, which

an obtain the phase map using one fringe pattern. But this method

uffers from the spectrum overlapping, which limits its measurement
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uality and makes it unable to recover the fine details of complex sur-

aces. In addition, instead of Fourier transform, the windowed Fourier

ransform (WFT) [11] and the wavelet transform (WT) [12] can also

e used to achieve higher phase measurement accuracy from a single

igh-frequency fringe pattern. Compared with FTP, PSP is more used

idely in FPP because it is more robust and can achieve pixel-wise phase

easurement with higher resolution and accuracy. However, PSP gen-

rally requires more time to acquire the multiple fringe patterns to re-

onstruct the 3D shape of the object. Moreover, both methods adopt

rctangent function and lead to the wrapped phase map with 2 𝜋 phase

umps. Therefore, it is necessary to perform phase unwrapping to elimi-

ate the phase ambiguity and convert the wrapped phase to the absolute

hase [13,14] . 

Dozens of phase unwrapping approaches have been proposed and

an be divided into two categories: spatial phase unwrapping [13] and

emporal phase unwrapping (TPU) [14–17] . Spatial phase unwrapping

efers to a class of methods for phase unwrapping using the relation-

hip between the phase information of the spatial neighboring pixels
n). 

vember 2018 
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13,18–21] . They are generally applied to recover a continuous phase

ap from a wrapped one, yet it cannot solve the ambiguity when mul-

iple isolated objects or abrupt depth changes are present. In order to

vercome the deficiencies in spatial phase unwrapping algorithm, TPU

pproaches have been developed to unwrap a more general phase map

hich may contain large discontinuities and separations. Typical tem-

oral phase unwrapping algorithms can be classified as either gray-code

pproaches [15] or multi-frequency approaches [14] . In gray-code ap-

roaches, a set of binary gray-code patterns are sequentially projected

ver time for encoding the fringe order information, so N gray-code

atterns can theoretically assist to unwrap the wrapped phase with 2 N -

eriod. Consequently, it needs more additional gray-code patterns to

liminate the phase ambiguities of fringe patterns with high-frequency,

hich is not suitable for high-speed 3D measurement. To address the

isadvantages of gray-code approaches, a phase-coding method is pro-

osed for absolute phase retrieval by embedding the N-bit stair phase

2 N level) into the phase component of phase-shifting fringe patterns

16] , and the stairs can be used to determine the fringe order for phase

nwrapping. However, due to the defocusing effect of the projector and

he random noise of the system, some post-processing algorithms must

e performed to effectively reduce the errors on the unwrapped phase

ap [17] . Besides, multi-frequency approaches unwrap the wrapped

hase map with the aid of additional wrapped phase maps with different

ringe periods. Since the minimum number of patterns required in stan-

ard phase-shifting algorithm is three, if we implement multi-frequency

pproaches based on standard PSP algorithms, at least six patterns (two

eparate 3-step phase-shifting patterns) should be used for obtaining

wo wrapped phases. Obviously, the increased number of required pat-

erns is undesirable for high-speed measurement applications, where it

s preferable to minimize the acquisition time to reduce the potential

otion-induced artifacts. 

In dynamic 3-D shape measurement [22–30] , increasing the speed

f the hardware (projector and camera) is also essential to improve the

easurement quality and reduce the motion artifacts. Because the dig-

tal mirror device, as the key component of the DLP projector is a bi-

ary digital device (can be either ‘on’ or ‘off’), the binary defocusing

echnique [31,32] is widely applied to the digital fringe projection sys-

em to increase the projection rate up to tens of kilo-Hz [25,29] . By

roperly optimizing the binary patterns, quasi-sinusoidal fringe patterns

an be created by slightly defocusing the projector lens. However, due

o the limited defocusing level of the projector lens, it is much more

ifficult to generate desired low-frequency fringe patterns than high-

requency ones [33] . Therefore the multi-wavelength TPU approach

34–36] and the number-theoretical TPU approach [37–40] are usually

sed in the binary defocusing projection system since it can avoid the

cquisition of low-frequency fringe patterns. Furthermore, compared

ith the multi-wavelength TPU approach, the number-theoretical TPU

ethod provide better unwrapping reliability and noise tolerance [14] .

uo et al. [22] proposed a high-speed 3-D measurement technique using

i-frequency tripolar pulse-width-modulation (TPWM) fringe projection

nd the number-theoretical approach. However, to ensure the stability

f phase unwrapping, the fringe patterns used are usually designed with

 relatively low frequency, e.g., 20 stripes, which results in low measure-

ent precision. 

Besides TPU, geometry-constraint-based approaches are also very ef-

cient to solve the phase ambiguity problem for measuring complex sur-

aces. Geometry constraint has been widely used in stereo vision because

t can help binocular cameras find the corresponding points in different

erspectives more effectively [41] . For a FPP system, geometry con-

traint requires that the correspondences between the camera and the

rojector are only selected along the polar line, which reduces the search

rea and improves the efficiency of phase unwrapping [23,27,42–47] .

f the pre-knowledge about the measurement range of the system can

e obtained, depth constraint can be applied to further excluding false

andidates located outside the measurement volume and enhancing the

tability of phase unwrapping. Based on this idea, An et al. presented a
22 
ethod to unwrap phase pixel by pixel by solely using geometric con-

traints of the structured light system without requiring additional im-

ge acquisition or another camera [45] . Based on geometric constraint,

n artificial absolute phase map Φmin is created as a reference to un-

rap the wrapped phase pixel-by-pixel. The wrapped phase with high-

requency can be unwrapped directly in the narrow depth range using

his method. Inspired by An’s method, Hyun et al. used more than one

eriod of the low-frequency phase or stair patterns to unwrap or encode

igh-frequency fringe orders by introducing the minimum phase map

min into two-frequency method and phase-coding approaches [17,48] .

ut, in order to ensure the stability of phase unwrapping, the period

f the low-frequency phase or stair patterns can only be increased to

 or 3 times on account of the defocusing effect of the projector and

he random noise of the system, so the period of high-frequency fringe

s generally around 30 pixels which limits the quality of 3D measure-

ent. In the binary defocusing projection system, the narrower fringe

atterns are commonly used to achieve high-quality measurement. To

chieve high-precision measurement, Tao et al. presented a multi-view

ystem based on geometry constraint to increase the fringe density

o that the measurement precision can be improved greatly in real-

ime 3-D shape measurement [27] . Based on depth constraint, the low-

requency (10-period) phase map is unwrapped directly since it is “ab-

olute ” in the local range. The obtained absolute phase map can be used

o unwrap the high-frequency one through multi-frequency phase un-

rapping. However, as mentioned above, the number-theoretical TPU

pproach [37,38,40] is more suitable for high-speed 3-D shape mea-

urement based on binary defocusing projection because it can avoid

he acquisition of low-frequency fringe patterns. However, in conven-

ional number-theoretical TPU, two fringe frequencies should be co-

rime within the global range of the projector coordinate. How to incor-

orate the geometry constraint into number-theoretical TPU to improve

he phase unwrapping stability and measurement precision is still an

mportant problem that needs to be addressed. 

To this end, this paper presents a high-speed three-dimensional

hape measurement approach using geometry-constraint-based number-

heoretical phase unwrapping. Due to the limited depth of field of the

amera (to maximize the image brightness, the camera lens usually has

 large aperture) as well as the limited depth measurement range of a

lightly defocused projector (the object must be properly placed in a

mall region such that the binary pattern becomes good-quality sinu-

oidal), it is reasonable and necessary that number-theoretical TPU and

he binary defocusing technique should be used in combination with

he depth constraint approaches. Owing to the advantage of depth con-

traint, we only need to eliminate the phase ambiguity within a small

eriod range defined by the depth range, which means that our method

ust requires the two fringe frequencies to be coprime within the local

eriod range instead of the conventional global range. The accuracy of

hase unwrapping is higher in the local period range due to contain-

ng fewer period ambiguities. As a result, we can realize reliable phase

nwrapping of higher frequency fringes compared with the traditional

umber-theoretical TPU. Experiments demonstrate the capability of the

ethod to achieve robust 3-D shape measurement for complex surfaces

nd spatially isolated objects. We also implement the proposed approach

n a high-frame-rate fringe projection system, achieving high-precision,

obust, and absolute 3-D shape measurement at 3333 frames per second.

In particular, it should be noted that we are not the first to apply

epth constraint for phase unwrapping. Recently, some methods have

een developed by combining TPU approaches and depth constraint suc-

essfully, but it just simply increase the period of the low-frequency

ringe or stair patterns for phase unwrapping with high-frequency

17,27,48] . However, as it is widely known, the number-theoretical

hase unwrapping method provides more complicated schemes for

ringe frequency selection. In this work, we first present the use of depth

onstraint to achieve number-theoretical phase unwrapping with high-

requency fringes. By deriving a rigorous mathematical model to quan-

ify the phase unwrapping error in the numerical theoretical TPU under
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Fig. 1. The traditional number-theoretical approach for two wavelengths of 3 

and 5 pixels. We can find a unique combination of k H ( x, y ) and k L ( x, y ) satisfying 

Eq. (10) for any valid pixel. 
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epth constraint, our method can provide a guideline for the selection

trategy of the optimal bi-frequency scheme. The performance of our

ethod is quantified and demonstrated using a standard ceramic sphere

ith a radius of 25.4 mm, which leads to a speed of 3333 frames per

econd (fps) with 51-period fringe patterns for fast, dense, and accurate

-D measurement with a depth precision of 54 𝜇m . 

The remainder of this paper is organized as follows. In Section 2 , the

rinciple of the bi-frequency phase-shifting algorithm is firstly recalled,

hich is used to obtain two high-frequency wrapped phase maps. Then,

he number-theoretical TPU approach based on depth constraint is pro-

osed to unwrap the two high-frequency phase maps. Moreover, the

erformance of the proposed method in terms of noise resistance is dis-

ussed in detail. And the selection strategy of the optimal bi-frequency

cheme is proposed to improve the stability of the absolute phase re-

overy under the condition of noise. Simulations and experimental ver-

fications are presented in Sections 3 and dummyTXdummy- 4. Finally,

onclusions are drawn in Section 5 . 

. Principle 

.1. Bi-frequency phase-shifting algorithm 

The N-step phase-shifting algorithm is widely used in FPP because

t is quite robust to ambient illumination and varying surface proper-

ies [8,49–51] . In high-speed 3-D shape measurement, using the mini-

um number of fringe images is desirable for reducing the measurement

ime, so the three-step phase-shifting algorithm is widely used for de-

reasing the sensitivity to the object motion. However, this algorithm

s still sensitive to different types of errors, such as system nonlinear-

ty. In our method, the four-step phase-shifting algorithm is used for

ts relatively high measurement accuracy and good error tolerance. The

tandard four-step phase-shifting fringe patterns with shift offset of 𝜋/2

an be described as 

𝐼 𝑛 ( 𝑥, 𝑦 ) = 𝐴 ( 𝑥, 𝑦 ) + 𝐵( 𝑥, 𝑦 ) cos ( Φ𝐻 

( 𝑥, 𝑦 ) − 𝑛𝜋∕2) (1) 

here I n is the fringe image captured by the camera, and n represents the

hase-shifting index 𝑛 = 0 , 1 , 2 , 3 . A ( x, y ) is the average intensity, B ( x, y )

s the intensity modulation, and ΦH ( x, y ) is the phase information of the

easured object. According to the least-squares algorithm, the wrapped

hase map 𝜙H ( x, y ) can be obtained. 

𝜙𝐻 

( 𝑥, 𝑦 ) = tan −1 
∑3 

𝑛 =0 𝐼 𝑛 ( 𝑥, 𝑦 ) sin ( 𝑛𝜋∕2) ∑3 
𝑛 =0 𝐼 𝑛 ( 𝑥, 𝑦 ) cos ( 𝑛𝜋∕2) 

(2) 

ince the output domain of the tan −1 function ranges from − 𝜋 to 𝜋,

he phase obtained by Eq. (2) will have 2 𝜋 discontinuities. In TPU al-

orithms, we need an additional phase with different frequency as an

ssistance to obtain the absolute phase [14] . To reduce the total number

f projection patterns, we use the bi-frequency phase-shifting algorithm

8,22] and project only two additional fringe patterns, which are repre-

ented as 

𝐼 𝐿 1 ( 𝑥, 𝑦 ) = 𝐴 ( 𝑥, 𝑦 ) + 𝐵( 𝑥, 𝑦 ) sin Φ𝐿 ( 𝑥, 𝑦 ) 

𝐼 𝐿 2 ( 𝑥, 𝑦 ) = 𝐴 ( 𝑥, 𝑦 ) + 𝐵( 𝑥, 𝑦 ) cos Φ𝐿 ( 𝑥, 𝑦 ) 
(3) 

n bi-frequency phase-shifting algorithm, the average intensity A ( x, y )

s assumed to be the same in I n , I L 1 , and I L 2 during a short time, which

an be derived from Eq. (1) : 

𝐴 ( 𝑥, 𝑦 ) = 

1 
4 

3 ∑
𝑛 =0 

𝐼 𝑛 ( 𝑥, 𝑦 ) (4) 

ubsequently, the wrapped phase map 𝜙L ( x, y ) of second fringe pattern

an be calculated 

𝜙𝐿 ( 𝑥, 𝑦 ) = tan −1 
𝐼 𝐿 1 ( 𝑥, 𝑦 ) − 𝐴 ( 𝑥, 𝑦 ) 
𝐼 𝐿 2 ( 𝑥, 𝑦 ) − 𝐴 ( 𝑥, 𝑦 ) 

(5) 

hen, we obtain two wrapped phases 𝜙H ( x, y ) and 𝜙L ( x, y ) of different

requencies. 
23 
.2. The number-theoretical approach based on depth constraint 

The binary defocusing technique [31] is applied to our system to

reatly improve the projection rate, but it cannot generate a high-quality

ow-frequency fringe pattern. Based on this technique, ΦL ( x, y ) is not

he phase map of unit-frequency but high-frequency. So the number-

heoretical method is suitable for the binary defocusing projection sys-

em since it can retrieve an absolute phase without using low-frequency

ringe patterns. In the traditional number-theoretical approach, the ab-

olute phase map can be obtained by the following formula: 

Φ𝐻 

( 𝑥, 𝑦 ) = 𝜙𝐻 

( 𝑥, 𝑦 ) + 2 𝜋𝑘 𝐻 

( 𝑥, 𝑦 ) 

Φ𝐿 ( 𝑥, 𝑦 ) = 𝜙𝐿 ( 𝑥, 𝑦 ) + 2 𝜋𝑘 𝐿 ( 𝑥, 𝑦 ) 
(6) 

nd the relationship is attached intrinsically: 

Φ𝐻 

( 𝑥, 𝑦 ) = 

𝜆𝐿 

𝜆𝐻 

Φ𝐿 ( 𝑥, 𝑦 ) (7) 

ypically, 𝜆H and 𝜆L stand for the wavelengths of the patterns I n and I L 1 
o I L 2 , respectively. k H ( x, y ) and k L ( x, y ) in Eq. (6) are the fringe orders

o represent phase jumps. The core challenge for the absolute phase map

ecovery is to calculate k H ( x, y ) and k L ( x, y ) for each pixel in the phase

ap quickly and accurately. From the principle of number-theoretical

pproach [22] , it can correctly unwrap the phase up to the value in the

bsolute phase which equals to LCM ( 𝜆H , 𝜆L ). LCM () stands for a func-

ion whose output is the least common multiple for input parameters.

q. (7) can be rewritten as 

𝑝 𝐿 Φ𝐻 

( 𝑥, 𝑦 ) = 𝑝 𝐻 

Φ𝐿 ( 𝑥, 𝑦 ) (8) 

here 𝑝 𝐻 

= 𝐿𝐶𝑀( 𝜆𝐻 

, 𝜆𝐿 ) ∕ 𝜆𝐻 

, 𝑝 𝐿 = 𝐿𝐶𝑀( 𝜆𝐻 

, 𝜆𝐿 ) ∕ 𝜆𝐿 . p H and p L repre-

ent the total number of fringes for the corresponding wavelength within

he unambiguous range LCM ( 𝜆H , 𝜆L ). Combining Eqs. (6) and (8) yields

𝑝 𝐿 𝜙𝐻 

( 𝑥, 𝑦 ) − 𝑝 𝐻 

𝜙𝐿 ( 𝑥, 𝑦 ) 
2 𝜋

= 𝑝 𝐻 

𝑘 𝐿 ( 𝑥, 𝑦 ) − 𝑝 𝐿 𝑘 𝐻 

( 𝑥, 𝑦 ) (9) 

n practice, p L , p H , k L ( x, y ) and k H ( x, y ) are integers, where k i ( x, y )

anges from 0 to ( 𝑝 𝑖 − 1) ( 𝑖 = 𝐿, 𝐻 ). Generally, Eq. (9) can be adapted as

𝑅𝑜𝑢𝑛𝑑( 
𝑝 𝐿 𝜙𝐻 

( 𝑥, 𝑦 ) − 𝑝 𝐻 

𝜙𝐿 ( 𝑥, 𝑦 ) 
2 𝜋

) = 𝑝 𝐻 

𝑘 𝐿 ( 𝑥, 𝑦 ) 

− 𝑝 𝐿 𝑘 𝐻 

( 𝑥, 𝑦 ) 
(10) 

here Round () is a rounding function. Within the unambiguous range

CM ( 𝜆H , 𝜆L ), we can only find a unique combination of k H ( x, y ) and

 L ( x, y ) satisfying Eq. (10) for any valid pixel. As shown in Fig. 1 ,

( x, y ) and Φ ( x, y ) can be obtained while k ( x, y ) and k ( x, y ) are
H L L H 
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Fig. 2. Illustration of an arbitrary point p in the camera and its corresponding 

points in 3-D space and the projector using the number-theoretical approach 

based on depth constraint. 
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chieved correctly. Due to the limitations of the traditional number-

heoretical approach, the phase only can be carried out unambiguous

nwrapping within the range LCM ( 𝜆H , 𝜆L ). Subsequently, it is neces-

ary that the wavelengths of fringes should be selected suitably to sat-

sfy W < LCM ( 𝜆H , 𝜆L ) ( W is the horizontal resolution of fringe patterns).

herefore, 𝜆H and 𝜆L are large in general, it i.e. the frequencies are low,

hich limits the accuracy of 3-D shape measurement. 

In order to overcome the problems mentioned above, depth con-

traint is introduced into the traditional number-theoretical approach.

epth constraint has been widely used in stereo vision because it can

elp binocular cameras find the corresponding points in different per-

pectives more effectively. In FPP, we usually regard the projector as a

everse camera, so the principle of depth constraint can be applied to

stablish a point-to-point mapping relationship between the camera and

he projector [27] . Once the measurement system is calibrated, the ab-

olute phase map and depth information in the real world can be derived

rom the following formula [52] 

𝑍( 𝑥, 𝑦 ) = 𝑓 ( 𝑥 𝑝 ( 𝑥, 𝑦 ) ) , 

𝑥 𝑝 ( 𝑥, 𝑦 ) = 

Φ𝐻 

( 𝑥, 𝑦 ) 
2 𝜋𝑁 𝐻 

𝑊 , 
(11)

here x p ( x, y ) is the coordinate along the horizontal direction of projec-

or, N H is the number of periods of the sinusoidal fringes, and Z ( x, y ) is

he height in 3-D space. With the assistance of Eq. (11) , the phase ΦH ( x,

 ) can lead directly to the 3-D position using calibration parameters be-

ween the camera and the projector. In general, due to the constraint

f the depth of field of the camera and the limitation of the area at the

light defocusing state of the projector, it is to assume appropriately that

he optimal depth range of measurement is [ 𝑍 min , 𝑍 max ] in this system.

ccording to Eq. (11) , the range of each pixel of the camera corresponds

o the projector is [ x 1 ( x, y ), x 2 ( x, y )]. For simplicity, [ x 1 ( x, y ), x 2 ( x, y )]

an be derived as 

𝐿 = 𝑚𝑎𝑥 
[
𝑥 2 ( 𝑥, 𝑦 ) − 𝑥 1 ( 𝑥, 𝑦 ) 

]
(12)

f a suitable depth range is set such that L < LCM ( 𝜆H , 𝜆L ), the opera-

ion of global phase unwrapping can be independent from the limit of

 < LCM ( 𝜆H , 𝜆L ). To illustrate the proposed method, the schematic di-

gram is shown in Fig. 2 . Applying depth constraint, we only need to

liminate the period ambiguities of the arbitrary pixel within a pixel-

ariant local period range. In this way, the requirement of the tradi-

ional number-theoretical method for the coprime of two fringe frequen-

ies can be adjusted from global range to local range. Obviously, the

mproved number-theoretical approach can further reduce the wave-

engths of the bi-frequency scheme and realize phase unwrapping of

igher frequency fringes which can yield more accurate and dense 3-D

econstruction results. 
24 
.3. The selection strategy of the optimal bi-frequency scheme 

In the subsection above, we have explained the basic principles and

imitations of the number-theoretical approach as well as the corre-

ponding improvement using depth constraint. However, the effect of

oise, a notable factor in practice, is not considered. Consequently, how

o improve the stability of the absolute phase recovery under the effect

f noise is the key task in most TPU algorithms. Namely, in accordance

ith the improved number-theoretical approach, how to decide the op-

imal frequencies of the bi-frequency scheme is our main concern. Ding

t al. [39] have proposed a selection method in absolute phase maps re-

overy with two frequency projection fringes, which indicates that error

ill occur in determining the fringe orders if the maximal phase error

s larger than 𝜋∕( 𝑝 1 + 𝑝 2 ) . Referring to this result, we propose a fringe

election method combined with depth constraint to find the maximal

hase error according to Eq. (10) . For simplicity, Eq. (10) is rewritten

s 

 

 

 

 

 

 

 

𝑅𝑜𝑢𝑛𝑑( 𝐹 ( 𝑥, 𝑦 )) = 𝑆𝑡𝑎𝑖𝑟𝑠 ( 𝑥, 𝑦 ) 

𝐹 ( 𝑥, 𝑦 ) = ( 
𝑝 𝐿 𝜙𝐻 

( 𝑥, 𝑦 ) − 𝑝 𝐻 

𝜙𝐿 ( 𝑥, 𝑦 ) 
2 𝜋

) 

𝑆𝑡𝑎𝑖𝑟𝑠 ( 𝑥, 𝑦 ) = 𝑝 𝐻 

𝑘 𝐿 ( 𝑥, 𝑦 ) − 𝑝 𝐿 𝑘 𝐻 

( 𝑥, 𝑦 ) 

(13) 

ssuming phase errors in the wrapped phase maps 𝜙H ( x, y ) and 𝜙L ( x,

 ) are Δ𝜙H ( x, y ) and Δ𝜙L ( x, y ) respectively, we have: 

Δ𝐹 ( 𝑥, 𝑦 ) = ( 
𝑝 𝐿 Δ𝜙𝐻 

( 𝑥, 𝑦 ) − 𝑝 𝐻 

Δ𝜙𝐿 ( 𝑥, 𝑦 ) 
2 𝜋

) (14) 

et Δ𝜙max = max ( |Δ𝜙𝐻 

( 𝑥, 𝑦 ) |, |Δ𝜙𝐿 ( 𝑥, 𝑦 ) |) , from Eq. (14) we can find the

pper bound of ΔF ( x, y ): 

Δ𝐹 𝑚𝑎𝑥 ( 𝑥, 𝑦 ) = | 𝑝 𝐿 Δ𝜙𝐻 

( 𝑥, 𝑦 ) − 𝑝 𝐻 

Δ𝜙𝐿 ( 𝑥, 𝑦 ) 
2 𝜋

|
= Δ𝜙𝑚𝑎𝑥 

𝑝 𝐿 + 𝑝 𝐻 

2 𝜋

(15) 

o avoid errors in determining the fringe orders, from Eqs. (13) and

15) we have: 

Δ𝐹 𝑚𝑎𝑥 ( 𝑥, 𝑦 ) = Δ𝜙𝑚𝑎𝑥 

𝑝 𝐿 + 𝑝 𝐻 

2 𝜋
< 0 . 5 𝑁 

(16) 

ubsequently, we can confirm the boundary of Δ𝜙max : 

0 ≤ Δ𝜙𝑚𝑎𝑥 < 

𝜋𝑁 

𝑝 𝐿 + 𝑝 𝐻 

(17) 

otably, N is the minimum gap of Stairs ( x, y ) within the unambiguous

ange, and Eq. (17) defines the range of Δ𝜙max where the absolute phase

an be correctly recovered. Otherwise, error will occur in determining

he exact k L ( x, y ) and k H ( x, y ). Due to the fact that the unambiguous

ange is also the global range using the traditional number-theoretical

pproach, the default value of N is 1. However, with different depth con-

traints, the value of N varies in different local range. And our essential

hallenge is to find the corresponding N in the given local range defined

y the depth constraint to maximize the value of 𝜋𝑁 ∕ ( 𝑝 𝐿 + 𝑝 𝐻 

) . 
Subsequently, a simple and effective selection strategy for maximiz-

ng 𝜋𝑁 ∕ ( 𝑝 𝐿 + 𝑝 𝐻 

) is proposed in our work. To clearly indicate the im-

lementation procedure of the selection strategy, a flowchart is plotted

s shown in Fig. 3 . With the assistance of the example, the detail of the

trategy is described as follows: 

Step 1 Draw the distribution of Stairs(x, y) : Combining the max-

imal range of depth constraint in the projector space L , the hori-

zontal resolution of the projection pattern W , and the wavelength

of the bi-frequency scheme ( 𝜆H , 𝜆L ), the distribution of Stairs ( x,

y ) can be drawn according to Eq. (13) , as shown in Fig. 4 . 

Step 2 Find the target point: The first point is considered as the

reference point O , the value of which is 0 for any Stairs ( x, y ). For

the full field ( W ), the candidate points are the points that have

the smallest difference of value with the reference O , and the one

closest to the reference point O is selected, as the point A in Fig. 4 .
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Fig. 3. The flowchart of the selection strategy. 

Fig. 4. The distribution of Stairs ( x, y ) for 𝜆𝐻 = 20 pixels and 𝜆𝐿 = 29 pixels. 

Fig. 5. The distribution of Stairs ( x, y ) for 𝜆𝐻 = 20 pixels and 𝜆𝐿 = 53 pixels. 

 

 

 

 

 

 

Fig. 6. The distribution of Stairs ( x, y ) for 𝜆𝐻 = 20 pixels and 𝜆𝐿 = 33 pixels. 
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t  
Step 3 Judge the depth range, re-determine the target point (if

applicable) and find N : Comparing the value of L and the dis-

tance between the target point and the reference point, the target

point needs to be re-determined in the narrow range, defined by

the reference point and the ex-target point, until the distance con-

forms to the given depth constraint. As shown in Fig. 4 , the points
25 
A, B, C are selected in turn and C is re-determined as the final tar-

get point because the distances 𝑥 𝐴 − 𝑥 𝑂 and 𝑥 𝐵 − 𝑥 𝑂 all exceed L

and 𝑥 𝐶 − 𝑥 𝑂 is smaller than L , the limitation of depth constraint.

Consequently, the value of N is 2 for the current parameters. 

From the above description, the depth constraint L is 150 pixels, W

s 1024 pixels, 𝜆H is 20 pixels, and 𝜆L is 29 pixels, so the minimum gap

 is 2 in the unambiguous range (260 pixels, determined by 𝑥 𝐵 − 𝑥 𝑂 ) as

hown in Fig. 4 . In the selection strategy, we reduce the unambiguous

ange until it is less than the depth constraint L to find the minimum

ap N . It is obvious that the minimum gap N is larger within the smaller

ange. We gradually narrow the unambiguous range to get an optimal lo-

al range, which should be at least larger than L and provides a relatively

arge gap N ( 260 > 𝐿 = 150 ). It should be pointed out that the proposed

trategy of narrowing the unambiguous range step by step may not be

he only way to determine N , but it is quite simple and straight-forward

o obtain the accurate local unambiguous range. Based on the above

rocess, we can optimize the wavelengths of the fringe patterns 𝜆L and

H so that the value of 𝜋𝑁 ∕ ( 𝑝 𝐿 + 𝑝 𝐻 

) can be maximized, resulting in

ptimal stability of phase unwrapping and robustness to noise. 

Since the depth of focus of the camera and the slight defocusing

ange of the projector are limited in fact, the optimal depth range of

easurement is fixed in a practical measurement system. So the depth

onstraint L can serve as a system constant. Considering that our method

s adopted in high-speed measurement system where the binary defocus-

ng patterns are not ideally sinusoidal and the exposure times of camera

nd projector are extremely limited, the captured image is of unideal

ontrast and is more susceptible to the noise. So it is necessary that the

avelengths of the fringe should be carefully selected. Due to the de-

ocusing effect of the projector, 𝜆H , which determine the measurement

ccuracy of the system, is about 20 pixels, and a less-than-20-pixel wave-

ength cannot make obvious improvement of the precision in the binary

efocusing fringe projection system. Together, the restrained defocusing

evel of the projector lens caused by hardware limitation will lead to the

act that a desired low-frequency fringe pattern cannot be generated. In

onclusion, L is 150 pixels in our system, 𝜆H is set as 20 pixels which do

ot induce any phase errors for the four-step phase-shifting algorithm.

he reasonable value of 𝜆L ranges from 21 to 60 pixels and 𝜆L is deter-

ined for it provides the highest accuracy of phase unwrapping after

oing through all the possible value. In this way, we can acquire the op-

imal bi-frequency scheme which maximizes the value of 𝜋𝑁 ∕( 𝑝 𝐿 + 𝑝 𝐻 

)
nd provides better accuracy for phase unwrapping. The selection strat-

gy’s further application is versatile with the adaption of the parameter

entioned above. 

. Simulations 

To verify the performance of the proposed approach, we simulated

he results of phase unwrapping under the different levels of noise. The
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Table 1 

The different bi-frequency schemes using different methods. 

The traditional approach Our method Our method 

(the optimal scheme) (the non-optimal scheme) 

𝜆H 20 pixels 20 pixels 20 pixels 

𝜆L 53 pixels 53 pixels 33 pixels 

LCM ( 𝜆H , 𝜆L ) 1060 pixels 1060 pixels 660 pixels 

The unambiguous range 1060 pixels 160 pixels 660 pixels 

N 1 6 1 

Δ𝜙max 0.043 rad 0.2582 rad 0.0593 rad 

d  

s  

t  

𝜆  

e  

e  

e  

n  

w  

g  

n  

t  

f  

w  

p  

c

 

r  

w  

r  

s  

o  

(  

c  

s  

b  

b  

r  

p  

t  

t  

s

4

 

p  

s  

a  

d  

o  

B  

D  

w  

[  

l  

s

4

 

i  

a  

a  

p  

m  

g  

(  

p  

o  

i  

w  

t  

e  

q  

a  

m  

u  

i  

s  

s  

i  

s  

i  

T  

s  

m  

l  

f  

r

4

 

d  

s  

f  

i  

s  

s  

f  

p  

i  

d  

w  

s  

fi  

a  

F  

e  

t  

i  

f

4

 

t  
ifferent bi-frequency schemes using different experimental parameters

hown in Table 1 . The optimal scheme can provide larger Δ𝜙max , yet

he non-optimal scheme only provides lower Δ𝜙max due to the improper

L . In this simulation, L and W are set as 150 pixels and 1024 pix-

ls. The unambiguous range in the traditional approach is 1060 pix-

ls, which satisfies 1024 < LCM ( 𝜆H , 𝜆L ). The maximum phase noise tol-

rance Δ𝜙max 1 is 0.043 rad , which demonstrates that the conventional

umber-theoretical approach is sensitive to noise. Adopting the same

avelength in our method, as shown in Fig. 5 , we found the minimum

ap N 2 is 6 in the local range (160 pixels > L = 150 pixels) and the

oise tolerance Δ𝜙max 2 is improved to 0.2582 rad . Also, we adjusted

he value of 𝜆L to 33 pixels to test the proposed selection strategy, and

ound the final maximal phase error Δ𝜙max 3 is 0.0593 rad (see Fig. 6 ),

hich is slightly better than the conventional number-theoretical ap-

roach ( Δ𝜙𝑚𝑎𝑥 1 = 0 . 043 𝑟𝑎𝑑 ) but far inferior to the optimal wavelengths

ombination ( Δ𝜙𝑚𝑎𝑥 2 = 0 . 2582 𝑟𝑎𝑑 ) . 
Secondly, the simulation results are shown in Fig. 7 . The error rate

epresents the ratio between the absolute phase of the fringes with and

ithout noise. Fig. 7 (a)–(c) show that the traditional approach cannot

ealize the global phase unwrapping under the different levels of noise

ince its inherent shortcoming. And without using the selection strategy

f the optimal bi-frequency scheme, the additional bi-frequency scheme

 𝜆𝐻 

= 20 pixels and 𝜆𝐿 = 33 pixels) is also failed to provide the suffi-

ient stability to unwrap a high-frequency phase using our method as

hown in Fig. 7 (d)–(f). The simulation results proved that the optimal

i-frequency scheme ( 𝜆𝐻 

= 20 pixels and 𝜆𝐿 = 53 pixels) have the ro-

ust anti-noise capability using our method since it has a smaller error

ate under the different levels of noise. In other words, we can realize

hase unwrapping of higher frequency fringes compared to the tradi-

ional approach. Further, it also indicates that the selection strategy of

he optimal bi-frequency scheme plays an important role to enhance the

tability of the absolute phase recovery in our method. 

. Experimental results 

A high-speed FPP system was set up to test the performance of the

roposed method. This system includes a high-speed CMOS camera (Vi-

ion Research Phantom V611) and a high-speed DLP projection system

s shown in Fig. 8 . The high-speed projection system consists of a DLP

evelopment kit (Texas Instruments DLP Discovery 4100), an XGA res-

lution (1024 ×768) DMD, and a custom-designed optics module [29] .

ased on the binary defocusing fringe projection technique, we drive the

MD at a refresh rate up to 20,000 binary fps [31] . The binary patterns

ith different fringes are generated by the binary dithering algorithm

53] . Since our approach uses 6 fringe patterns to recover one abso-

ute phase map, the 3-D shape measurement speed is 3333 frames per

econd. 

.1. Scene I: experimental comparisons 

Firstly, we experimentally verified the simulation results by measur-

ng a plaster model using the same fringe patterns as shown in Fig. 9 . The

bsolute phase maps of the tested object were calculated using different

pproaches as shown in Fig. 9 (b), (e), and (h). In addition, the absolute
26 
hase map obtained using the 12-step phase-shifting method based on

ulti-frequency temporal phase unwrapping approach can serve as the

round truth, and the phase difference maps are provided in Fig. 9 (c),

f), and (i), in which the proposed method with fringe patterns ( 𝜆𝐻 

= 20
ixels and 𝜆𝐿 = 53 pixels) contains fewer phase errors compared with

thers. Fig. 9 (c) and (f) are able to prove that the proposed method (us-

ng depth constraint) provides better reliability of phase unwrapping,

hile the traditional number-theoretical TPU approach is more suscep-

ible to noise. In general, the binary dithering algorithm cannot gen-

rate a desired fringe pattern when the fringe is very wide. The low-

uality fringe is unsuitable to the traditional number-theoretical TPU

pproach, whose phase error exceeds the threshold of the traditional

aximal phase error. However, this fringe can be applied to correctly

nwrap the wrapped phase computed from high-frequency fringes us-

ng our method. Fig. 9 (f) and (i) show that the results are similar to our

imulation results. The nose of the tested plaster model is in the low

ignal-to-noise ratio (SNR) region which can be used to test the reliabil-

ty of phase unwrapping under noisy condition. The experimental results

how that 𝜆𝐻 

= 20 pixels and 𝜆𝐿 = 53 pixels can provide better reliabil-

ty of phase unwrapping compared to 𝜆𝐻 

= 20 pixels and 𝜆𝐿 = 33 pixels.

he experimental results suggest that the wavelength of the bi-frequency

cheme ( 𝜆H , 𝜆L ) should be carefully selected to make phase unwrapping

ore reliable. Notably, this result demonstrates once again that the se-

ection strategy can be used to provide the optimal bi-frequency scheme

or our system, which can improve the stability of the absolute phase

ecovery. 

.2. Scene II: Accuracy analysis 

To quantitatively compare 3-D measurement precision of the tra-

itional approach and our method, we measured a standard ceramic

phere with radius 𝑅 = 25 . 4 mm. In our method, the optimal bi-

requency scheme ( 𝜆𝐻 

= 20 pixels and 𝜆𝐿 = 53 pixels) were further used

n this experiment to achieve higher precision 3-D reconstruction re-

ults. In the traditional number-theoretical approach, for acquiring the

imilar stability to unwrap the wrapped phase, the fringe pitch of the bi-

requency scheme was set as 𝜆𝐻 

= 40 pixels and 𝜆𝐿 = 47 pixels to realize

hase unwrapping in global range. The measurement results are shown

n Fig. 10 . Fig. 10 (a) and (d) display the 3-D reconstruction results using

ifferent methods. After the 3-D data of the sphere surface was obtained,

e fitted it to the standard sphere whose point cloud represents the

pherical surface. The differences between the measured data and the

tted sphere represent the measurement errors as shown in Fig. 10 (b)

nd (e). And the quantitative histograms of the differences are shown in

ig. 10 (c) and (f). It can be easily found that the RMS of the measured

rrors are 96.237 𝜇m and 53.664 𝜇m , respectively. Compared with the

raditional number-theoretical approach, our method can significantly

ncrease the measurement accuracy due to the use of high-frequency

ringe patterns and high SNR of the recovered phase map. 

.3. Scene III: static and dynamic scenes measurement 

After confirming 3-D measurement precision of our system, the op-

imal bi-frequency scheme is widely used to obtain 3-D reconstruction
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Fig. 7. The simulation results of phase unwrapping under the different levels of noise. 

Fig. 8. This system includes a high-speed CMOS camera and a DLP projection 

system. 
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esults in this subsection. It is worthwhile to note that the optimal bi-

requency scheme can acquire 3-D information of an object in a depth

ange of 200 mm. The further experiments were carried out to verify the

tability of our system for multiples objects with complex shapes. A num-

er of different objects were measured including the statue of David, a

riangular cone model, a plaster geometric model, and a cartoon face.

he 3-D results obtained by our method are shown in Fig. 11 . The ex-
27 
erimental results demonstrate the capability of the proposed method

o achieve robust 3-D shape measurement for objects with complex sur-

aces and geometric discontinuities. 

Next, our system is applied to high-speed 3-D shape measurement of

 dynamic object: a free-falling balloon filled with water. Fig. 12 show

epresentative 2D camera images (one of the four-step phase-shifting

atterns) and corresponding color-coded 3-D reconstructions at different

ime points. The balloon is artificially suspended in the air and remains

tationary until it is released (T = 25 ms). After traveling in free fall

or about 125 ms, the balloon arrives and began to be deformed by the

round. Then, the balloon has undergone severe deformation, losing its

riginal smooth shape (T = 175 ms). Due to the ground reaction force,

he balloon gradually returns to its former appearance (T = 210 ms).

oreover, the balloon bounces back into the air again (T = 315 ms). Af-

er several repeated bounces, the balloon finally falls back to the ground

T = 885 ms). The whole 3-D measurement results can be referred to in

isualization 1. During the whole process, the surface of the balloon was

orrectly reconstructed with high-quality, demonstrating the reliability

f the proposed method to perform high-precision absolute 3-D shape

easurement. 

In the last measurement, we applied our system to imaging one-time

ransient event: a bullet fired from a toy gun and then rebounded from a

lastic plate. Fig. 13 (a) and (b) show representative camera images (one

f the four-step phase-shifting patterns) and corresponding color-coded
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Fig. 9. (a) The captured scene with fringe patterns ( 𝜆𝐻 = 20 pixels). (b) The absolute phase map by using the traditional number-theoretical approach with fringe 

patterns ( 𝜆𝐻 = 20 pixels and 𝜆𝐿 = 53 pixels). (c) The phase difference map between (b) and the ground truth. (d) The captured scene with fringe patterns ( 𝜆𝐿 = 53 
pixels). (e) The absolute phase map by using the proposed method with fringe patterns ( 𝜆𝐻 = 20 pixels and 𝜆𝐿 = 53 pixels). (f) The phase difference map between (e) 

and the ground truth. (g) The captured scene with fringe patterns ( 𝜆𝐿 = 33 pixels). (h) The absolute phase map by using the proposed method with fringe patterns 

( 𝜆𝐻 = 20 pixels and 𝜆𝐿 = 33 pixels). (i) The phase difference map between (h) and the ground truth. 

Fig. 10. Precision analysis for a standard ceramic spheres. (a) 3-D reconstruction result using the traditional number-theoretical approach. (b) The distribution of 

the errors of (a). (c) The histogram of (b). (d) 3-D reconstruction result using our method. (e) The distribution of the errors of (d). (f) The histogram of (e). 
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-D reconstructions at different time points. T = 0 ms was the start of the

bservation time, and the bullet was fired from the gun muzzle at about

 = 17.5 ms. After traveling in free-flight for about 23 ms, the bullet

it the plate and rebounded towards the gun. During the later 110 ms,

he plate was back and forth as a result of the inertia. In Fig 13 ( c ),
28 
e show the 3-D reconstruction of the bullet at five different points

f time (17.5 ms, 29 ms, 40 ms, 75 ms, and 153 ms). The 3-D data

an be used to quantitatively analyze the process with regards to the

allistic trajectory and velocity. In Fig 13 ( d ), we show the reconstructed

-D shapes of the plate at three different time points (0 ms, 75 ms, and
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Fig. 11. Measurement results of several objects. (a) The statue of David. (b) A triangular cone model. (c) A plaster geometric model. (d) A cartoon face. 

Fig. 12. A balloon filled with water falls freely. (a)–(h) show 2D camera images (one of the four-step phase-shifting patterns) and corresponding color-coded 3-D 

reconstructions at the time points of 0 ms, 25 ms, 110 ms, 150 ms, 175 ms, 210 ms, 315 ms, and 885 ms. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

29 
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Fig. 13. A bullet fired from a toy gun and then rebounded from a plastic plate. (a)-(b) show 2D camera images (one of the four-step phase-shifting patterns) and 

corresponding color-coded 3-D reconstructions at different times. (c) shows the 3-D reconstruction of the bullet at 17.5 ms, 29 ms, 40 ms, 75 ms, and 153 ms. (d) 

shows the reconstructed 3-D shapes of the plate at 0 ms, 75 ms, and 153 ms. (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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53 ms). A more detailed illustration of the transient event is provided

n Visualization 2, which is a slow-motion 3-D movie containing 4000

-D frames (corresponding to an observation period of 200 ms ). This

xperiment successfully demonstrated that our proposed method can

easure multiple isolated objects at high speed. 

. Conclusions 

In this work, a novel high-speed 3-D shape measurement technique

or dynamic scenes using geometry-constraint-based number-theoretical

PU has been presented. By introducing depth constraint into the tra-

itional number-theoretical TPU, the unambiguous phase range can be

educed from the conventional global range of the projector coordinate

o a smaller period range defined by the depth range. Due to the re-

uction of fringe order candidates and the unambiguous phase range,

he reliability of phase unwrapping can be significantly improved com-

ared with the traditional number-theoretical TPU approach even when

igh-frequency fringe patterns are used. Benefitting from the number-

heoretical approach based on depth constraint, a global absolute phase

ap of high-frequency, dense fringes can be unwrapped using binary

ithering patterns. Furthermore, a simple and effective selection strat-

gy of the optimal bi-frequency scheme has been proposed to provide

etter reliability of phase unwrapping. We have demonstrated that with

he proposed scheme, the phase unwrapping error due to dithering and

andom noise can be substantially reduced. 3-D shape measurement re-

ults at 3333 frames per second have also demonstrated its potential for

igh-speed, high-precision, non-ambiguity, and full-field 3-D data acqui-

ition and analysis, rendering it a promising technique of dynamic 3-D

hape measurement for complex surfaces and spatially isolated objects.
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