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ABSTRACT

Optical three-dimensional (3-D) profilometry is gaining increasing attention for its simplicity, flexibility,
high accuracy, and non-contact nature. Recent advances in imaging sensors and digital projection
technology further its progress in high-speed, real-time applications, enabling 3-D shapes reconstruction
of moving objects and dynamic scenes. However, the camera lens is never perfect and the lens distortion
does influence the accuracy of the measurement result, which is often overlooked in the existing real-
time 3-D shape measurement systems. To this end, here we present a novel high-speed real-time 3-D
coordinates measuring technique based on fringe projection with the consideration of the camera lens
distortion. A pixel mapping relation between a distorted image and a corrected one is pre-determined
and stored in computer memory for real-time fringe correction. The out-of-plane height is obtained
firstly and the acquisition for the two corresponding in-plane coordinates follows on the basis of the
solved height. Besides, a method of lookup table (LUT) is introduced as well for fast data processing.
Our experimental results reveal that the measurement error of the in-plane coordinates has been
reduced by one order of magnitude and the accuracy of the out-plane coordinate been tripled after the
distortions being eliminated. Moreover, owing to the generated LUTs, a 3-D reconstruction speed of

92.34 frames per second can be achieved.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Three dimensional (3-D) geometric shape measurements have
found wide applications in the fields of industrial manufacturing,
fast reverse engineering, quality control, biomedical sciences, etc.
Compared with the traditional technique that adopts a coordinate
measuring machine to retrieve surface contour, the optical 3-D
measurement method is non-invasive since no surface contact is
required. In addition, its measurement speed is much faster than
the conventional point-by-point scanning measurement technique.

Over the years, lots of optical 3-D shape measurement methods
have been developed [1]. Among them, fringe projection profilo-
metry has been considered as one of the most reliable techniques
due to the advantages of high accuracy, non-scanning property
and full-field measurement. Furthermore, with recent advances in
digital projection technology, high-speed real-time 3-D measure-
ment techniques based on digital fringe projection are expanding
rapidly. These techniques enable a surface to be reconstructed in a
very short time period, thus will be of great potential for some
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time-critical applications, e.g. biomedical dynamic 3-D imaging,
deformation analysis under stress and vehicle collision research.
Traditionally, fringe projection based high-speed real-time 3-D
shape measurement methods can be classified into two categories:
the first one is to project a single pattern to inspect an object of
interest [2-4]. Although this strategy is insensitive to object
motion, it has disadvantages that the phase calculation relies on
the spatial neighborhood phase distribution, which reduces the
phase resolution and cannot recover discontinuous surfaces. The
second one is to project multiple phase-shifted fringe patterns
[5-7]. As the phase is calculated according to the captured
intensities of several phase-shifted images at the same pixel, this
strategy offers higher measurement accuracy and spatial resolu-
tion than the single pattern method. Further, it is more robust
since it is less sensitive to ambient light and object surface
reflectivity. Although this method may be susceptible to the object
movement, the associated side effects can be reduced to the
minimum as long as the projector/camera pair runs fast enough.
Exploiting this strategy, Zhang et al. developed a real-time 3-D
shape measurement system using graphics processing unit to
accomplish complex computations such as arctangent function
and 3-D coordinates calculations [8]. For the image of 532 x 500,
their system allows 3-D coordinates measurement at 25.56 frames
per second. Besides, Liu et al. reported a dual-frequency pattern
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scheme [9] in which several LUTs are created to compute the
phase map, modulation map, and coordinates, hugely lowering the
computational complexity and enabling the shape reconstruction
in less than ten milliseconds. Also, Zuo et al. developed a system
[10] using a modified low cost commodity DLP projector that is
able to work at 360 Hz and proposed a four patterns projection
strategy to recover the absolute phase map, achieving a dynamic
scene measurement at 120 frames per second.

From the previous works above, we find that the camera lens
distortion is rarely taken into account in the high-speed real-time
3-D shape measurement. In experiments, however, the lens dis-
tortion does affect the measurement accuracy and in most cases it
cannot be simply neglected, especially for some low cost systems
where the optics involved are of relatively poor imaging quality in
general. In a traditional 3-D measurement system where the
processing time is not a key factor, the correction of camera lens
distortion can be performed directly. However, for time-critical
high-speed applications, the time-consuming correction algorithm
is no longer appropriate to be performed directly during the real-
time process. Therefore, there is an urgent need for a method that
is capable of realizing high-speed real-time distortion-free 3-D
geometric shape measurement. The goal of this paper is to
propose a new high-speed real-time 3-D coordinates measuring
approach that eliminates the influence of the camera lens distor-
tion. In this research, we firstly calibrate the used camera and
every captured fringe image is processed with distortion correc-
tion before phase retrieval. To reduce the time cost in terms of the
distortion correction, a pixel correspondence between the dis-
torted and the undistorted images is pre-computed and will be
directly used for correction in the real-time process. Then, our
previously presented five fringe patterns strategy [11] is intro-
duced to calculate the absolute phase map with the purpose of
making the proposed approach less sensitive to object motion.
As for the 3-D coordinates acquisition, the out-of-plane height is
obtained firstly by the technique in Ref. [12] and the correspond-
ing two in-plane coordinates are solved according to the calculated
height, together with the calibrated intrinsic and extrinsic para-
meters of the camera. In addition, several LUTs are established for
the computations of the phase map and 3-D coordinates so as to
lower the computational complexity and enhance the measure-
ment speed. The experimental results verify the validity of the
proposed method.

2. Phase retrieval

Phase-shifting algorithm is one of the most commonly used
techniques for phase recovery due to its high accuracy and
insensitivity to ambient illumination. For traditional N-step
phase-shifting algorithm, the three-step phase-shifting strategy
has been extensively adopted in high-speed applications because
it only requires three phase-shifting images to obtain a full-field
phase map. The obtained phase map by the phase-shifting algo-
rithm is wrapped and it needs to be unwrapped before applying to
3-D reconstruction. Practically, the temporal phase unwrapping
algorithm is often used to eliminate the phase ambiguity. How-
ever, as to the conventional temporal phase unwrapping algo-
rithm, it will ask for another set of N fringe patterns with a
different stripe frequency if the wrapped phase is calculated by a
N-step phase-shifting algorithm. Therefore, at least six fringe
patterns are required to obtain a continuous absolute phase map
by the traditional method.

In our previous study [11], we have proposed a bi-frequency
phase-shifting method. As it only exploits five fringe images to
compute an absolute phase map, it will be less susceptible to the
movement of object compared with the traditional method when

measuring a dynamic scenario. In the five fringe images, three of
them are of high-frequency and can be expressed as

Lix,y)=T'(xy)+1"(x,y) cos (¢,(x,y)—2r/3), (D
Lx,y)=I'x,y)+1"(x,y) cos (¢(x.y)), ()
3(x,y)=1'(x,y)+I"(x,y) cos (p,(x.y)+27/3), 3)

where I'(x,y) is the average intensity, I”(x,y) being the intensity
modulation and ¢(x,y) the phase to be solved from the high-
frequency fringe images. I'(x,y) and ¢, (x,y) can then be computed
by the following equations:

_hE+h&y)+5Xx.y)

I'x,y)= 3 . 4)

1 V3hxy-hxy)
2L, y) = L(x,y)—13(x,y)

The rest two fringe images are of low-frequency and written as

Lix,y) =T'(xy)+1"(x,y) sin (¢(x,)), (6)

¢Ppx.y) = tan ~ (5)

Is(x,y) =T'(x,y)+1"(x,y) cos (¢h(x, ¥)), (7)

where ¢(x,y) is the phase relating to the low-frequency fringe
images and can be obtained by

_lax,y)—TI'(x,y)

X,y) = tan - 8

Pi(x,y) L&y —Txy) (8)
Finally, the absolute phase map ®(x,y) can be solved by

D(x,y) = py(x,y)+27Round <—k¢,(x,y )2;45“0(’ Y) ) 9)

Here the Round represents a function to get the nearest integer.
The coefficient k needs to satisfy A; = kA,, where A, denotes the
wavelength of the high-frequency patterns and 4, the wavelength
of the low-frequency fringe. Assume that the used projector has a
resolution of W x H and the projected fringe patterns are vertical,
we take A4;=W [13,14]. By this way, the phase map of ¢, solved by
Eq. (8) is continuous, which means the ¢, needs not to be
unwrapped and can be substituted directly into Eq. (9) for the
absolute phase calculation.

3. Camera model and phase to 3-D coordinates conversion

Generally, the pinhole model is used to describe a camera with
its intrinsic and extrinsic parameters. Fig. 1 illustrates a linear
camera model where O,, —X,,YyZ, represents the world coordi-
nate system that is the base reference system for all objects
involved, and O,—X.Y.Z. the camera coordinate system whose
origin coincides with the center of the camera. The image plane at
the position of z.=f corresponds to the CCD sensor array and is
parallel to plane X.0.Y., where fis the focal length of the camera.
A virtual normalized plane is created parallel to the image plane
and located at z.=1. An arbitrary point P with coordinate
[Xw, yw,zw]T in the world coordinate system can be transformed
into [xc,y..z:]" in the camera coordinate system by the following
equation:

Xc Xw o T2 T3 b [Xw
Ye | =RTI|Yw|=|T21 T2 T3 L2 |Vw|, (10)
Zc Zw r31 T3z T33 03] |Zw

where R=[ry] (i,j=1,2,3) represents the rotation matrix and
T =[t1,t2, t5]" the translation vector. Then the projective point p,
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Fig. 2. Camera lens distortion.

on the normalized plane can be given by

_ Xn _ Xc/Zc 1
Py | T | vesze an

And, the image point p can be expressed as

o[-

where f,, and f, represent the horizontal and vertical focal length
respectively. And 1 and vq describe the location of the principal
point on the image plane. Combine Egs. (10)-(12), gives

anu-l-llo

ynfv+V0 ’ (12)

X MYy +TaB bl U=l
T31Xw +T32Yy +1332Zw + 13 n fu 13
P+ Yy FInButly g Vo (13)
31X +T32Yy + 1332w + 13 n I

Actually, this linear camera model mentioned above is an ideal
model which does not take into account of the destructive effects
of the camera lens distortion [15]. In this paper, we focus on two
dominating types of lens distortion, the radial distortion and the
tangential distortion which are shown in Fig. 2. It should be noted
that normally the radial and tangential distortions high to fourth
order would be adequate for practical application [16].

The radial distortion &,, which is mainly caused by the defective
curve of the lens components, is radially symmetric about the
optical axis and can be classified as either pincushion distortion or

barrel distortion. This kind of distortion can be written as

(ka1n? + ka1 ®)xn :| , 14)

_ 2 4 —
5r = (k]rn +k2rn )pn = |:(klrn2+k2rn4)yn

where k; and k, are the radial distortion coefficients, and
rm® =X,2+y,%. Then the tangential distortion &, may arise when
the optical centers of the lens surfaces are not strictly collinear and
it can be expressed as

{Zkgxnyn +kg(2x2412)
=

k3(2J’ﬁ+r%)+2k4XnYn ’ (15)

where k3 and k4 are the tangential distortion coefficients. Next,
combine Egs. (14) and (15), the distorted point [x4,y4]7 on the
normalized plane can be determined by

Xn(1+Kk11n? +korn®) + 2k3xny,, +ka(2X2 +12)

Ya(1+kir® +karn®) + k3 Y% +172) + 2Kaxny,
(16)

And as the result of the distortion, the Eq. (12) can be rewritten

Xd
V4 =pp+6r+6c =

as

Uq
Pa= |y, 1=

where p, denotes the distorted image point on the image plane.

Due to the effect of lens distortion, most pixels are influenced
to some extent. The impact is insignificant if the pixels locate
around the principal point on the image plane, however it will be
much more evident when the pixels locate relatively far away
from the principal point, particularly near the border of the image.
In cases where the lens distortion is not taken into account, the
solved [x,,y,]" is actually the [x4,y,4]", thus leading to incorrect 3-D
coordinates retrieval.

Therefore, to correct lens distortion, img_rect is used to repre-
sent the corrected image and img_distort the distorted image, the
distortion can be eliminated by the following equation:

ydfv"‘VO (17)

deu+U():|

img_rect(u,v) = img_dist(ug, vq), (18)
where

Ug = [Xn(1+ k702 +kaTn®) -+ 2k3Xny, +ka(2X2 +12)] fu + o
Vg = Wn(1+kin? +korn®) + k3 QY2 +12) + 2kaxny,) f + Vo

=ty
Yn= v ;VVo

It should be noted that the calculated coordinates uy and vy
may not be proper to be directly substituted into Eq. (18) since

and 1,2 =x.2 4y,
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they may not be integers in general. To solve this issue, bilinear
interpolation algorithm is introduced into our research and its
schematic diagram is shown in Fig. 3. Thus, by the bilinear
interpolation we will have

img_dist(ugy, vq) = img_dist(uq, v1)(Uz — Ug)(Va —Vg)
+img_dist(uy, v1)(Ug —Uq1)(V2 —Vgq)
+img_dist(uy, v2)(Uz —Ug)(Vg — V1)
+img_dist(u, v2)(Ug — U1)(Vg — V1), (19)

where 1, and v, are the nearest integers to uy and v4 while smaller
than uy and v4. And u; and v, are the nearest integers that are
larger than uy and vg.

As to the correction algorithm, it is not hard to find that the
computational complexity of Eq. (18) is not low, which is one
major obstacle for the real-time implementation of our method.
Thus to handle this issue, Eq. (18) expressing the pixel mapping
relationship between the distorted and the corrected image is
performed and stored in computer memory prior to the real-time
measurement since the pixel positions before and after distortion
correction, intrinsic parameters and distortion coefficients are all
known once the camera is calibrated. As the time-costing mapping
function is pre-determined, Eq. (19) can be carried out in real-time
process to generate an undistorted image because of its low
computational complexity.

After correcting the image distortion, we direct our attention to
the 3-D coordinates retrieval. From Eq. (13), we find that this
equation builds a relationship between a random point in world
coordinate system and its projection on the image plane. But it can
be found that there only exist two equations which are not enough
to obtain the 3-Dcoordinates (xw,y,,zw) composed of three
independent components. Therefore to cope with this issue, we
determine the coordinate z,, firstly and then retrieve the in-plane
coordinates (Xy,y,,) with the known z,, for each point.

The technique using a governing equation to calculate surface
height relative to a reference plane is commonly adopted for the
reason that it does not require precise determination for the
geometrical parameters, such as the distance between the camera
and the projector, and the capture or projection orientation. This
means the camera and the projector can be arbitrarily arranged as
long as the range of projection within the field of view of the
camera. In this research, we place the world coordinate system
(Ow —XwYwZy) on the reference plane and thus the obtained out-
of-plane height can serve as coordinate z,. A governing equation
[12] can be expressed as

where c;-c1; and dg-d;; are coefficients to be estimated, and @
being the calculated absolute phase acquired by Eq. (9). All of the
coefficients can be determined by exploiting a least-squares

141D+ (2 + 3D+ (C4+ 5PV +(Co + 7P 4 (Cg + Co D)V + (10 + €11 D)uv

Z

u

T R R e
. img_div(”dsvd)i
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Fig. 3. Schematic diagram of bilinear interpolation.

Traditionally, to calibrate the measurement system accurately,
gauge blocks of different sizes should be employed. However, the
manufacturing of a mass of gauge blocks with high precision
would be an extremely costly work. Therefore, to circumvent this
issue, we develop an alternative approach without using multiple
gauge blocks. Firstly we set a basic position for a calibration board
as the reference plane and then make the board move along its
normal direction which is shown in Fig. 4. Every time the
calibration board forwards a fixed step and data points are
selected on the surface of the calibration board at each position.
The total number of the movements will largely rely on the height
(depth) range of the measured object. Since the step size and the
number of shifts can be set based on the actual requirement, this
approach would be more flexible and practical than the strategy
with use of gauge blocks. As soon as the out-of-plane coordinate
z,, is calculated, the corresponding in-plane coordinates x,, and y.,
can be uniquely solved by Eq. (13). However, it should be noted
that the calculations for the 3-D coordinates may be inappropriate
to be directly applied in the high-speed measuring process as the
computational complexity of the Eqgs. (5), (8), (13) and (20) is still
relatively high at this moment. Hence, in the coming section, a fast
data processing algorithm is introduced.

4. LUT based fast and lossless data processing technique

LUT based approaches are extensively adopted in applications
where the minimum processing time is highly desirable. As all of
the values of interest are pre-calculated and stored in computer
memory in advance, they can be accessed directly by a simple
indexing operation without the need to conduct complex arith-
metical operations, thus saving a large amount of time. In this
paper, several lossless LUTs have been created for solving the
phase maps of ¢, and ¢, and the 3-D coordinate (X, Y., Zw)-

(20)

inverse algorithm with a reference plane (z,=0) and at least
two gauge blocks of different heights which are precisely known
in advance. The least-squares error can be written as

m
E= ¥ (-2 21
n=1
where z,, denotes the calculated height of the nth data point by
using Eq. (20), z,, being the actual height of the nth point, and m
the total number of the data points used for the coefficient
estimation. Generally, the more data points are selected, the more
accurate result can be obtained.

w= d0+d1‘§b+(d2 +d3¢)u+(d4+d5@)v+(d6+d7¢)u2 +(d3 +d9(p)\/2 +(d10+d11€D)uv’

4.1. LUTs for phase calculation

To calculate the phase, two LUTs are built for Egs. (5) and (8)
respectively

3l I=hL—I
¢y_LUT[LJ] = tan ~! <]> and {] 91, 1—11 3_13, (22)

_ /1 I=I4—%(I1+12+13) .
¢,_LUTI[I,J] = tan G) and {]:Is—%(11+12+13) (23)
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These two LUTs can accurately cover the whole variation range
of ¢, and ¢, since the captured intensity at each pixel is
represented by an integer which varies from 0 to 255 if 8 bits
are used to store the intensity value.

4.2. LUTs for 3-D coordinates retrieval
As mentioned in the previous section, the out-of-plane coordinate

z, needs to be determined firstly before acquiring the in-plane
coordinates x,, and y,,. Thus, rearranging Eq. (20) gives

Zw(U,v) =

D(u, V)(Cq 4 C3U~+ C5V~+C7U2 4+ CoV2 +C11UV) + 1 4+ Coll+ C4V+ Co U2 + Cg V2 + CroUv
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where X1_LUT, X2_LUT, Y1_LUT, Y2_LUT are defined in the
Appendix. Since u and v represent the image column and row
respectively, the size of the created LUTs to calculate the 3-D
coordinates will depend on the resolution of the used camera.
Compared with solving Egs. (20) and (13) directly, it can be found
that the proposed LUT based data processing technique is able to
yield lossless 3-D coordinates merely by 4 multiplications, 4 addi-
tions and 1 division, thus will greatly reduce the time cost.

5. Experiments

To testify the proposed method, we employed our high-speed real-
time 3-D measurement system [17] composed of a high-speed black
and white CCD camera, a modified off-the-shelf DLP projector and a

24

where (u,v) is the pixel coordinate on the image plane. Then, four
LUTs are built for Eq. (24) and we have

D(u,v)Z1_LUT[u, v]+Z2_LUT[u, v]

2wt V) = G )73 L[0T, V] + Z4_LUT[w, V] (2)
Z1_LUT[u, V] = C1 + C3U+C5V+C7U? + CoV? +Cq1 UV, (26a)
Z2_LUT[u, V] = 14 Cou+ C4V+ Cu? +CgV2 +CroUv, (26b)
Z3_LUT[u, V] = d +dsu+dsv+d;u +dov? +dq1uv, (260)
Z4_LUT[u, V] = do+dou+dav+dgu? +dgv? +douv - (26d)

Substituting Eq. (25) into Eq. (13), x,, and y,, can be obtained
respectively by

Xw(U, V) =X1_LUT[u, v]+X2_LUT[u, vV]zyw(u, v), (27)

Yw(u,v)=Y1_LUT[u, v]+Y2_LUT[u, vizw(u, v),

(28)
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personal computer. A Field-Programmable Gate Array (FPGA) board is
integrated into our system to synchronize the camera and projector
making them run at a rate of 120 frames per second. Before
experiments, the nonlinearity of the projector was corrected to ensure
high measurement accuracy. To reduce the random noise resulted
from short exposure time, 3 x 3 Gaussian filter was used to smooth
the captured image.

5.1. Camera calibration and determination for governing equation
coefficients

The used camera was calibrated by the Matlab calibration toolbox
[16] exploiting a black and white calibration board whose pattern is
formed by 99 white circles in 11 columns and 9 rows. And the distance
between the center of each circles is 30 mm. We captured 20 images
of the calibration board with different positions and orientations as
shown in Fig. 5(a). The plane of the calibration board in the first
calibration image was chosen as the reference plane and the world

| o Reference plane
Siel (z,=0)

o000 O0OOOS

IEE R X R IR =
A XEY PRI

oo
eovooovvoe

e

Projector

Fig. 4. Calibration process for the unknown coefficients in governing equation.
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Fig. 5. Camera calibration. (a) 20 images being used for calibration; (b) A

a

o
L
L

istorted image and (c) Its undistorted image.

b

Fig. 6. Fringe images for testing the accuracy of in-plane coordinates. (a) Primitive fringe images used by the method neglecting lens distortion and (b) corrected fringe

images utilized in the proposed method.

coordinate system was set at the center of the calibration board. The
intrinsic parameters matrix of the camera is as follows:

fu 0 Ug

914.57096 0 317.66185
A=|0 f, v |= 0 915.09352 227.26700
0 0 1 0 0 1

The calculated distortion coefficients high to fourth order is
shown in matrix Kc,

Kc=[kq, ko, k3, ka]=[—0.32944,0.20982,0.00179, —0.00152] -

And the extrinsic parameters matrix which was calculated
according to the first calibration image is

0.997387

—0.00915 0.071662 —13.7401
[R T]=| —0.00896 —0.99996 —0.00302 7.128341
0.071687 0.002374 —0.99742 544.6543

To see the effect of lens distortion clearly, two images of the
calibration board before and after the distortion correction are
illustrated in Fig. 5(b) and (c) respectively. By comparison, it is

obvious to see that the circles near the border of the calibration
board have been rearranged in a slight arc due to the effect of the
lens distortion.

After the camera calibration, we computed the coefficients in
Eq. (20). To precisely control the moving step, the calibration
board was placed on a motorized translation stage with displace-
ment precision of 1 pm and the normal direction of the calibration
board was coaxial with the moving direction of the translation
stage. The step in Fig. 4 was set to be 3 mm. Totally, the whole
moving distance of the calibration board was 99 mm with regard
to the reference plane. At each position, images of the calibration
board with projected fringes were used for phase retrieval after
they had been undistorted. And then the data points were selected
within the white circles of the calibration board. By using the
Levenberg-Marquardt method, the determined coefficients are

c1—-C11 =[—255038148.19393, 36853211.89023, 269362.36249,

—1310316.72298, —451.38022, —29665.76779,

—53.37696, 680.91566, —6.35272, 1675.93245, 0.02991],

49
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do-dq11 =[20915440.79027, —288325.98495, 48700.96983,

319.29858, —304.83788, —15.33277, —50.53371,
—0.08833, 0.28800, 0.00999, —0.32732, 0.03457]-

5.2. Static scene measurements

To evaluate the accuracy of the propose approach, experiments
measuring motionless gauge objects have been conducted. The
first one was designed for testing the accuracy of the calculated
in-plane coordinates (x,, and y,,). With this purpose, a calibration
board was measured at the position of the reference plane. For
comparison, a measurement without removing the lens distortion
was also conducted. Fig. 6(a) illustrates five fringe images without
distortion elimination. And Fig. 7(a) shows the corresponding
reconstructed 3-D point cloud map viewed from the positive
direction of Z,, in which it is obvious to see that the circles at
the left bottom have been shifted by a small amount due to the
lens distortion. In contrast, another set of five fringe images, which
were processed by Eqs. (18) and (19) for the distortion removal,
are shown in Fig. 6(b). The corresponding point cloud map was
obtained as Fig. 7(b). It can be seen that those misplaced circles
have been moved back to correct positions once the distortion was
eliminated.

Four centers of the circles located at four corners of the
calibration board were selected and labeled from A to D. The
result of measured distances of the four line segments between
the chosen centers is illustrated in Table 1. It shows that using the
proposed method the measurement accuracy of each segment has
been greatly improved. After the distortion correction, the largest
error is 0.13 mm which is much less than the smallest error
5.59 mm acquired from the method without distortion correction.

For further accuracy analysis, comparisons between the actual
positions of centers of all the circles on the calibration board and
their measured results has been conducted since the distance
between each center of the circles was known to be 30 mm and
the origin of the world coordinate system has been placed at the

a T T
100 ................ . ................................ 1
50 % o0 1
- r Y
> : > 0 @ ¢ .
-50 ......... DO .. R R
100 .§ o &

150 -100 -50 0 50 100 150
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center of the calibration board. Fig. 8(a) and (b) shows the
measurement error distributions of the method without distortion
correction and the one with the correction respectively. Each
asterisk represents a center of a circle on the calibration board,
and the horizontal axis and vertical axis indicate the measurement
errors in directions of X,, and Y,, respectively. With the developed
approach, the errors in the two directions are cut down to less
than 0.2 mm that is an accuracy improvement of one order of
magnitude compared with the performance of the counterpart
method. Moreover, we calculated the distances from the center of
the central circle to the ones of the surrounding circles for the
comparison to the true distances. Fig. 8(c) shows the result from
the method without distortion correction. It is noted that as the
distribution of circles on the calibration board is centrosymmetric,
the same distance may correspond to different circles. Thus, each
measured distance showed by the dot is the average for those
circles. For quantitative comparison, the results of three different
distances were displayed. It can be seen that as the distance is
farther the measurement error increases and the precision is
deteriorated, indicated by the gradually increasing distinction
between the measured mean value and the true distance and
the larger value of the standard deviation (STD). By contrast, Fig. 8
(d) demonstrates the result of the proposed method. It can be
found that the curve of the measured data coincident well with
the true data for all distances no matter how far it is. The
difference between the measured mean value and the true value
for the farthest circles is 0.06 mm and the corresponding STD is
0.0492 mm, which have been greatly reduced compared to the
results obtained without the distortion correction.

The next experiment was carried out to evaluate the measure-
ment accuracy for coordinate z, (out-of-plane height). Again, an
experiment using the method without distortion correction was
conducted for comparison. Two gauge blocks with heights of
50.48 mm and 80.71 mm were inspected and placed against the
reference plane. Fig. 9(b) shows the captured five fringe images, in
which the effect of distortion was removed by Eqgs. (18) and (19), and
Fig. 9(a) shows the primitive distorted fringe images. After solving

Y({mm)
=

Fig. 7. The solved 3-D point cloud maps viewed from the positive direction of Z,. (a) The result from method without distortion correction and (b) the result from the

proposed method.

Table 1
Measurement results of the four segments.

Method without distortion correction

Proposed method with distortion correction

Segments AB BD CcD

Measured distance (mm) 290.69 23441 288.98
Actual distance (imm) 300.01 240.00 300.01
Error (mm) 9.32 5.59 11.03

AC AB BD cD AC

228.74 299.89 24013 300.10 239.93

240.02 300.01 240.00 300.01 240.02
11.28 0.12 —0.13 —0.09 0.09
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Fig. 8. Measurement errors of the in-plane coordinates. (a) The measurement error in directions of X,, and Y,, when the lens distortion is not considered, (b) the
measurement error in directions of X, and Y,, when the presented method is used, (c) the measured distances between the central circle to the rest circles when the lens
distortion is not considered and (d) the measured distances between the central circle to the rest circles when the presented method is used.

the absolute phase map by Eq. (9), the surface heights of the blocks
were obtained by Eq. (20). The 3-D reconstruction results are shown
in Fig. 10, where (a) illustrates the 3-D model acquired by the method
without the distortion correction and (b) shows the one by the
proposed method. Since these results look alike in this macroscopic
view. A more subtle analysis of the surfaces is shown in Fig. 11.

Fig. 11(a) and (b) depicts the blocks surfaces calculated without the
elimination of distortion, and Fig. 11(c) and (d) illustrates the ones
calculated through the proposed method. Comparing these results,
the height distributions of the presented method are more uniform
while by the counterpart method the reconstructed planes are
undulating. The experimental results show that when neglecting
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b i
o

Fig. 9. Fringe images to calculate the out-of-plane heights of the two gauge blocks. (a) Primitive images without distortion rectification and (b) images after the distortion
elimination.

Fig. 10. 3-D reconstruction results. (a) The 3-D model solved without considering camera lens distortion; (b) The 3-D model obtained through the proposed method.

lens distortion the average measured heights of the two blocks are average heights are 50.56 mm and 80.83 mm with RMS of 0.196 mm
49.69 mm and 80.94 mm with root mean square (RMS) of 0.836 mm and 0.127 mm. It can be found that the measurement accuracy has
and 0.487 mm, and once the distortion was removed the calculated been tripled by our approach.



S. Feng et al. / Optics Communications 329 (2014) 44-56

a
50.5
50
_ 51 !
£ 4
£ ,h \
: 50 “‘)l‘f ) J‘u, } .
Vng i ol . g L Y
49 ,M""/o
L -
zo ///20
X 40 \\Y/‘g e
rxg, 60 60 (@ “°
c
50.7
50.65
50.6
50.55
50.5
o 50.45
X, 40 T~ 40 N
Pixe, 60 60 <@

b

Z (mm)

Z (mm)

53

82
815
82
81 "
V 81
80
79 1.
0
80.92
80.9
81.5 PP Y . 80.88
RSP PS5 DR 80.86
80.5 v s 80.84
80 - Noe i
o - =5 P 80.82
20 T~ 20 80.8
X 40 T~ / 40 M 80.78
: NS .
{'o"‘%/) 60 60 S\4

Fig. 11. The surface detail of the reconstructed models. (a) The measured surface of gauge block with height of 50.48 mm when neglecting the lens distortion; (b) The
measured surface of gauge block with height of 80.71 mm when neglecting the lens distortion; (c) The measured surface of gauge block with height of 50.48 mm when using
the proposed method; (d) The measured surface of gauge block with height of 80.71 mm when using the proposed method.

Video S1. A video clip is available online. Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.optcom.2014.04.067.

Based on the results above, it is plain to see that the proposed
method with considering the lens distortion can effectively reduce
the measurement error and greatly improve the accuracy for both
in-plane and out-of-plane coordinates.

5.3. Real-time dynamic scene measurements

To evaluate the real-time performance of the proposed method,
four threads were created for data processing, one was designed
for capturing input image, one for phase retrieval and 3-D
reconstruction, and the remaining two for 3-D display and invalid

pixel elimination [17]. Also, by Eqgs. (26), (29)-(32) and (18) (some
of them are in the Appendix), LUTs and mapping relationship for
distortion correction were pre-calculated and stored.

Firstly a moving human hand was measured and a video is
presented (Media 1 [18]). A selected image of the measurement
result is shown in Fig. 12(a) where the axes of X,,, Y,, and Z,, were
marked with red, green and blue respectively. In the video, we can
see that the movements and changes of gestures are very smooth
and the hand surface has been well reconstructed. Besides, when
the hand is moving back and forth, few distinct invalid points
on the edges of the hand can be observed. For comparison, we
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Fig. 12. Real-time measurement results of a moving hand. (a) The 3-D reconstruction result of the proposed method (Media 1) and (b) the 3-D reconstruction of the method

without data pre-processing (Media 2).

Video S2. A video clip is available online. Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.0ptcom.2014.04.067.

Table 2
The time cost in the real-time measurement.

Method without data
pre-processing

Proposed method

Image distortion correction 47.32 3.25
Phase retrieval 84.49 143
Invalid point elimination 1.52 1.53
3-D coordinates calculation 53.67 4.62
Total (ms) 186.94 10.83

conducted another experiment without using the LUTs-based
processing, and the pixel mapping relation was calculated directly
using Eq. (18). The result is shown in Fig. 12(b), and the corre-
sponding video is presented as Media 2 [19], from which the
movements of the hand are stumbling and very unsmooth, and
large amounts of invalid points arise at the edges of the hand
contour when the hand is moving. Finally for quantitative analysis,
the average time cost over 800 runs of the two methods is
reported in Table 2. With the help of LUTs and the strategy of
pre-computing distortion mapping relation, the computational
time of the image distortion correction, phase retrieval and 3-D

coordinates calculation has been significantly reduced. Further-
more, the total time cost of the proposed method is 10.83 ms
which means that as long as the projection and capturing speed
are fast enough, a 3-D reconstruction can be acquired at 92.34
frames per second.

Further we measured a more complex scene with multiple
objects involving a moving human hand, a static gauge block and a
calibration board. The result observed from different views is
shown Fig. 13 and a video (Media 3 [20]) is presented, in which
the hand still moves smoothly and the profiles of all the three
isolated objects have been retrieved correctly.

6. Conclusion

This paper presents a high-speed real-time 3-D coordinates
measurement system using fringe projection approach. Only five
fringe images are used to obtain the absolute phase map. Using the
method of governing equation, the out-plane height is solved
firstly, and with the calibrated camera parameters the two
corresponding in-plane coordinates are calculated successively.
The camera lens distortion is taken into account for improving the
3-D geometric shape measurement accuracy. Compared with the
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Fig. 13. The real-time measurement result of multiple objects (Media 3).

Video S3. A video clip is available online. Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.0ptcom.2014.04.067.

method without considering the lens distortion, the measurement
error of in-plane coordinates has been significantly reduced by one
order of magnitude by the proposed approach. And with regard to
the out-plane height measurement, the RMS is also reduced by
two thirds. In addition, owing to the established LUTs for phase
retrieval and 3-D coordinates calculation, and the pre-determined
pixel mapping relationship for distortion correction, a 3-D recon-
struction rate of 92.34 frames per second is achieved.
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Appendix

The X1_LUT, X2_LUT, Y1_LUT and Y2_LUT can be created as

bx[u, vicx[u, v] — ex[u, VIfx[u, v]

X1_LUT[u, vl = gx[u, vihx[u, v] —ix[u, vjx[u, v]’

(29)

X2_LUT[u,v] =

ax[u, vicx[u, v]—dx[u, vIfx[u, v]

Y1_LUT[u, v] = DY VICYI, VI~ ey, vIfyiu, v

gylu, vihy[u, v]—iylu, viiy[u, v]™’

V2 LUTqu, v] — QY1 VICYIL, VI dyTu, VIFyTu, v

gx[u, vihx[u, v]—ix[u, v]jx[u, v]’

gylu, vihy[u, vi—iy[u, vliy[u, V]

where

axu, V] =Xxqrs3 — T3,
bx[u, v] = x4t3 —t1,

CX[U, V] =T22 —T32Yp,
dX[u,v]=yqrs3 —r23,
ex[u, vl =yqt3 —tz,

Fxu,v]=r12—132%n,
8X[u, V] =111 —T'31Xn,
hx[u, v =123 —132¥p,

IX[U, V] =T21 —T31Yp,

ay[u,v] = axfu, v],
by[u, v] = bx[u, v],
cylu,vl=r21—T31Yp,
dy[u, v] = dx[u, v],
ey[u,v]=ex[u,v],
fylu,vl=r11 —r31Xn,
8Y[U, V] =T12 —T32Xn,
hy[u, vl =121 1315,

iy[u, vl =12 —TI32¥,,

>

55

(30)

(€2

(32)
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JX[U,V]=T12 —T32Xn, JY[U,V]=T11—T31Xn,

And xj, y, can be solved by

u—u V-V
Xp = % and y,= 0.

fu fv
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